JPH11237372A - Method for quantitative determination of ozone concentration in water - Google Patents

Method for quantitative determination of ozone concentration in water

Info

Publication number
JPH11237372A
JPH11237372A JP3787298A JP3787298A JPH11237372A JP H11237372 A JPH11237372 A JP H11237372A JP 3787298 A JP3787298 A JP 3787298A JP 3787298 A JP3787298 A JP 3787298A JP H11237372 A JPH11237372 A JP H11237372A
Authority
JP
Japan
Prior art keywords
water
ozone
concentration
iron ion
fixed amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3787298A
Other languages
Japanese (ja)
Inventor
Seisuke Takashima
征助 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHNIT KK
Original Assignee
OHNIT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHNIT KK filed Critical OHNIT KK
Priority to JP3787298A priority Critical patent/JPH11237372A/en
Publication of JPH11237372A publication Critical patent/JPH11237372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To make simply and quantitatively determinable ozone of a very low concentration in water by adding a fixed amount of inspection water to a fixed amount of indicator where a divalent iron ion reagent is dissolved, and by judging colorimetrically according to the color changing degree when measuring ozone with an extremely low concentration in water. SOLUTION: A divalent iron ion (Fe<+2> ) is colorless or light in color. On the other hand, a trivalent iron ion (Fe<+3> ) is reddish brown. More specifically, when ozone ranging from extremely low concentration to a concentration of 1-20 ppm in water is measured, a fixed amount of inspection water is added to a fixed amount of indicator where a divalent iron ion reagent is dissolved, and colorimetry is judged by naked eyes or an instrument according to the degree of the discoloration. For the divalent iron ion indicator, in the reaction of Fe<+2> to Fe<+3> , it is preferable that Fe<+3> is not precipitated and is uniform solution, and potassium ferrocyanide k4 [Fe(CN)6 ].3H2 O} ferrous chloride (FeCl2 ) can be selected as the quantitative detection reagent of the ozone concentration in the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中の極低濃度か
らのオゾンを簡便に測定する方法に関する。
The present invention relates to a method for easily measuring ozone from an extremely low concentration in water.

【0002】[0002]

【従来の技術】オゾンはその本来の強い酸化力によって
電子部品表面の油分の洗浄・除去、食品および食品容器
の消毒・洗浄などの分野で広く利用されている。とく
に、近年、我が国においてはO−157病原性大腸菌によ
る重篤な大腸炎患者の発生に対して何らかの早急な対策
を迫られている。そこで、いち早く注目されたのが周知
の如くオゾン水である。オゾン水はその強い酸化力によ
って病原菌を短時間で殺滅するが、その反面、有機物に
接触することによって短時間のうちに水中のオゾンが消
滅するという欠点もある。このようなオゾン水を効果的
に使用して、品質保証、あるいは安全性を確保するため
には時々刻々変化する水中のオゾン濃度を正確に測定す
る以外に方法がない。
2. Description of the Related Art Ozone is widely used in the fields of washing and removing oil on the surface of electronic components, disinfecting and washing foods and food containers, due to its inherent strong oxidizing power. In particular, in recent years in Japan, some urgent countermeasures have been required for the occurrence of severe colitis patients due to O-157 pathogenic Escherichia coli. One of the earliest attentions is ozone water, as is well known. Ozone water kills pathogenic bacteria in a short time due to its strong oxidizing power, but has the disadvantage that ozone in water is eliminated in a short time due to contact with organic matter. There is no other way to effectively use such ozone water to ensure quality assurance or safety, except to accurately measure the ozone concentration in the water that changes every moment.

【0003】そこで作業現場において、時々刻々変化す
る水中のオゾン濃度を把握する方法が不可欠になってく
る。従来、電子回路による水中オゾン濃度計は市販さ
れ、現在既に使用されているが、この機器は高価であ
り、数多く設置するには経済的な困難がある。また、オ
ゾンの強い酸化力を利用して青色インジゴ(インジゴス
ルホン酸)の脱色を注水量でみて水中オゾン濃度を測定
する方法も試みられているが、極低濃度での精度に劣る
欠点がある。
[0003] Therefore, in a work site, a method of grasping the ozone concentration in water that changes every moment is indispensable. Conventionally, an underwater ozone concentration meter using an electronic circuit is commercially available and is already used at present, but this equipment is expensive and there is an economic difficulty in installing a large number. In addition, a method of measuring the ozone concentration in water by checking the decolorization of blue indigo (indigosulfonic acid) by the amount of injected water by using the strong oxidizing power of ozone has been attempted, but there is a disadvantage that the accuracy at an extremely low concentration is poor. .

【0004】[0004]

【発明が解決しようとする課題】このような現状を解決
するためには操作が簡単で、しかも安価であって極く低
濃度の溶存オゾンに対しても定量性のある検知方法の早
急な開発が望まれている。この問題に対して、本発明者
はこれまで蓄積してきたラジカル検出方法のいずれかが
適用可能ではないかと、いくつかの試薬を用いて検討し
た。
In order to solve such a current situation, an urgent development of a detection method which is simple in operation, inexpensive and has a quantitative characteristic even for extremely low concentration of dissolved ozone is required. Is desired. With respect to this problem, the present inventors have examined using any of several reagents whether any of the radical detection methods accumulated so far is applicable.

【0005】最も単純な方法はリトマス試験紙のように
赤から青または青から赤という変色現象を利用する方法
であるが、この方法では定量性を期待するのは困難であ
る。定量性を達成するには色調は変化しないで、オゾン
濃度にしたがって、色の濃さが勾配をもってしかも直線
的に変化するような試薬が望ましい。
[0005] The simplest method is to use the discoloration phenomenon of red to blue or blue to red like litmus test paper, but it is difficult to expect quantitativeness in this method. In order to achieve quantitativeness, it is desirable to use a reagent whose color tone does not change but whose color intensity changes linearly with a gradient according to the ozone concentration.

【0006】[0006]

【課題を解決するための手段】本発明者は、2価の鉄イ
オン(Fe2+)が無色あるいは淡色であるのに対して、3価
の鉄イオン(Fe3+)は赤褐色を呈することに着目し、本発
明の測定方法を確立した。すなわち、水中の極低濃度か
ら10〜20ppm濃度までのオゾンを測定するに際し、2価
の鉄イオンの試薬を溶解した一定量の指示薬に対して一
定量の検水を添加して、その変色の度合いから肉眼的あ
るいは計器によって比色判定することを特徴とする水中
オゾン濃度の定量方法である。
The present inventors have found that divalent iron ions (Fe 2 +) are colorless or pale, while trivalent iron ions (Fe 3 +) exhibit a reddish brown color. Focusing on, the measurement method of the present invention was established. That is, when measuring ozone from a very low concentration to a concentration of 10 to 20 ppm in water, a certain amount of test water is added to a certain amount of an indicator in which a reagent of divalent iron ion is dissolved, and the discoloration of the discoloration is measured. This is a method for quantifying ozone concentration in water, characterized in that colorimetric determination is made visually or by a meter based on the degree.

【0007】2価の鉄イオン指示薬は、Fe2+→Fe3+の反
応において、Fe3+が沈殿することなく、均一な溶液であ
ることが好ましく、このような前提条件に適合する水中
のオゾン濃度の定量的検出試薬として、使用に便利なも
のとしてフェロシアン化カリウム(k4[Fe(CN)6]・3H2O)や
塩化第一鉄(FeCl2)などが選択できる。
[0007] bivalent iron ion indicator, in Fe 2 + → Fe 3 + reactions without Fe 3 + is precipitated is preferably a homogeneous solution, in water adapted to such a precondition as quantitative detection reagent ozone concentration, potassium ferrocyanide as a convenience to use (k 4 [Fe (CN) 6] · 3H 2 O) and ferrous chloride (FeCl 2), etc. can be selected.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を実施
例に基づいて具体的に説明する。図1は自記分光光度計
の吸光スペクトル図であり、水中オゾン濃度によりフェ
ロシアン化カリウム中の2価の鉄イオンの酸化による3
価の鉄イオン(Fe3+)の吸光度の変化を示している。図2
は図1の吸光スペクトル図から420nmの吸光度とオゾン
濃度(ppm)の関係を示すグラフである。図3は塩化第一
鉄を用いた場合の図2相当のグラフである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below based on examples. FIG. 1 is an absorption spectrum diagram of a self-recording spectrophotometer, which shows the concentration of ozone in water and the oxidation of divalent iron ions in potassium ferrocyanide.
3 shows the change in absorbance of a multivalent iron ion (Fe 3 +). FIG.
Is a graph showing the relationship between the absorbance at 420 nm and the ozone concentration (ppm) from the absorption spectrum diagram of FIG. FIG. 3 is a graph corresponding to FIG. 2 when ferrous chloride is used.

【0009】実施例1 オゾン発生器(オーニット株式会社製OHZ-04)から発生さ
せたオゾンを水道水に吹き込み、オゾン濃度計(荏原実
業株式会社製PL-320溶存オゾンモニター)で検知される
既知濃度のオゾン水:5mlを、予め調製した1%フェロ
シアン化カリウム水溶液:1mlと混合してただちに密栓
して激しく撹拌した。この混合溶液を自記分光光度計に
てオゾン濃度を変えて吸光度を測定した。結果を図1に
示す。420nm付近に極大吸収波長領域があることがわか
る。このようにして、オゾン濃度、0〜10ppmの試料の4
20nmの吸光度を測定してオゾン濃度に対してプロットし
たところ、図2に示すように、極めて良好な直線関係が
得られた。但し、図2において、ピーク高さの各測定値
はブランクテスト値を差し引いた値である。したがっ
て、試薬:フェロシアン化カリウムは水中のオゾンの低
濃度領域における定量的試薬として優れていることがわ
かる。
Example 1 Known ozone generated from an ozone generator (OHZ-04 manufactured by Onit Corporation) is blown into tap water and detected by an ozone concentration meter (PL-320 dissolved ozone monitor manufactured by Ebara Corporation). A concentration of ozone water: 5 ml was mixed with a previously prepared 1% aqueous solution of potassium ferrocyanide: 1 ml, immediately sealed, and vigorously stirred. The absorbance of this mixed solution was measured by changing the ozone concentration using a self-recording spectrophotometer. The results are shown in FIG. It can be seen that there is a maximum absorption wavelength region around 420 nm. In this way, the ozone concentration of the sample of 0 to 10 ppm
When the absorbance at 20 nm was measured and plotted against the ozone concentration, a very good linear relationship was obtained as shown in FIG. However, in FIG. 2, each measured value of the peak height is a value obtained by subtracting the blank test value. Therefore, it can be seen that the reagent: potassium ferrocyanide is excellent as a quantitative reagent in a low concentration region of ozone in water.

【0010】実施例2 1%フェロシアン化カリウム水溶液:1mlを透明なガラ
ス製試験管中で凍結乾燥した後、これに検水:1mlを添
加して肉眼的観察によって測定した結果、ブランク(0p
pm)と0.8ppmの試料を鮮明に判別することができた。し
たがって、本試薬を実際に使用する際には、既知濃度
(固体または液体)のフェロシアン化カリウムを透明な試
料管に充填しておき、これに一定の検水を添加・撹拌し
て、所定時間(1〜3分)後に自記分光光度計による吸光
度(波長:420nm)の測定、あるいは1組の標準濃度の液
体と比較して肉眼的判定、アート紙製の色見本との比較
等によってオゾン濃度を決定することが可能である。ま
た、フェロシアン化カリウム水溶液を濾紙に含浸させた
後、乾燥させて、この濾紙に検水を滴下させる方法も、
水中のオゾンが濾紙によって消費され誤差を生じること
もあるので若干精度的に劣るが、オゾン濃度の判定は可
能である。濾紙にオゾンの消費がないようなものを使用
すれば、精度が向上する。このような濾紙としては例え
ば、セラミック濾過板、ガラス繊維製濾過布などの無機
物製のものがある。
Example 2 A 1% aqueous solution of potassium ferrocyanide: 1 ml was freeze-dried in a transparent glass test tube, and 1 ml of water sample was added thereto.
pm) and 0.8 ppm sample could be clearly distinguished. Therefore, when using this reagent in actual use,
A (solid or liquid) potassium ferrocyanide is filled in a transparent sample tube, and a certain amount of water is added thereto and stirred. After a predetermined time (1 to 3 minutes), the absorbance (wavelength: 420 nm), or ozone concentration can be determined by comparing it with a set of liquids having a standard concentration, visually, or comparing it with a color sample made of art paper. Also, a method of impregnating a filter paper with an aqueous potassium ferrocyanide solution, drying the filter paper, and dropping a test sample on the filter paper,
Although ozone in the water is consumed by the filter paper and may cause an error, the accuracy of the ozone concentration is slightly lowered, but the ozone concentration can be determined. If a filter paper that does not consume ozone is used, the accuracy is improved. As such a filter paper, for example, there is a filter paper made of an inorganic material such as a ceramic filter plate or a glass fiber filter cloth.

【0011】実施例3 塩化第一鉄の1%水溶液を用いて上述の実施例1と同様
な測定を行った結果、高濃度側(8ppm以上)ではFe3+の
赤褐色の沈殿を生じた。したがって、塩化第一鉄水溶液
では均一溶液でもって判定するには難点があるものの、
得られた検水中のオゾン濃度が8ppm以上であるという
ようなスポットテストには充分の感度を示すことにな
る。8ppm以下では図3に示すようにフェロシアン化カ
リウムと同様にオゾン濃度と420nm付近の極大吸収波長
領域の吸光度ピーク高さとの間に直線関係が成立し、水
中オゾン濃度の定量ができる。
Example 3 The same measurement as in Example 1 was performed using a 1% aqueous solution of ferrous chloride. As a result, a reddish brown precipitate of Fe 3 + was formed on the high concentration side (8 ppm or more). Therefore, although there is a difficulty in determining a homogeneous solution with an aqueous ferrous chloride solution,
A spot test showing that the ozone concentration in the obtained test water is 8 ppm or more shows sufficient sensitivity. At 8 ppm or less, a linear relationship is established between the ozone concentration and the absorbance peak height in the maximum absorption wavelength region around 420 nm as in the case of potassium ferrocyanide, as shown in FIG. 3, and the ozone concentration in water can be determined.

【0012】[0012]

【発明の効果】以上の説明から明らかなように、水に溶
解して2価の鉄イオンを生ずる試薬は、水中のオゾン濃
度によって定量的に3価の鉄イオンに変化し、その発色
度がオゾン濃度と比例関係が成立するので、肉眼的ある
いは吸光光度計によって簡便に水中の希薄なオゾン濃度
が定量できることとなった。したがって、従来の高価な
電子回路による水中オゾン濃度計に代えて安価に使用で
き、オゾンの殺菌、酸化の応用分野に広く活用されるこ
ととなる。
As is apparent from the above description, the reagent that dissolves in water to produce divalent iron ions is quantitatively changed to trivalent iron ions depending on the ozone concentration in the water, and its coloration degree is reduced. Since a proportional relationship is established with the ozone concentration, the dilute ozone concentration in the water can be easily determined with the naked eye or with an absorptiometer. Therefore, it can be used inexpensively instead of the conventional underwater ozone concentration meter using an expensive electronic circuit, and is widely used in application fields of sterilization and oxidation of ozone.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フェロシアン化カリウム水溶液中の2価の鉄イ
オンの酸化による発色とオゾン濃度との関係を示す光吸
収スペクトル図である。
FIG. 1 is a light absorption spectrum diagram showing the relationship between the color development due to oxidation of divalent iron ions in an aqueous potassium ferrocyanide solution and the ozone concentration.

【図2】フェロシアン化カリウムを用いた場合のオゾン
濃度と波長420nmの光吸収ピーク高さとの関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between an ozone concentration and a light absorption peak height at a wavelength of 420 nm when potassium ferrocyanide is used.

【図3】塩化第一鉄を用いた場合のオゾン濃度と波長42
0nmの光吸収ピーク高さとの関係を示すグラフである。
FIG. 3 Ozone concentration and wavelength 42 when ferrous chloride is used
9 is a graph showing a relationship with a light absorption peak height of 0 nm.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水中の極低濃度のオゾンを測定するに際
し、2価の鉄イオンの試薬を溶解した一定量の指示薬に
対して一定量の検水を添加して、その変色の度合いから
肉眼的あるいは計器によって比色判定することを特徴と
する水中オゾン濃度の定量方法。
When measuring an extremely low concentration of ozone in water, a fixed amount of test water is added to a fixed amount of an indicator in which a reagent of divalent iron ion is dissolved, and the degree of discoloration is visually determined. A method for quantifying the concentration of ozone in water, characterized in that colorimetric determination is made using a target or an instrument.
JP3787298A 1998-02-20 1998-02-20 Method for quantitative determination of ozone concentration in water Pending JPH11237372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3787298A JPH11237372A (en) 1998-02-20 1998-02-20 Method for quantitative determination of ozone concentration in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3787298A JPH11237372A (en) 1998-02-20 1998-02-20 Method for quantitative determination of ozone concentration in water

Publications (1)

Publication Number Publication Date
JPH11237372A true JPH11237372A (en) 1999-08-31

Family

ID=12509635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3787298A Pending JPH11237372A (en) 1998-02-20 1998-02-20 Method for quantitative determination of ozone concentration in water

Country Status (1)

Country Link
JP (1) JPH11237372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001833A1 (en) 2006-06-29 2008-01-03 Sakura Color Products Corporation Ink composition for detecting dissolved ozone and method of detecting dissolved ozone
JP2015105906A (en) * 2013-12-02 2015-06-08 御国色素株式会社 Iron detection method, carbon material-containing slurry managed by detection method, and lithium ion battery manufacturing method
CN116990249A (en) * 2023-09-26 2023-11-03 北京挑战农业科技有限公司 Method for measuring content of ferrous ions in liquid and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001833A1 (en) 2006-06-29 2008-01-03 Sakura Color Products Corporation Ink composition for detecting dissolved ozone and method of detecting dissolved ozone
JP2015105906A (en) * 2013-12-02 2015-06-08 御国色素株式会社 Iron detection method, carbon material-containing slurry managed by detection method, and lithium ion battery manufacturing method
CN116990249A (en) * 2023-09-26 2023-11-03 北京挑战农业科技有限公司 Method for measuring content of ferrous ions in liquid and application thereof
CN116990249B (en) * 2023-09-26 2024-01-30 北京挑战农业科技有限公司 Method for measuring content of ferrous ions in liquid and application thereof

Similar Documents

Publication Publication Date Title
Baga et al. A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution
US9228986B2 (en) Simultaneous determination of multiple analytes in industrial water system
CN111474168A (en) Residual chlorine analysis method
CN107037045A (en) The rapid assay methods of content of hydrogen peroxide in a kind of solution
CN110567901A (en) detection method and detection reagent for hydrogen peroxide in food
Mills et al. Colorimetric polymer film sensors for dissolved carbon dioxide
CN111458329A (en) Total chlorine and residual chlorine analysis method
CN109142254A (en) A kind of multiwave length spectro photometric detection method based on Fenton oxidation ABTS chromogenic assay content of hydrogen peroxide
JP2005214863A (en) Method of measuring water and aqueous solution by ultraviolet ray
JPH11237372A (en) Method for quantitative determination of ozone concentration in water
US9513227B2 (en) Method for quantitative determination of oxidant and apparatus for quantitative determination of oxidant
US3895913A (en) Photometric test method for chelant residual or deficiency
EP0830598A1 (en) Manganese iii method for chemical oxygen demand analysis
Demertzis Fluorimetric determination of calcium in serum with calcein: complexation of calcein with calcium and alkali metals
Dobolyi Field determination of bromide in water
GB2373855A (en) Determining chemical oxygen demand
WO2004011928A1 (en) Method and device for measuring water trace constituent
Wang et al. Microdetermination of vanadium (V) by its catalytic effect on the oxidation of 1-naphthyl red with potassium bromate
Galiga et al. Microscale assessment of iodate fortificant in food-grade salt using the potassium iodide/polyvinyl alcohol colorimetric reagent
Smart et al. Analysis for ozone and residual chlorine by differential pulse polarography of phenylarsine oxide
Bjorklund et al. Determination of Free Residual Chlorine in Water by Para‐Aminodiethlaniline
CN116660231B (en) Ce-based material4+Visualization method for detecting phosphate by using fluorescence-colorimetric dual-mode self-verification as center
Lobnik Absorption-based sensors
Zhang et al. Study on catalytic fluorimetric determination of trace manganese
JPH11190728A (en) Magnesium ion concentration measuring apparatus