JPH11244658A - Removal of organic chlorine compound - Google Patents

Removal of organic chlorine compound

Info

Publication number
JPH11244658A
JPH11244658A JP10046109A JP4610998A JPH11244658A JP H11244658 A JPH11244658 A JP H11244658A JP 10046109 A JP10046109 A JP 10046109A JP 4610998 A JP4610998 A JP 4610998A JP H11244658 A JPH11244658 A JP H11244658A
Authority
JP
Japan
Prior art keywords
activated carbon
exhaust gas
dioxins
gas
organic chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10046109A
Other languages
Japanese (ja)
Other versions
JP3521730B2 (en
Inventor
Hiroyuki Aikyo
浩幸 相京
Mitsuo Suzuki
光雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP04610998A priority Critical patent/JP3521730B2/en
Publication of JPH11244658A publication Critical patent/JPH11244658A/en
Application granted granted Critical
Publication of JP3521730B2 publication Critical patent/JP3521730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively removing a organic chlorine compounds containing dioxins. SOLUTION: Exhaust gas is treated by using a powdery activated carbon having <=1.2 wt.% total oxygen content determined from pyrolysis gas at 950 deg.C and >=0.1 ml/g pore volume of 10-16 Å diameters. Thus, the removing ratio of the organic chlorine compounds in the exhaust gas containing the dioxins and their precursors can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ゴミなどの焼
却炉などから発生する高温の排ガスに活性炭を添加し
て、排ガス中に含まれる有害物を除去する排ガス中の有
機塩素化合物の除去方法において、特に毒性の高いダイ
オキシン類を効率的に除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing organochlorine compounds in exhaust gas by adding activated carbon to high-temperature exhaust gas generated from an incinerator for municipal waste or the like to remove harmful substances contained in the exhaust gas. In particular, the present invention relates to a method for efficiently removing highly toxic dioxins.

【0002】[0002]

【従来の技術】都市ゴミや産業廃棄物などを焼却したと
きに発生する排ガス中の有害物には、塩化水素や硫黄酸
化物等の酸性ガスや水銀等の重金属の他に、猛毒のダイ
オキシン類が含まれており、ダイオキシン類排出量の抑
制が世界的な問題になりつつある。焼却過程におけるダ
イオキシン類の生成反応は複雑であり、未だ解明されて
いないが、塩素を含む廃棄物の燃焼によって発生した前
駆物質が、排ガスの冷却過程で再合成反応を起こし、ダ
イオキシン類を生成すると考えられている。
2. Description of the Related Art Toxic substances in exhaust gas generated when incinerators such as municipal waste and industrial waste are incinerated include acid gases such as hydrogen chloride and sulfur oxides, heavy metals such as mercury, and highly toxic dioxins. And controlling dioxin emissions is becoming a global problem. The reaction of dioxin formation in the incineration process is complex and has not yet been elucidated.However, if the precursor generated by the combustion of waste containing chlorine undergoes a resynthesis reaction in the process of cooling exhaust gas to generate dioxins. It is considered.

【0003】生成したダイオキシン類の除去方法として
最も有効な方法に、活性炭による吸着除去がある。活性
炭による処理はダイオキシン類以外にも水銀等多くの有
害物質を除去できるという利点がある。活性炭による排
ガスの処理方法は、粉末状の活性炭を集塵機前の煙道に
噴霧する方法と、粒状の活性炭を充填した吸着塔を集塵
機の下流に設置する方法に分けられるが、特に前者の方
法は、焼却プラントにおいて塩化水素や硫黄酸化物等の
酸性ガスを除去するために使われている消石灰粉末の噴
霧設備を利用することができるため、設備面での利点が
大きく、既存の焼却プラントの多くでこの方法の導入が
進められている。
[0003] The most effective method for removing the generated dioxins is adsorption removal using activated carbon. The treatment with activated carbon has the advantage that many harmful substances such as mercury can be removed in addition to dioxins. The method of treating exhaust gas with activated carbon can be divided into a method of spraying powdered activated carbon into a flue in front of a dust collector and a method of installing an adsorption tower filled with granular activated carbon downstream of the dust collector. Since the equipment for spraying slaked lime powder, which is used to remove acidic gases such as hydrogen chloride and sulfur oxides in incineration plants, can be used, there are great advantages in terms of equipment and many existing incineration plants The introduction of this method is underway.

【0004】[0004]

【発明が解決しようとする課題】焼却炉等から排出され
るダイオキシン類による汚染が深刻な社会問題に発展し
ている今日、ダイオキシン類の排出量削減のために様々
な努力が積み重ねられており、粉末活性炭を用いる処理
方法においても、さらなる除去効率の向上が求められて
いた。
SUMMARY OF THE INVENTION At present, the pollution caused by dioxins emitted from incinerators and the like has become a serious social problem, and various efforts have been made to reduce the emission of dioxins. In the treatment method using powdered activated carbon, further improvement in removal efficiency has been required.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者は、上
記の課題を解決すべく鋭意検討した結果、950℃での
熱分解ガスから算出した全酸素量が1.2wt%以下で
あり、直径10Å〜16Åの細孔容積が0.1ml/g
以上である粉末活性炭を用いて排ガスを処理することに
より、ダイオキシン類およびその前駆体を含む、排ガス
中の有機塩素化合物を効率良く除去できることを見い出
し本発明に到達した。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the total oxygen amount calculated from the pyrolysis gas at 950 ° C. is 1.2 wt% or less. 0.1ml / g of pore volume of 10 ~ 16mm in diameter
By treating the exhaust gas using the powdered activated carbon described above, it has been found that the organochlorine compounds in the exhaust gas, including dioxins and their precursors, can be efficiently removed, and the present invention has been achieved.

【0006】本発明の最大の特徴は、排ガスの処理に際
し、950℃での熱分解ガスから算出した全酸素量が
1.2wt%以下であり、直径10Å〜16Åの細孔容
積が0.1ml/g以上である粉末活性炭を用いること
により、ダイオキシン類およびその前駆体を含む、排ガ
ス中の有機塩素化合物の除去率が著しく向上する点にあ
る。
The most important feature of the present invention is that, when treating exhaust gas, the total oxygen content calculated from the pyrolysis gas at 950 ° C. is 1.2 wt% or less, and the pore volume of 10 to 16 mm in diameter is 0.1 ml. By using powdered activated carbon having a concentration of at least / g, the removal rate of organic chlorine compounds in exhaust gas containing dioxins and their precursors is significantly improved.

【0007】一般に、焼却炉の排ガス処理で、粉末活性
炭を吹き込む煙道部の温度は、200℃前後である。こ
の温度でのダイオキシン類の蒸気圧は、ダイオキシン類
の中でも最も毒性の高いと言われている2,3,7,8
−テトラクロロジベンゾ-p-ダイオキシン(2,3,
7,8−TCDD)を例にとると、21Pa(200
℃)程度と比較的高く、焼却炉排ガスのような希薄状態
では、ダイオキシン類の多くは気体の状態で存在すると
考えられる。したがって、煙道部に粉末活性炭を吹き込
んだ場合のダイオキシン類の除去機構は、活性炭粒子外
表面への付着よりも活性炭細孔内への吸着が支配的であ
ると考えられる。このことは、文献「排ガス中の微量有
害物質の除去」(渋谷栄一 分離技術 p30第22巻
第5号1992年)記載の結果からも明らかである。こ
の文献によれば、細孔による吸着効果を持たない消石灰
を煙道に吹き込んだ場合、ダイオキシン類の除去率は2
4%であったのに対し、活性炭を吹き込んだ場合は83
%以上が除去され、活性炭の吸着作用による除去率の向
上が見られたとある。
In general, the temperature of the flue into which powdered activated carbon is blown in the treatment of exhaust gas from an incinerator is about 200 ° C. The vapor pressure of dioxins at this temperature is 2,3,7,8, which is said to be the most toxic among dioxins.
-Tetrachlorodibenzo-p-dioxin (2,3,
7,8-TCDD), 21 Pa (200
° C), and it is considered that many dioxins exist in a gaseous state in a lean state such as incinerator exhaust gas. Therefore, it is considered that the mechanism of removing dioxins when powdered activated carbon is blown into the flue is that adsorption into activated carbon pores is more dominant than adhesion to activated carbon particle outer surfaces. This is apparent from the results described in the document "Removal of trace harmful substances in exhaust gas" (Eiichi Shibuya Separation Technology, Vol. 22, No. 5, No. 1992). According to this document, when slaked lime having no adsorption effect by pores is blown into a flue, the removal rate of dioxins is 2%.
4% compared to 83% when activated carbon was blown.
% Or more, and an improvement in the removal rate due to the adsorption effect of activated carbon was observed.

【0008】したがって、活性炭によるダイオキシン類
の除去率向上のためには、吸着性能の高い活性炭を使用
することが必要である。活性炭は無数の微細孔を有する
炭素材料であるが、その吸着性能は、細孔径の分布と細
孔表面の性状によって決定される。ダイオキシン類の吸
着は、高温低濃度の気相吸着で行われるため、ミクロポ
ア領域の細孔が吸着には有利であると考えられるが、ダ
イオキシン類分子の大きさによる制約から、あまり小さ
な細孔は吸着には寄与できず、吸着能力の向上のために
は細孔径分布の最適化が必要になる。また、ダイオキシ
ン類は疎水性であるため、活性炭表面の疎水性が高いほ
ど、具体的には表面の含酸素官能基量が少ないほど、吸
着量が増大すると考えられる。この含酸素官能基の量は
950℃での熱分解ガスから算出した全酸素量によって
評価することができる。
Therefore, it is necessary to use activated carbon having high adsorption performance in order to improve the dioxin removal rate by activated carbon. Activated carbon is a carbon material having a myriad of fine pores, and its adsorption performance is determined by the pore size distribution and the properties of the pore surface. Since the adsorption of dioxins is carried out by high-temperature, low-concentration gas-phase adsorption, pores in the micropore region are considered to be advantageous for adsorption. It cannot contribute to adsorption, and optimization of the pore size distribution is required to improve the adsorption capacity. In addition, since dioxins are hydrophobic, it is considered that the higher the hydrophobicity of the activated carbon surface, specifically, the smaller the amount of oxygen-containing functional groups on the surface, the greater the amount of adsorption. The amount of the oxygen-containing functional group can be evaluated by the total oxygen amount calculated from the pyrolysis gas at 950 ° C.

【0009】そこで、細孔分布や表面性状の異なる各種
粉末活性炭を用いて鋭意検討を行ったところ、950℃
での熱分解ガスから算出した全酸素量が1.2wt%以
下であり、直径10Å〜16Åの細孔容積が0.1ml
/g以上である粉末活性炭がダイオキシン類およびその
前駆体を含む、有機塩素化合物の除去に好適であること
を見出した。
[0009] Accordingly, the present inventors conducted intensive studies using various types of powdered activated carbons having different pore distributions and surface properties.
The total oxygen content calculated from the pyrolysis gas in the above is 1.2 wt% or less, and the pore volume of 10 to 16 mm in diameter is 0.1 ml.
/ G or more was found to be suitable for removing organic chlorine compounds, including dioxins and their precursors.

【0010】本発明に使用される活性炭の原料として
は、多くの炭素質物質が考えられるが、工業的には活性
化の難易、原料の品位、価格、大量かつ安定的に入手で
きることなどの点が選定条件となる。原料の種類によっ
て製造条件や、製品の価格、用途は異なる。原料として
は、植物物系の木材、のこくず、ヤシ殻、パルプ廃液、
化石燃料系の石炭、石油重質油、あるいはそれらを熱分
解した石炭および石油系ピッチ、合成高分子、フェノー
ル樹脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビ
ニリデン樹脂、プラスチック廃棄物、廃タイヤ等多種多
用である。これらの原料を炭化後、賦活するが、賦活法
は、ガス賦活と薬品賦活に大別される。ガス賦活法は、
薬品賦活が化学的な活性化であるのに対して、物理的な
活性化ともいわれ、炭化された原料を高温で水蒸気、炭
酸ガス、酸素、その他の酸化ガスなどと接触反応させ
て、微細な多孔質の吸着炭をつくる方法であり、工業的
には水蒸気を用いる方法が主流である。薬品賦活法は、
原料に賦活薬品を均等に含侵させて、不活性ガス雰囲気
中で加熱し、薬品の脱水および酸化反応により、微細な
多孔質の吸着炭をつくる方法である。使用される薬品と
しては、塩化亜鉛、りん酸、りん酸ナトリウム、塩化カ
ルシウム、硫化カリウム、水酸化カリウム、水酸化ナト
リウム、炭酸カリウム、炭酸ナトリウム、硫酸ナトリウ
ム、硫酸カリウム、炭酸カルシウム等がある。本発明に
使用される活性炭の原料および製法に関しては特に限定
されるものでなく、どのような原料や方法で作られた活
性炭でも本発明に使用できる。
As the raw material of the activated carbon used in the present invention, many carbonaceous substances can be considered. However, industrially, it is difficult to activate the raw material, the quality of the raw material, the price, the availability of the raw material in large quantities and stably, and the like. Is the selection condition. Manufacturing conditions, product prices, and uses vary depending on the type of raw material. Raw materials include plant-based wood, sawdust, coconut shell, pulp waste liquid,
Fossil fuel-based coal, petroleum heavy oil, or thermally decomposed coal and petroleum-based pitch, synthetic polymer, phenolic resin, furan resin, polyvinyl chloride resin, polyvinylidene chloride resin, plastic waste, waste tires, etc. It is a wide variety. These carbonized materials are activated after carbonization. Activation methods are roughly classified into gas activation and chemical activation. The gas activation method is
While chemical activation is chemical activation, it is also called physical activation, and the carbonized raw material is brought into contact with steam, carbon dioxide, oxygen, and other oxidizing gases at high temperature to produce fine This is a method for producing porous adsorbed carbon, and the method using steam is the mainstream industrially. The chemical activation method is
This is a method in which a raw material is evenly impregnated with an activating chemical, heated in an inert gas atmosphere, and a fine porous adsorbed carbon is produced by a dehydration and oxidation reaction of the chemical. The chemicals used include zinc chloride, phosphoric acid, sodium phosphate, calcium chloride, potassium sulfide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, sodium sulfate, potassium sulfate, calcium carbonate and the like. The raw material and production method of the activated carbon used in the present invention are not particularly limited, and activated carbon produced by any raw material or method can be used in the present invention.

【0011】本発明に使用される粉末活性炭の粒径とし
ては、特に限定するものではないが、好ましくは0.0
1〜300μm、さらに好ましくは0.1〜100μm
とするのが良い。本発明に使用される粉末活性炭の比表
面積としては、特に限定するものではないが、好ましく
は100〜2000m2 /g、さらに好ましくは300
〜1500m2 /gとするのが良い。
The particle size of the powdered activated carbon used in the present invention is not particularly limited, but is preferably 0.0
1 to 300 μm, more preferably 0.1 to 100 μm
Good to be. The specific surface area of the powdered activated carbon used in the present invention is not particularly limited, but is preferably 100 to 2,000 m 2 / g, and more preferably 300 to 2,000 m 2 / g.
It is preferable to set it to m1500 m 2 / g.

【0012】950℃での熱分解ガスからの全酸素量の
算出は、以下の方法により行うことができる。石英の反
応管に活性炭試料を入れて10-2mmHgに真空排気
し、該反応管を950℃に保った炉に挿入後、30分間
にわたって発生するガスを捕集する。発生したガスの量
とガスクロマトグラフィーで求めたガスの組成から、ガ
ス中の一酸化炭素及び二酸化炭素の量を計算する。発生
した一酸化炭素及び二酸化炭素中に含まれる酸素の量を
算出して、反応管中の活性炭量に対する重量百分率を求
め、950℃での熱分解ガスから算出した全酸素量とす
る。なお、反応管に入れる活性炭試料の量が多すぎると
規定時間内に熱分解が終了せず全酸素量が低めに見積も
られるため注意を要する。
The calculation of the total amount of oxygen from the pyrolysis gas at 950 ° C. can be performed by the following method. The activated carbon sample is placed in a quartz reaction tube, evacuated to 10 -2 mmHg, and the reaction tube is inserted into a furnace maintained at 950 ° C., and gas generated over 30 minutes is collected. The amounts of carbon monoxide and carbon dioxide in the gas are calculated from the amount of generated gas and the composition of the gas determined by gas chromatography. The amount of generated carbon monoxide and the amount of oxygen contained in carbon dioxide are calculated, the weight percentage with respect to the amount of activated carbon in the reaction tube is determined, and the total amount is calculated from the pyrolysis gas at 950 ° C. It should be noted that if the amount of the activated carbon sample put in the reaction tube is too large, the thermal decomposition is not completed within the specified time and the total oxygen amount is estimated to be lower.

【0013】[0013]

【実施例】以下に実施例および比較例を挙げて本発明を
より具体的に説明するが、本発明はその要旨を越えない
限り、下記実施例より限定されるものではない.出発原
料および調製条件の異なる石炭系粉末活性炭(実施例
1、2、比較例1)とヤシ殻系粉末活性炭(比較例
2)、および市販の粉末活性炭としてNorit社製
「GL−50」(比較例3)と武田薬品工業社製「白鷺
DO−2」(比較例4)について、性状と吸着性能の試
験結果を表1に示す。
The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Coal-based powdered activated carbon (Examples 1, 2 and Comparative Example 1) and coconut-shell-based powdered activated carbon (Comparative Example 2) having different starting materials and preparation conditions, and “GL-50” manufactured by Norit (comparative) as commercially available powdered activated carbon Table 1 shows the test results of properties and adsorption performance of Example 3) and “Shirasagi DO-2” manufactured by Takeda Pharmaceutical Company (Comparative Example 4).

【0014】比表面積と細孔容積の測定はカルロエルバ
社製「ソープトマチック2100」を使用して窒素吸着
により行い、BET法により比表面積を、Cranst
on−Inkley法により細孔容積を計算した。粒径
の測定はHORIBA社製レーザー回折式粒度分布測定
装置「LA−500」を使用し、メジアン径を求めた。
The specific surface area and the pore volume are measured by nitrogen adsorption using "Soapmatic 2100" manufactured by Carlo Elba, and the specific surface area is determined by the BET method.
The pore volume was calculated by the on-Inkley method. The median diameter was determined using a laser diffraction particle size distribution analyzer “LA-500” manufactured by HORIBA.

【0015】全酸素量は950℃での熱分解ガスから算
出した全酸素量で、以下の方法により測定した。石英の
反応管に活性炭試料約0.5gを入れて10-2mmHg
に真空排気し、該反応管を950℃に保った炉に挿入
後、30分間にわたって発生するガスを捕集した。発生
したガスの量とガスクロマトグラフィーで求めたガスの
組成から、ガス中の一酸化炭素及び二酸化炭素の量を計
算した。発生した一酸化炭素及び二酸化炭素中に含まれ
る酸素の量を算出して、反応管中の活性炭量に対する重
量百分率を求め、全酸素量とした。
The total oxygen content is the total oxygen content calculated from the pyrolysis gas at 950 ° C., and was measured by the following method. Place about 0.5 g of activated carbon sample in a quartz reaction tube and put 10 -2 mmHg
After the reaction tube was inserted into a furnace maintained at 950 ° C., gas generated over 30 minutes was collected. The amounts of carbon monoxide and carbon dioxide in the gas were calculated from the amount of generated gas and the composition of the gas determined by gas chromatography. The amount of oxygen contained in the generated carbon monoxide and carbon dioxide was calculated, and the weight percentage with respect to the amount of activated carbon in the reaction tube was obtained, and the result was defined as the total amount of oxygen.

【0016】有機塩素吸着量は次のようにして測定し
た。実施例1〜2、比較例1〜4の活性炭0.1gを別
々のカラムに充填し、150℃に保温した。6本のカラ
ムに集塵機通過後の焼却炉排ガスを同時にそれぞれ3N
3 通気した。焼却炉排ガス中の有機塩素濃度は500
μg−Cl/Nm3 であった。通気前後の活性炭中の全
有機塩素量をダイアインスツルメンツ社製TOX−10
0で測定し、有機塩素吸着量を求めた。また、ダイオキ
シン類の除去性能を調べるために、粉末活性炭を集塵機
前の焼却炉煙道中に噴霧し、活性炭噴霧口前と集塵機出
口のダイオキシン類濃度を測定した。
The amount of organic chlorine adsorbed was measured as follows. Separate columns were filled with 0.1 g of the activated carbons of Examples 1 and 2 and Comparative Examples 1 to 4, and kept at 150 ° C. The exhaust gas from the incinerator after passing through the dust collector was simultaneously applied to 6 columns at 3N each.
m 3 was ventilated. Organic chlorine concentration in incinerator exhaust gas is 500
μg-Cl / Nm 3 . The total amount of organic chlorine in the activated carbon before and after aeration was measured using TOX-10 manufactured by Dia Instruments.
The measurement was performed at 0, and the amount of adsorbed organic chlorine was determined. In addition, in order to examine the dioxin removal performance, powdered activated carbon was sprayed into an incinerator flue in front of a dust collector, and the dioxin concentration was measured before the activated carbon spray outlet and at the dust collector outlet.

【0017】[0017]

【表1】 [Table 1]

【0018】以上の実施例および比較例により、950
℃での熱分解ガスから算出した全酸素量が1.2wt%
以下であり、直径10Å〜16Åの細孔容積が0.1m
l/g以上である粉末活性炭を使用することにより、ダ
イオキシン類およびその前駆体を含む、排ガス中の有機
塩素化合物を効率良く除去できることがわかる。
According to the above Examples and Comparative Examples, 950
1.2wt% of total oxygen calculated from pyrolysis gas at ℃
And the pore volume of 10 to 16 mm in diameter is 0.1 m
It can be seen that the use of powdered activated carbon of 1 / g or more enables efficient removal of organic chlorine compounds in exhaust gas, including dioxins and their precursors.

【0019】[0019]

【発明の効果】本発明の排ガス中の有機塩素化合物の除
去方法は、ダイオキシン類およびその前駆体の除去を高
効率で行うことができるため、多大な工業的利益を提供
するものである。
The method of the present invention for removing organochlorine compounds in exhaust gas provides a great industrial advantage because dioxins and their precursors can be removed with high efficiency.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】950℃での熱分解ガスから算出した全酸
素量が1.2wt%以下であり、直径10Å〜16Åの
細孔容積が0.1ml/g以上である粉末活性炭を用い
ることを特徴とする排ガス中の有機塩素化合物の除去方
1. The use of powdered activated carbon having a total oxygen content calculated from a pyrolysis gas at 950 ° C. of 1.2 wt% or less and a pore volume of 10 to 16 mm in diameter of 0.1 ml / g or more. Characteristic method for removing organic chlorine compounds in exhaust gas
【請求項2】該排ガスが焼却炉の排ガスである請求項1
記載の除去方法
2. The exhaust gas according to claim 1, wherein said exhaust gas is an exhaust gas from an incinerator.
How to remove
【請求項3】該排ガスがダイオキシン類を含む請求項1
又は2に記載の除去方法
3. The exhaust gas contains dioxins.
Or the removal method according to 2.
【請求項4】該排ガスの温度が150℃以上である請求
項1乃至3のいずれかに記載の除去方法
4. The removal method according to claim 1, wherein the temperature of the exhaust gas is 150 ° C. or higher.
JP04610998A 1998-02-27 1998-02-27 How to remove organic chlorine compounds Expired - Fee Related JP3521730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04610998A JP3521730B2 (en) 1998-02-27 1998-02-27 How to remove organic chlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04610998A JP3521730B2 (en) 1998-02-27 1998-02-27 How to remove organic chlorine compounds

Publications (2)

Publication Number Publication Date
JPH11244658A true JPH11244658A (en) 1999-09-14
JP3521730B2 JP3521730B2 (en) 2004-04-19

Family

ID=12737837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04610998A Expired - Fee Related JP3521730B2 (en) 1998-02-27 1998-02-27 How to remove organic chlorine compounds

Country Status (1)

Country Link
JP (1) JP3521730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175326A (en) * 2004-12-21 2006-07-06 Cataler Corp Dioxin adsorbing/removing agent
JP2007054833A (en) * 2006-11-17 2007-03-08 Japan Enviro Chemicals Ltd Granular activated carbon for removing pcb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175326A (en) * 2004-12-21 2006-07-06 Cataler Corp Dioxin adsorbing/removing agent
JP2007054833A (en) * 2006-11-17 2007-03-08 Japan Enviro Chemicals Ltd Granular activated carbon for removing pcb

Also Published As

Publication number Publication date
JP3521730B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
Jia et al. Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals
US7022269B2 (en) Activated carbon for odor control and method for making same
Li et al. Insights into the mechanism of elemental mercury removal via ferric chloride modified carbon Aerogel: An experimental and theoretical research
US20110223082A1 (en) Chemically-Enhanced Sorbent Activation Process and Method for Using Same
Liu et al. Gaseous mercury capture using Bi2S3 nanorods decorated ZSM-5 with superior sulfur resistance
JP2002102689A (en) Carbonaceous adsorbent
TONG et al. Enhanced effect of O/N groups on the Hg0 removal efficiency over the HNO3-modified activated carbon
JP3521730B2 (en) How to remove organic chlorine compounds
Edathil et al. Alginate-pyrolyzed porous carbon as efficient gas phase elemental mercury scavenger
Nakagawa et al. Preparation and characterization of activated carbons from refuse derived fuel (RDF)
JP3436092B2 (en) Hot gas treatment method
Zhu et al. Comparative study of the effects of various activation methods on the desulfurization performance of petroleum coke
Chen et al. Comparative study of carbon-deNOx process by different sewage sludge chars
JP2000225320A (en) Method for treating high temperature gas and active carbon
JP3947285B2 (en) Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance
JP2006263587A (en) Method for treatment of combustion exhaust-gas
Zhou et al. Adsorption of Trace Phosphine in Circular Hydrogen of a Polysilicon Chemical Vapor Deposition Stove by Cu/γ-Al2O3
EP1090881A1 (en) Coal-based molded activated carbon and process for the treatment of waste gas containing dioxins using same
JPH1170315A (en) Treatment of high temperature gas
JP2000093798A (en) Catalyst for decomposing organic chlorine compound, its production, and method for treating exhaust gas
JP3928872B2 (en) PCB removal agent and removal method
KR20040103546A (en) Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds
TWI771842B (en) Demercuration catalyst, method of producing the same and application thereof
JP2000246057A (en) Treating agent and method for high-temperature gas
JP2001170481A (en) Coal-based molded active carbon and method of treating exhaust gas containing dioxins

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees