JP2006175326A - Dioxin adsorbing/removing agent - Google Patents
Dioxin adsorbing/removing agent Download PDFInfo
- Publication number
- JP2006175326A JP2006175326A JP2004369443A JP2004369443A JP2006175326A JP 2006175326 A JP2006175326 A JP 2006175326A JP 2004369443 A JP2004369443 A JP 2004369443A JP 2004369443 A JP2004369443 A JP 2004369443A JP 2006175326 A JP2006175326 A JP 2006175326A
- Authority
- JP
- Japan
- Prior art keywords
- dioxin
- adsorption
- removal agent
- hydrophobic organic
- organic substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
本発明は、ダイオキシン吸着除去剤に関するものである。 The present invention relates to a dioxin adsorption / removal agent.
従来、産業廃棄物の処理中に発生するダイオキシンを吸着・除去するために様々な方法及び吸着除去剤が用いられてきた。 Conventionally, various methods and adsorption removal agents have been used to adsorb and remove dioxins generated during the treatment of industrial waste.
例えば、特許文献1には、ダイオキシン類を効率的に吸着除去すると共に、ダイオキシン類の生成を防止して、ダイオキシン類濃度を確実に低減することを目的として、ダイオキシン類生成触媒能の低い炭素系吸着剤よりなるダイオキシン類の吸着除去剤が開示されている。
For example,
また、特許文献2には、ダイオキシン類を吸着させた炭素質吸着剤を充填した反応槽に於いて所定の加熱処理を行うことにより、活性炭あるいは活性コークスなどの炭素質吸着剤に吸着したダイオキシン類の分解をより高い効率で行うダイオキシン類の低温熱分解方法が開示されている。
しかしながら、上記特許文献1及び特許文献2に記載されている吸着剤を用いてダイオキシンの処理を行うと、ダイオキシンと共に発生する酸性ガスや塩基性ガス、あるいは水蒸気が吸着剤に付着し、ダイオキシンに対する除去性能が劣化するという問題が生じる。
本発明は、長期間にわたって優れたダイオキシン除去性能を発揮する吸着除去剤を提供することを目的とするものである。 An object of this invention is to provide the adsorption removal agent which exhibits the outstanding dioxin removal performance over a long period of time.
本発明に係るダイオキシン吸着除去剤は、疎水性有機物質が添着された多孔質担体を含むことを特徴とするものである。 The dioxin adsorption / removal agent according to the present invention includes a porous carrier to which a hydrophobic organic substance is attached.
本発明によれば、長期間にわたって優れたダイオキシン除去性能を発揮する吸着除去剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the adsorption removal agent which exhibits the dioxin removal performance excellent over the long term can be provided.
本発明者らが上記課題を解決すべく鋭意研究した結果、前述した特許文献1及び特許文献2の炭素系吸着剤のダイオキシン除去性能が劣化するのは、もともと疎水性である炭素系吸着剤が水蒸気を吸着することにより親水性を帯び、さらに、酸性ガス(例えば、硫化水素、二酸化硫黄、硫酸、塩化水素、臭化水素、ヨウ化水素、硝酸等)及び塩基性ガス(例えば、アンモニア等)が反応して生成される白色化合物(例えば、硫酸アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、硝酸アンモニウム等)が吸着剤表面に付着することにより親水性が促進されることが原因であることを突き止めた。すなわち、ダイオキシンは疎水性であるため、親水性が強くなった吸着剤では、ダイオキシンを十分に除去することができなくなるのである。
As a result of intensive studies by the present inventors to solve the above problems, the dioxin removal performance of the carbon-based adsorbents of
本発明者らは、多孔質担体に疎水性有機物質を添着して用いることにより、水蒸気の吸着を防ぐことができると共に、酸性ガス及び塩基性ガスが原因である白色化合物の付着をも抑制できることを見出した。本発明は、これらの知見に基くものである。 The present inventors can prevent the adsorption of water vapor and suppress the adhesion of white compounds caused by acidic gas and basic gas by using a hydrophobic organic material attached to a porous carrier. I found. The present invention is based on these findings.
以下、本発明に係るダイオキシン吸着除去剤の種々の実施形態を説明する。 Hereinafter, various embodiments of the dioxin adsorption / removal agent according to the present invention will be described.
本発明に係るダイオキシン吸着除去剤は、疎水性有機物質が添着された多孔質担体を含む。 The dioxin adsorption / removal agent according to the present invention includes a porous carrier to which a hydrophobic organic substance is attached.
多孔質担体としては、例えば、活性炭、ゼオライト、シリカ−アルミナ複合酸化物等を挙げることができる。中でも、活性炭は疎水性であることから、もともとダイオキシンに対する除去効果を有するが、これに疎水性有機物質を添着させることにより、水蒸気の吸着及び白色化合物の付着を抑制することができ、長寿命のダイオキシン吸着除去剤を得ることができる。一方、ゼオライト及びシリカ−アルミナ複合酸化物は、親水性であることからこのままでは疎水性であるダイオキシンを吸着・除去することは困難である。しかしながら、疎水性有機物質を添着させることにより、ゼオライト及びシリカ−アルミナ複合酸化物にダイオキシン除去性能を付与することができると共に、水蒸気の吸着及び白色化合物の付着を抑制することができる。 Examples of the porous carrier include activated carbon, zeolite, silica-alumina composite oxide and the like. Among them, activated carbon is hydrophobic, so it originally has a removal effect on dioxins, but by adhering a hydrophobic organic substance to this, adsorption of water vapor and adhesion of white compounds can be suppressed, and long-life A dioxin adsorption removing agent can be obtained. On the other hand, since zeolite and silica-alumina composite oxide are hydrophilic, it is difficult to adsorb and remove dioxin which is hydrophobic as it is. However, by attaching a hydrophobic organic substance, it is possible to impart dioxin removal performance to the zeolite and silica-alumina composite oxide, and it is possible to suppress adsorption of water vapor and adhesion of white compounds.
疎水性有機物質としては、例えば、原油を原料として得られる石油系物質や石炭を原料として得られる石炭系物質を挙げることができる。石油系物質としては、例えば、軽油、重油等を挙げることができる。石炭系物質としては、例えば、コールタール、ナフタレン等を挙げることができる。軽油、重油、コールタール及びナフタレンからなる群より選択される疎水性有機物質は、取り扱いが容易なだけでなく、特に長寿命の吸着除去剤を提供することができる。これらの疎水性有機物質は、1種類だけで使用することもできるし、2種類以上を混合して使用することもできる。 Examples of the hydrophobic organic material include petroleum-based materials obtained from crude oil as a raw material and coal-based materials obtained from coal as a raw material. Examples of petroleum substances include light oil and heavy oil. Examples of the coal-based material include coal tar and naphthalene. Hydrophobic organic substances selected from the group consisting of light oil, heavy oil, coal tar and naphthalene are not only easy to handle, but also can provide a long-life adsorption remover. These hydrophobic organic substances can be used alone or in combination of two or more.
疎水性有機物質は、多孔質担体質量の0.1〜30質量%の割合で添着されていることが好ましい。 The hydrophobic organic substance is preferably attached at a ratio of 0.1 to 30% by mass of the porous carrier mass.
疎水性有機物質の添着量が0.1質量%未満であると、吸着除去剤を十分に長寿命化できない恐れがある。一方、疎水性有機物質の添着量が30質量%を超えると、多孔質担体の細孔が閉塞されて吸着性能が低下する傾向がある。疎水性有機物質の添着量のさらに好ましい範囲は、多孔質担体質量の1〜10質量%である。この範囲内とすれば、特に優れたダイオキシン吸着性能をより長期にわたって発揮させることができる。 If the amount of the hydrophobic organic substance attached is less than 0.1% by mass, the adsorption / removal agent may not be sufficiently extended in life. On the other hand, when the amount of the hydrophobic organic substance added exceeds 30% by mass, the pores of the porous carrier are blocked and the adsorption performance tends to be lowered. A more preferable range of the amount of the hydrophobic organic substance attached is 1 to 10% by mass of the porous carrier mass. If it is in this range, particularly excellent dioxin adsorption performance can be exhibited over a longer period.
かかるダイオキシン吸着除去剤は、例えば以下に説明するように製造することができる。 Such a dioxin adsorption / removal agent can be produced, for example, as described below.
疎水性有機物質が、例えば軽油、重油、コールタールのような液体物質である場合には、疎水性有機物質を噴霧器に入れて多孔質担体に噴霧し、添着させ、乾燥させることにより製造することができる。特に、粘性の高いコールタールの場合には、噴霧器を適宜加熱してコールタールを低粘性にさせ、加圧状態で加熱状態の多孔質担体に噴霧して添着させた後、乾燥させることにより製造することができる。この方法に従えば、多孔質担体が疎水性有機物質でコーティングされたダイオキシン吸着除去剤を作製することができるため、より疎水性が強くなり、ダイオキシン吸着性能に優れた長寿命な吸着除去剤を実現することができる。 When the hydrophobic organic material is a liquid material such as light oil, heavy oil, coal tar, etc., the hydrophobic organic material is put into a sprayer, sprayed onto a porous carrier, attached, and dried. Can do. In particular, in the case of coal tar with high viscosity, it is manufactured by appropriately heating the sprayer to make the coal tar low viscosity, spraying and adhering it to the heated porous carrier under pressure, and then drying. can do. According to this method, a dioxin adsorption / removal agent in which a porous carrier is coated with a hydrophobic organic substance can be prepared. Therefore, a long-life adsorption / removal agent with higher hydrophobicity and superior dioxin adsorption performance can be obtained. Can be realized.
疎水性有機物質がナフタレンである場合には、例えば以下に説明するように製造することができる。 When the hydrophobic organic material is naphthalene, it can be produced, for example, as described below.
ナフタレンを各種溶剤、例えばエタノール、エーテル、二硫化炭素、ベンゼン等に一定量溶解させ、これを噴霧器に入れて多孔質担体に噴霧し、添着させ、乾燥させることにより製造することができる。 It can be produced by dissolving a certain amount of naphthalene in various solvents such as ethanol, ether, carbon disulfide, benzene and the like, putting it in a sprayer, spraying it on a porous carrier, attaching it, and drying it.
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
[実施例]
以下、本発明に係るダイオキシン吸着除去剤を実施例により説明する。
[Example]
Hereinafter, the dioxin adsorption removing agent according to the present invention will be described with reference to examples.
<ダイオキシン吸着除去剤の製造>
(実施例1)
以下に説明するように活性炭100gに軽油3gをコートし、これを100℃で5〜10時間乾燥することによりダイオキシン吸着除去剤を得た。
<Manufacture of dioxin adsorption remover>
Example 1
As described below, 100 g of activated carbon was coated with 3 g of light oil and dried at 100 ° C. for 5 to 10 hours to obtain a dioxin adsorption / removal agent.
すなわち、パン型造粒機上にて活性炭を回転状態にし、これに噴霧器から軽油を噴霧して添着させることにより、活性炭を軽油でコートした。軽油添着量は、軽油を入れた噴霧器の噴霧前後の質量差から決定した。 That is, activated carbon was coated with light oil by rotating activated carbon on a bread granulator and spraying light oil on the bread granulator. The amount of light oil impregnation was determined from the mass difference before and after spraying of the sprayer containing light oil.
(比較例1)
実施例1と同種の活性炭を比較例1のダイオキシン吸着除去剤とした。
(Comparative Example 1)
The same kind of activated carbon as Example 1 was used as the dioxin adsorption / removal agent of Comparative Example 1.
<疎水性評価>
得られた実施例1及び比較例1のダイオキシン吸着除去剤約10gずつを、それぞれ20mmφカラムに充填した。これらのカラムに、湿度を質量基準で30%に調整した空気ガスを温度25℃で、流量5L/分で流通させることにより飽和吸着させ、このときの平衡吸着量を測定した。ここで、平衡吸着量とは、前述の空気ガスを流通させた際にダイオキシン吸着除去剤の質量がほぼ一定になったときの質量と、空気ガス流通前のダイオキシン吸着除去剤の質量との差分を、空気ガス流通前のダイオキシン吸着除去剤の質量に対する百分率で表したものである。
<Hydrophobic evaluation>
About 10 g each of the dioxin adsorption / removal agents obtained in Example 1 and Comparative Example 1 were packed in 20 mmφ columns. Saturated adsorption was performed on these columns by flowing air gas with humidity adjusted to 30% on a mass basis at a temperature of 25 ° C. at a flow rate of 5 L / min, and the equilibrium adsorption amount at this time was measured. Here, the equilibrium adsorption amount is the difference between the mass when the mass of the dioxin adsorption / removal agent becomes substantially constant when the air gas is circulated and the mass of the dioxin adsorption / removal agent before the air gas circulation. Is expressed as a percentage with respect to the mass of the dioxin adsorption / removal agent before circulation of air gas.
次に、空気ガスの湿度を上げていき同様に平衡吸着量を測定し、空気ガスの湿度が80%になるまで行った。続いて、今度は空気ガスの湿度を0質量%まで順次下げていくことにより吸着除去剤に吸着された水分を脱離させ、このときの平衡吸着量を同様に測定した。このとき得られた結果を図1に示す。図1中、縦軸は、平衡吸着量(質量%)を示し、横軸は、空気ガスの湿度(%)を示す。また、図1中、実線Xは、実施例1の吸着時の結果を示すものであり、破線Yは、実施例1の脱離時の結果を示すものであり、実線Zは、比較例1の吸着時の結果を示すものであり、破線Wは、比較例1の脱離時の結果を示すものである。 Next, the humidity of the air gas was increased, and the equilibrium adsorption amount was measured in the same manner, and the measurement was performed until the humidity of the air gas reached 80%. Subsequently, the moisture adsorbed by the adsorption / removal agent was desorbed by successively lowering the humidity of the air gas to 0% by mass, and the equilibrium adsorption amount at this time was similarly measured. The results obtained at this time are shown in FIG. In FIG. 1, the vertical axis represents the equilibrium adsorption amount (% by mass), and the horizontal axis represents the humidity (%) of the air gas. Further, in FIG. 1, the solid line X indicates the result at the time of adsorption in Example 1, the broken line Y indicates the result at the time of desorption in Example 1, and the solid line Z indicates the result of Comparative Example 1. The broken line W shows the result at the time of desorption of Comparative Example 1.
図1から明らかなように、実施例1のダイオキシン吸着除去剤は、湿度80%のときの平衡吸着量が11.2質量%と低く、疎水性に優れていた。一方、軽油コートしなかった比較例1の吸着除去剤は、湿度80%のときの平衡吸着量が18.0質量%と高く、実施例1の吸着除去剤に比較して水分吸着量が多かった。湿度が80%よりも低い場合においても、水分吸着時、脱離時共に、実施例1の吸着除去剤の方が比較例1に比べて水分吸着量が少ないという傾向が得られた。 As is clear from FIG. 1, the dioxin adsorption / removal agent of Example 1 had a low equilibrium adsorption amount of 11.2% by mass at a humidity of 80% and was excellent in hydrophobicity. On the other hand, the adsorption removal agent of Comparative Example 1 that was not coated with light oil had a high equilibrium adsorption amount of 18.0% by mass at a humidity of 80%, and had a higher moisture adsorption amount than the adsorption removal agent of Example 1. It was. Even when the humidity was lower than 80%, the adsorption / removal agent of Example 1 tended to have a smaller amount of moisture adsorption than Comparative Example 1 during both moisture adsorption and desorption.
<白色化抑制効果の評価>
得られた実施例1及び比較例1のダイオキシン吸着除去剤10gずつを、それぞれ20mmφカラムに充填した。これらのカラムに、塩化水素ガスを10体積%含み、湿度を質量基準で60%に調整した空気ガスを温度25℃で、SV(空間速度)6000/時間で1時間流通させた。続いて、塩化水素ガスの代わりにアンモニアガスを体積で200ppm含むこと以外には前述と同様な空気ガスを前述と同様の流通条件で12時間流通させた。ガス流通後のカラムの写真をそれぞれ撮影した。実施例1の吸着除去剤を充填したカラムの写真を図2に示し、比較例1の吸着除去剤を充填したカラムの写真を図3に示す。
<Evaluation of whitening suppression effect>
Each 10 g of the dioxin adsorption / removal agent obtained in Example 1 and Comparative Example 1 was packed in a 20 mmφ column. In these columns, air gas containing 10% by volume of hydrogen chloride gas and humidity adjusted to 60% on a mass basis was passed at a temperature of 25 ° C. for 1 hour at SV (space velocity) of 6000 / hour. Subsequently, air gas similar to that described above was allowed to flow for 12 hours under the same flow conditions as described above except that ammonia gas was included in a volume of 200 ppm instead of hydrogen chloride gas. Each column photo after gas distribution was taken. A photograph of the column packed with the adsorption removing agent of Example 1 is shown in FIG. 2, and a photograph of the column packed with the adsorption removing agent of Comparative Example 1 is shown in FIG.
図2及び図3から明らかなように、実施例1のダイオキシン吸着除去剤は、比較例1のダイオキシン吸着除去剤に比較して白色化しておらず、白色化合物の付着量が少なかった。 As is clear from FIGS. 2 and 3, the dioxin adsorption / removal agent of Example 1 was not whitened as compared with the dioxin adsorption / removal agent of Comparative Example 1, and the amount of white compound adhered was small.
<ダイオキシン除去性能の評価>
産業廃棄物処理場において、ダイオキシン用吸着塔の一つに実施例1のダイオキシン吸着除去剤を20トン充填し、この吸着塔に廃棄物の処理中に発生したガスをSV1500/時間で20ヶ月間通気させた。このときの入ガスと出ガスのダイオキシン濃度を経過時間ごとにそれぞれ測定し、これらの結果を図4に示す。図4中、横軸は、通気時間(月数)を示し、縦軸は、ダイオキシン濃度(ng−TEQ/m3N)を示す。
<Evaluation of dioxin removal performance>
In an industrial waste treatment plant, 20 tons of the dioxin adsorption / removal agent of Example 1 is packed in one of the adsorption towers for dioxins, and the gas generated during the treatment of the waste in this adsorption tower is SV 1500 / hour for 20 months. Aerated. The dioxin concentrations of the input gas and the output gas at this time were measured for each elapsed time, and the results are shown in FIG. In FIG. 4, the horizontal axis indicates the ventilation time (months), and the vertical axis indicates the dioxin concentration (ng-TEQ / m 3 N).
また、比較例1のダイオキシン吸着除去剤についても実施例1と同様にダイオキシン除去性能の評価を行った。この結果を図4に併記する。なお、この産業廃棄物処理場のダイオキシン排出規制値は、0.1ng−TEQ/m3Nであった。 Moreover, the dioxin removal performance of Comparative Example 1 was also evaluated in the same manner as in Example 1. The results are also shown in FIG. In addition, the dioxin emission control value of this industrial waste treatment plant was 0.1 ng-TEQ / m 3 N.
図4から明らかなように、実施例1のダイオキシン吸着除去剤は、20ヶ月経過した際に出ガスのダイオキシン濃度が規制値を超えたことから、その寿命は19ヶ月であり長寿命だった。また、入ガスのダイオキシン濃度が高濃度になった際にも優れたダイオキシン除去性能を示した。 As is clear from FIG. 4, the dioxin adsorption / removal agent of Example 1 had a long life of 19 months because the dioxin concentration of the outgas exceeded the regulation value after 20 months had elapsed. In addition, it showed excellent dioxin removal performance when the dioxin concentration of the incoming gas became high.
これに対して、比較例1のダイオキシン吸着除去剤は、寿命が12ヶ月と実施例1の吸着除去剤に比較して短かっただけでなく、ダイオキシン除去性能も低かった。 On the other hand, the dioxin adsorption / removal agent of Comparative Example 1 had a lifetime of 12 months and was shorter than that of Example 1, and the dioxin removal performance was also low.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004369443A JP4861618B2 (en) | 2004-12-21 | 2004-12-21 | Dioxin adsorption remover |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004369443A JP4861618B2 (en) | 2004-12-21 | 2004-12-21 | Dioxin adsorption remover |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006175326A true JP2006175326A (en) | 2006-07-06 |
JP4861618B2 JP4861618B2 (en) | 2012-01-25 |
Family
ID=36729931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004369443A Expired - Fee Related JP4861618B2 (en) | 2004-12-21 | 2004-12-21 | Dioxin adsorption remover |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4861618B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009011936A (en) * | 2007-07-04 | 2009-01-22 | Cataler Corp | Adsorbent and method for treating combustible gas |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10151343A (en) * | 1996-11-25 | 1998-06-09 | Kanegafuchi Chem Ind Co Ltd | Waste gas treating agent for incinerating facility |
JPH11244658A (en) * | 1998-02-27 | 1999-09-14 | Mitsubishi Chemical Corp | Removal of organic chlorine compound |
JP2000317266A (en) * | 1999-04-30 | 2000-11-21 | Chiyoda Corp | Wet treatment for making dioxin harmless |
JP2004352593A (en) * | 2003-05-30 | 2004-12-16 | Cataler Corp | Water-repelling activated carbon |
-
2004
- 2004-12-21 JP JP2004369443A patent/JP4861618B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10151343A (en) * | 1996-11-25 | 1998-06-09 | Kanegafuchi Chem Ind Co Ltd | Waste gas treating agent for incinerating facility |
JPH11244658A (en) * | 1998-02-27 | 1999-09-14 | Mitsubishi Chemical Corp | Removal of organic chlorine compound |
JP2000317266A (en) * | 1999-04-30 | 2000-11-21 | Chiyoda Corp | Wet treatment for making dioxin harmless |
JP2004352593A (en) * | 2003-05-30 | 2004-12-16 | Cataler Corp | Water-repelling activated carbon |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009011936A (en) * | 2007-07-04 | 2009-01-22 | Cataler Corp | Adsorbent and method for treating combustible gas |
Also Published As
Publication number | Publication date |
---|---|
JP4861618B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107530620B (en) | Flue gas purification system and method using sorbent polymer composites | |
JP5094468B2 (en) | Method for removing mercury vapor from gas | |
TW201929957A (en) | A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same | |
US9480944B2 (en) | Process for removal of siloxanes and related compounds from gas streams | |
CN104841369A (en) | Air filter element for cellular network active carbon filter and preparation method thereof | |
JP2022524674A (en) | Air Purification Catalyst-Adsorbent Filter | |
KR101823622B1 (en) | Carbon dioxide absorbent with improved moisture stability and manufacturing method thereof | |
Plaza et al. | Evaluation of microporous biochars produced by single-step oxidation for postcombustion CO2 capture under humid conditions | |
CN107159088B (en) | Mercury-containing material with lasting adsorption performance | |
JP2010201360A (en) | Adsorbent for lower aldehydes and method for producing the same | |
JP4452935B1 (en) | Lower aldehyde adsorbent and process for producing the same | |
US9227156B2 (en) | Method and apparatus for reactive gas remediation | |
JP4861618B2 (en) | Dioxin adsorption remover | |
JP2006272078A (en) | Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent | |
CN100496702C (en) | Absorbent for purifying sulfur-containing foul waste gas and preparation method thereof | |
JP2010172871A (en) | Adsorbent of lower aldehydes and method for manufacturing the same | |
WO2016031474A1 (en) | Adsorbent | |
CN112867548A (en) | Catalyst-sorbent filter for air purification | |
JP7004611B2 (en) | Carbon dioxide adsorbent and its manufacturing method | |
JP5303123B2 (en) | Adsorbent and combustible gas treatment method | |
CN101856583B (en) | Method for removing low-concentration sulfur dioxide from gas | |
WO2015072263A1 (en) | Adsorbent | |
PL229084B1 (en) | Multilayer composite to a reversible sorption of mercury and a method for sorption and desorption of mercury from the gas phase | |
KR102708918B1 (en) | Adsorbent for removing amines, method and apparatus for capturing carbon dioxide using the same | |
KR102671784B1 (en) | Method of reusing chemical filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |