JP2015105906A - Iron detection method, carbon material-containing slurry managed by detection method, and lithium ion battery manufacturing method - Google Patents

Iron detection method, carbon material-containing slurry managed by detection method, and lithium ion battery manufacturing method Download PDF

Info

Publication number
JP2015105906A
JP2015105906A JP2013248974A JP2013248974A JP2015105906A JP 2015105906 A JP2015105906 A JP 2015105906A JP 2013248974 A JP2013248974 A JP 2013248974A JP 2013248974 A JP2013248974 A JP 2013248974A JP 2015105906 A JP2015105906 A JP 2015105906A
Authority
JP
Japan
Prior art keywords
carbon material
iron
filter paper
detection method
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013248974A
Other languages
Japanese (ja)
Other versions
JP6351961B2 (en
Inventor
春山 泰三
Taizo Haruyama
泰三 春山
立花 和宏
Kazuhiro Tachibana
和宏 立花
知之 伊藤
Tomoyuki Ito
知之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Color Ltd
Original Assignee
Mikuni Color Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Color Ltd filed Critical Mikuni Color Ltd
Priority to JP2013248974A priority Critical patent/JP6351961B2/en
Publication of JP2015105906A publication Critical patent/JP2015105906A/en
Application granted granted Critical
Publication of JP6351961B2 publication Critical patent/JP6351961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detection method for sensitively and efficiently detecting iron in a carbon material in use.SOLUTION: A detection method includes: closely attaching filter paper containing a coloration liquid onto a glass plate so as to prevent mixture of bubbles; spraying an appropriate amount of a carbon material on the filter paper; providing another glass plate on the filter paper to interpose the filter paper between the glass plates and, at the same time, confirming whether a color of the filter paper changes to blue; and thereby detecting whether iron is present. At this time, the glass plates are used since the color change of the filter paper can be confirmed while the filter paper is interposed between the glass plates. The plates are, however, not limited to the glass plates as long as the plates do not contain iron. An iron ionization agent contained in the coloration liquid is not limited to a specific one as long as the agent can ionize iron. Potassium chloride, sodium chloride, or hydrochloric acid is particularly suitable as the iron ionization agent.

Description

本発明は、炭素材料分散スラリーに関するものであり、さらに詳しくは、リチウムイオン二次電池正極板用電極スラリー用の非水系炭素材料スラリー及びそれを使ったリチウムイオン二次電池に関する。   The present invention relates to a carbon material-dispersed slurry, and more particularly to a non-aqueous carbon material slurry for an electrode slurry for a lithium ion secondary battery positive electrode plate and a lithium ion secondary battery using the same.

リチウムイオン電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、パワーツールなどの電動工具などの電源として広く用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されている。
リチウムイオン電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極活物質の電位に起因することが知られている。
Lithium ion batteries have features such as high energy density and long life, so home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools such as power tools In recent years, it has been applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).
A lithium ion battery is a secondary battery that has a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharge. It is known to be caused by the potential of the active material.

この種のリチウムイオン電池は、正極、負極、及びこの両電極に挟まれたイオン伝導層から構成され、当該イオン伝導層には、ポリエチレン、ポリプロピレン等の多孔質フィルムからなるセパレータに非水系の電解液を満たしたものが用いられている。
セパレータは、電池の中で正極と負極を隔離し、かつ電解液を保持して正極と負極との間のイオン伝導性を確保する役割を果たす部材である。例えばリチウムイオン電池のセパレータとしては、空孔内に電解液を保持して電極間のリチウムイオン伝導の通路を形成し得る、電気化学的に不活性な多孔質体(多孔質膜を含む)が使用されており、一般的にはポリエチレンやポリプロピレンなどからなる微多孔性ポリオレフィンフィルムが使用されている。
This type of lithium ion battery is composed of a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes. The ion conductive layer includes a separator made of a porous film such as polyethylene or polypropylene, and a nonaqueous electrolytic cell. The one filled with liquid is used.
The separator is a member that plays a role of isolating the positive electrode and the negative electrode in the battery and holding the electrolytic solution to ensure ion conductivity between the positive electrode and the negative electrode. For example, as a separator of a lithium ion battery, an electrochemically inactive porous body (including a porous film) that can form a lithium ion conduction path between electrodes by holding an electrolyte in pores. In general, a microporous polyolefin film made of polyethylene or polypropylene is used.

負極を構成する負極活物質には、リチウムをイオン状態で可逆的にインターカレートする材料が用いられる。負極活物質としてはカーボン材料、酸化ケイ素系化合物、チタン酸リチウム、或いはスズ合金、或いはこれら負極材料の混合物を主体とするものが多用されており、例えば黒鉛質炭素材料、ピッチコークス、繊維状カーボンなどが知られている。
正極を構成する正極活物質としては、LiCoO2、LiNixMnyCo1−x−yO2、LiNiO2、などの層状岩塩型リチウム金属酸化物のほか、LiMn2O4、LiNi0.5Mn0.5O4などのマンガン系のスピネル型リチウム金属酸化物、LiFePO4などのオリビン型が知られている。
As the negative electrode active material constituting the negative electrode, a material capable of reversibly intercalating lithium in an ionic state is used. As the negative electrode active material, a carbon material, a silicon oxide compound, lithium titanate, a tin alloy, or a mixture of these negative electrode materials is mainly used. For example, graphitic carbon material, pitch coke, fibrous carbon Etc. are known.
The positive electrode active material constituting the positive electrode includes layered rock salt type lithium metal oxides such as LiCoO2, LiNixMnyCo1-x-yO2, LiNiO2, and manganese-based spinel type lithium metal oxides such as LiMn2O4 and LiNi0.5Mn0.5O4. An olivine type such as LiFePO4 is known.

ところで、リチウムイオン電池は、充放電回数が進むに連れ、負極においてデンドライトが成長して電極間で短絡を起すという課題が指摘されている。このようなデンドライトの成長には様々な原因が考えられるが、正極活物質に含まれる鉄などの異物が寄与していると言われている。すなわち、正極材料中に混入している鉄やステンレス鋼などの異物が充放電を繰り返すうちに溶出し、負極等に析出してデンドライトを生成すると言われている。鉄は、様々な原因により正極材料中に混入することが考えられる。特に、カーボンブラック等の炭素材料の製造は、鉄やステンレス鋼などの金属からなる燃焼炉が用いられるので、炭素材料の製造過程においてすでに、鉄分が混入することを避けることはほとんど不可能に近いと考えられる。   By the way, the lithium ion battery has a problem that dendrite grows in the negative electrode and causes a short circuit between the electrodes as the number of charge / discharge cycles increases. There are various causes for such dendrite growth, but it is said that foreign substances such as iron contained in the positive electrode active material contribute. That is, it is said that foreign matters such as iron and stainless steel mixed in the positive electrode material are eluted while charging and discharging are repeated, and are deposited on the negative electrode to generate dendrites. It is considered that iron is mixed into the positive electrode material due to various causes. In particular, in the production of carbon materials such as carbon black, a combustion furnace made of metal such as iron or stainless steel is used, so it is almost impossible to avoid mixing iron in the carbon material production process. it is conceivable that.

そこで従来、材料から鉄等を除去すべく、材料を、所定の強度の磁場を通過させて鉄分の除去を図る方法が提案されている(特許文献1、特許文献2参照)。
また、炭素材料や炭素材料を含有するスラリー中の鉄等の異物の管理には、磁場により除去された異物の量の測定や工程中の半製品を硝酸や塩酸、王水等により分解処理し蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置により鉄分を定量することが一般的である(原子吸光分析装置や誘導結合プラズマ発光分光検出装置による分析方法について特許文献3、蛍光X線分析装置による分析方法について特許文献4、特許文献5参照)。
Therefore, conventionally, in order to remove iron or the like from the material, a method has been proposed in which the material is passed through a magnetic field having a predetermined intensity so as to remove iron (see Patent Documents 1 and 2).
In addition, for the management of foreign materials such as iron in the slurry containing carbon materials and carbon materials, the amount of foreign materials removed by the magnetic field is measured and the semi-finished product in the process is decomposed with nitric acid, hydrochloric acid, aqua regia, etc. It is common to quantify iron content using an X-ray fluorescence analyzer, an atomic absorption spectrometer, or an inductively coupled plasma emission spectrometer (Patent Document 3, for an analysis method using an atomic absorption spectrometer or an inductively coupled plasma emission spectrometer) (See Patent Document 4 and Patent Document 5 for analysis methods using a fluorescent X-ray analyzer).

特開2003−119026号公報JP 2003-1119026 A 特開2003−119029号公報JP 2003-1119029 A

特開2010−078381号公報JP 2010-078381 A 特開2000−310586号公報JP 2000-310586 A 特開2008−157752号公報JP 2008-157752 A

以上のように、リチウムイオン電池に使用する材料中への鉄等の異物混入防止のための対策は採られているが、工程管理には依然として蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置等の検出機器以外の有効な方法は提案されていない。ここで、蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置による鉄分の測定にはまず、サンプルを酸溶解やアルカリ融解する必要があり、この処理に多くの時間がかかるため、工程検査としての採用には問題がある。また、蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置の分析装置自体非常が高価なことから、これらの分析方法は費用対効果を考えても工程検査としての採用は困難である。   As described above, measures have been taken to prevent the entry of foreign substances such as iron into the materials used in lithium ion batteries, but the process management still uses X-ray fluorescence analyzers, atomic absorption spectrometers, and inductive coupling. No effective method other than a detection device such as a plasma emission spectrometer has been proposed. Here, in order to measure iron content with a fluorescent X-ray analyzer, an atomic absorption spectrometer, or an inductively coupled plasma emission spectrometer, it is necessary to first dissolve the sample with an acid or to melt the alkali. This process takes a lot of time. There is a problem in adopting it as a process inspection. In addition, the analysis devices of the fluorescent X-ray analyzer, the atomic absorption spectrometer, and the inductively coupled plasma emission spectrometer are very expensive, and these analysis methods are difficult to adopt as process inspections even considering cost effectiveness. It is.

本発明は、蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置による分析方法に代わり、工程検査として導入できるように、鉄分を早く、安く検出できる検出方法を確立することを課題とする。   The present invention establishes a detection method that can detect iron quickly and inexpensively so that it can be introduced as a process inspection instead of an analysis method using an X-ray fluorescence spectrometer, an atomic absorption spectrometer, or an inductively coupled plasma emission spectrometer. Let it be an issue.

本発明者らは、呈色反応を利用した工程管理を行うことを試み、その結果、意外にも、簡易な方法で、鋭敏な検出が可能となることを見出し、本発明に到達した。すなわち、本発明は、
(化1)
反応式:Fe2++K3〔Fe(CN)6〕=KFeIIIFeII(CN)6↓+3K+

の反応により、フェリシアン化カリウムが2価の鉄イオンと反応して、青色沈殿ができることを応用した発明であり、炭素材混合物中の鉄分を、薬品や電気化学的な方法を用いて、鉄分を鉄イオンにしたのちに、呈色液を用いて鉄分を検出する検出方法である。またこのような本発明の検出方法を用いて管理されたリチウムイオン電池の製造方法であり、デントライトの成長を抑えたリチウムイオン電池を効率的に得ることができるものである。
The inventors of the present invention have tried to perform process management using a color reaction, and as a result, have found that the detection can be performed sensitively by a simple method, and have reached the present invention. That is, the present invention
(Chemical formula 1)
Reaction formula: Fe2 + K3 [Fe (CN) 6] = KFeIIIFeII (CN) 6 ↓ + 3K +

This is an application of the fact that potassium ferricyanide reacts with divalent iron ions to form a blue precipitate, and the iron content in the carbon material mixture is converted to iron by using chemicals or electrochemical methods. This is a detection method in which iron is detected using a colored solution after ionization. Moreover, it is the manufacturing method of the lithium ion battery managed using such a detection method of this invention, and can obtain the lithium ion battery which suppressed the growth of dentlite efficiently.

すなわち、本発明は、
(1)炭素材料中の鉄分を検出する方法であって、呈色液を含ませたろ紙上に炭素材料を乗せ、板で挟むことを特徴とする検出方法、
(2)炭素材料含有スラリー中の鉄分を検出する方法であって、炭素材料含有スラリーを基板に塗布乾燥した試験片の炭素材料含有物塗布面に、呈色液を含ませたろ紙で覆い、板で挟むことを特徴とする検出方法、
(3)炭素材料含有スラリー中の鉄分を検出する方法であって、炭素材料含有スラリーを基板に塗布乾燥した試験片を、電気化学的に鉄分を溶媒に溶解し、その溶媒を呈色液と混合することを特徴とする検出方法、
(4)炭素材料含有スラリー中の鉄分を検出する方法であって、炭素材料含有スラリーと鉄分のイオン化剤を混合し、遠心分離した後、上澄み溶液と呈色液を混合することを特徴とする検出方法、
(5)上記(1)から(4)のいずれかの検出方法であって、呈色液が、(i)鉄分のイオン化剤と、(ii)フェリシアン化カリウム及び/又はフェロシアン化カリウム、とを含む溶液であることを特徴とする検出方法、
(6)上記(1)から(5)のいずれかの検出方法を用いて鉄分含有量を管理する工程を含む炭素材料含有スラリーの製造方法、
(7)炭素材料含有塗布膜中の鉄分を検出する方法であって、呈色液を含ませたろ紙を炭素材料含有塗布膜に接触させ、板で挟むことを特徴とする検出方法、
(8)上記(7)の検出方法を用いて鉄分含有量を管理する工程を含むリチウムイオン電池の製造方法、
にある。
That is, the present invention
(1) A method for detecting iron content in a carbon material, wherein the carbon material is placed on a filter paper containing a coloring solution and sandwiched between plates,
(2) A method for detecting iron content in a carbon material-containing slurry, wherein the carbon material-containing slurry is coated on a substrate and coated on a carbon material-containing material coated surface of a test piece, and covered with a filter paper containing a coloring solution, A detection method characterized by being sandwiched between plates,
(3) A method for detecting iron content in a carbon material-containing slurry, wherein a test piece obtained by applying and drying a carbon material-containing slurry on a substrate is electrochemically dissolved in a solvent, and the solvent is used as a color solution. A detection method characterized by mixing,
(4) A method for detecting iron content in a carbon material-containing slurry, comprising mixing a carbon material-containing slurry and an iron ionizing agent, centrifuging, and then mixing a supernatant solution and a color solution. Detection method,
(5) The detection method according to any one of (1) to (4) above, wherein the color developing solution comprises (i) an ionizing agent for iron and (ii) potassium ferricyanide and / or potassium ferrocyanide. A detection method characterized by
(6) A method for producing a carbon material-containing slurry comprising a step of managing the iron content using the detection method according to any one of (1) to (5) above,
(7) A method for detecting iron content in a carbon material-containing coating film, wherein the filter paper containing the color liquid is brought into contact with the carbon material-containing coating film and sandwiched between plates,
(8) A method for producing a lithium ion battery, comprising the step of managing the iron content using the detection method of (7) above,
It is in.

本発明により、炭素材料中の鉄分の検出が簡易かつ鋭敏に行うことが可能となり、炭素材料の製造や炭素材料を用いた電池の製造の工程管理に容易に導入することが可能であり、ひいてはデンドライトの生成の抑えられた電池の製造を効率的に行うことが可能となる。   According to the present invention, it becomes possible to easily and sharply detect the iron content in the carbon material, and can be easily introduced into the process management of the production of the carbon material and the battery using the carbon material, and thus It becomes possible to efficiently manufacture a battery in which the generation of dendrites is suppressed.

図1は、本発明の方法を利用したリチウムイオン電池の製造工程管理方法を示すフロー図である。FIG. 1 is a flowchart showing a manufacturing process management method of a lithium ion battery using the method of the present invention. 図2は、鉄分の検出限界を示す写真である。FIG. 2 is a photograph showing the iron detection limit. 図3は、実施例1のろ紙法1で得られた、ろ紙の青変の状態を示す写真である。FIG. 3 is a photograph showing the state of blue discoloration of the filter paper obtained by the filter paper method 1 of Example 1. 図4は、実施例2のろ紙法2で得られた、ろ紙の青変の状態を示す写真である。FIG. 4 is a photograph showing the blue discoloration state of the filter paper obtained by the filter paper method 2 of Example 2. 図5は、実施例3のろ紙法2で得られた、ろ紙の青変の状態を示す写真である。FIG. 5 is a photograph showing the blue discoloration state of the filter paper obtained by the filter paper method 2 of Example 3. 図6は、実施例4の電気化学的溶解法の結果を示す写真である。FIG. 6 is a photograph showing the results of the electrochemical dissolution method of Example 4. 図7は、実施例5の電気化学的溶解法の結果を示す写真である。FIG. 7 is a photograph showing the results of the electrochemical dissolution method of Example 5. 図8は、比較例1の結果を示す写真である。FIG. 8 is a photograph showing the results of Comparative Example 1. 図9は、比較例2の結果を示す写真である。FIG. 9 is a photograph showing the results of Comparative Example 2. 図10は、比較例3と実施例6の結果を示す写真である。FIG. 10 is a photograph showing the results of Comparative Example 3 and Example 6. 図11は、旗型電極を示す概略図である。FIG. 11 is a schematic view showing a flag-type electrode. 図12は、電気化学セルを示す概略図である。 図12の電気化学セル中、1はテフロンキャップ、2はガラスビーカー、3は対極(白金)、4は作用極(電気化学的溶解法用サンプル)、5は参照極(銀)、6はステンレスワイヤー、7は圧着端子、8はステンレスボルトナット、9はリチウムイオン電池用電解液である。FIG. 12 is a schematic view showing an electrochemical cell. In the electrochemical cell of FIG. 12, 1 is a Teflon cap, 2 is a glass beaker, 3 is a counter electrode (platinum), 4 is a working electrode (sample for electrochemical dissolution method), 5 is a reference electrode (silver), and 6 is stainless steel. A wire, 7 is a crimp terminal, 8 is a stainless bolt nut, and 9 is an electrolyte for a lithium ion battery.

以下、本発明を具体的に説明する。
〔炭素材料〕
本発明の対象となる炭素材料は特に限定されない。
例えば、ファーネスブラック、ランプブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボン繊維等の炭素材料が挙げられる。粉末、粒状、針状その他、形状は問わない。
Hereinafter, the present invention will be specifically described.
[Carbon material]
The carbon material that is the subject of the present invention is not particularly limited.
Examples thereof include carbon materials such as furnace black, lamp black, channel black, acetylene black, thermal black, ketjen black, natural graphite, artificial graphite, carbon nanotube, and carbon fiber. Powder, granular shape, needle shape and other shapes are not limited.

〔炭素材料含有スラリー〕
少なくとも炭素材料と溶媒を含む液状のものである。その他、活物質、バインダー、分散剤、添加剤を含んでいても問題ない。例えば、前記の特許文献1や特許文献2に記載のものも用いることができる。
[Carbon material-containing slurry]
It is a liquid containing at least a carbon material and a solvent. In addition, there is no problem even if it contains an active material, a binder, a dispersant, and an additive. For example, those described in Patent Document 1 and Patent Document 2 can also be used.

〔本発明の検出方法〕
本発明は、(i)炭素材料を検出する方法、(ii)炭素材料含有スラリーを検出する方法、(iii)炭素材料含有塗布膜を検出する方法、を提供するものである。(i)には以下の「ろ紙法1」、(ii)には以下の「ろ紙法2」又は「遠心法」、(iii)には以下の「ろ紙法2」又は「電気化学的溶解法」を用いことができる。
いずれの方法においても、鉄分のイオン化剤を用いて鉄分のイオン化溶液を作り、これとフェリシアン化カリウムもしくはフェロシアン化カリウムのうち1つ以上とを含む液を、呈色液として用い、この呈色液を炭素材料と接触させて、炭素材料中の鉄分を検出する。
[Detection method of the present invention]
The present invention provides (i) a method for detecting a carbon material, (ii) a method for detecting a slurry containing a carbon material, and (iii) a method for detecting a coating film containing a carbon material. (i) the following “filter paper method 1”, (ii) the following “filter paper method 2” or “centrifugation”, and (iii) the following “filter paper method 2” or “electrochemical dissolution method” Can be used.
In either method, an iron ionization solution is prepared using an iron ionizing agent, and a liquid containing this and at least one of potassium ferricyanide or potassium ferrocyanide is used as a coloration liquid. The iron in the carbon material is detected by contacting with the material.

〔鉄分のイオン化剤〕
鉄分のイオン化剤は鉄分をイオン化させる材料であれば特に限定されないが、塩化カリウム、塩化ナトリウム、塩酸が適している。
[Ionizing agent for iron]
The iron ionizing agent is not particularly limited as long as it is a material that ionizes iron, but potassium chloride, sodium chloride, and hydrochloric acid are suitable.

〔鉄分のイオン化剤溶液〕
鉄分のイオン化剤を含む溶液である。
以下に鉄分のイオン化溶液の一例を示す。
ガラス瓶にイオン交換水97重量%に塩化カリウム3重量%を配合し密栓しタッチミキサーで充分攪拌し未溶解物がないことを確認し、鉄分のイオン化剤溶液としたもの。
[Ionizing agent solution for iron]
It is a solution containing an iron ionizing agent.
An example of an iron ionization solution is shown below.
A glass bottle containing 97% by weight of ion-exchanged water and 3% by weight of potassium chloride was tightly stoppered and stirred thoroughly with a touch mixer to confirm that there was no undissolved material, and an iron ionization agent solution was obtained.

〔呈色液〕
鉄分のイオン化剤とフェリシアン化カリウム、もしくはフェロシアン化カリウムを含む溶液である。
以下に、呈色液の一例を示す。
ガラス瓶にイオン交換水95重量%にフェリシアン化カリウム2重量%と塩化カリウム3重量%を配合し密栓しタッチミキサーで充分攪拌し未溶解物がないことを確認し、呈色液としたもの。
[Coloring liquid]
It is a solution containing an iron ionizing agent and potassium ferricyanide or potassium ferrocyanide.
Below, an example of a coloring liquid is shown.
A glass bottle containing 95% by weight of ion-exchanged water and 2% by weight of potassium ferricyanide and 3% by weight of potassium chloride, tightly plugged and thoroughly stirred with a touch mixer to make sure there is no undissolved product.

〔使用した試薬〕
後述する実施例では、以下の試薬を使用した。
フェリシアン化カリウム K3〔Fe(CN)6〕 試薬特級 ナカライテスク
塩化カリウム KCl 試薬特級 ナカライテスク
[Reagent used]
In the examples described later, the following reagents were used.
Potassium ferricyanide K3 [Fe (CN) 6] reagent grade Nacalai Tesque potassium chloride KCl reagent grade Nacalai Tesque

〔ろ紙法1〕
ガラス板上に、呈色液を含ませたろ紙を気泡が入らないように密着させ、そのろ紙の上に適量の炭素材を散布し、その上からガラス板で挟み、その時にろ紙が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
この時、ガラス板を使用しているのはろ紙の変色が挟んだ状態で確認できるために使用しているが、板に鉄分が含まれていない板であればガラス板に限定されない。
呈色液は鉄分のイオン化剤は鉄分をイオン化するものであれば特に限定されるものではないが、塩化カリウム、塩化ナトリウム、塩酸が特に適している。
[Filter paper method 1]
Adhere the filter paper soaked in color solution on the glass plate so as not to enter air bubbles, spray an appropriate amount of carbon material on the filter paper, and sandwich it with the glass plate from that time. This is a detection method for detecting the presence or absence of iron by confirming that the color changes.
At this time, the glass plate is used because it can be confirmed in a state where the discoloration of the filter paper is sandwiched, but the plate is not limited to the glass plate as long as the plate does not contain iron.
The coloring solution is not particularly limited as long as the iron ionizing agent can ionize iron, but potassium chloride, sodium chloride and hydrochloric acid are particularly suitable.

〔ろ紙法2〕
ガラス板上に、炭素材含有スラリーを塗布乾燥し、炭素材含有の塗布膜を形成する。この時、塗布膜の形成が困難な場合はバインダー成分を混合し、塗布膜を形成させても良い。この塗布膜上にろ紙を気泡が入らないように密着させ、さらにその上からガラス板で挟み、その時にろ紙が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
[Filter paper method 2]
A carbon material-containing slurry is applied and dried on a glass plate to form a carbon material-containing coating film. At this time, if it is difficult to form a coating film, a binder component may be mixed to form a coating film. This is a detection method for detecting the presence or absence of iron by adhering the filter paper onto the coating film so that bubbles do not enter, and sandwiching the filter paper from above with a glass plate, and confirming that the filter paper turns blue at that time.

〔電気化学的溶解法〕
アルミ箔上に炭素材含有スラリーを塗布乾燥し、炭素材含有の塗布膜を形成する。炭素材含有の塗布膜を作用極にし、対極を白金電極、参照極を銀、リチウムイオン電池用電解液で電気化学セルを組み立て、電気化学セルに電流を流すことで、炭素材含有の塗膜中に含まれる鉄分を溶出させる。その後リチウムイオン電池用電解液を取り出し、呈色液と混合し、混合液が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
リチウムイオン電池用電解液はリチウムイオン電池に使用できる電解液であれば特に限定されない。
呈色液はすでに鉄イオンとなっているため特に鉄分のイオン化剤は必要ないが、あっても支障はない。
電流の流し方は鉄分を溶媒に溶解できれば特に限定されない。
対極を白金電極、参照極を銀としているが、リチウムイオン電池に近い条件とするならば対極及び参照極を金属リチウムとする。
[Electrochemical dissolution method]
A carbon material-containing slurry is applied and dried on an aluminum foil to form a carbon material-containing coating film. A carbon material-containing coating film is formed by assembling an electrochemical cell with a carbon material-containing coating film as a working electrode, a counter electrode as a platinum electrode, a reference electrode as silver, and an electrolyte for a lithium ion battery, and passing an electric current through the electrochemical cell. The iron contained in the product is eluted. Thereafter, the electrolytic solution for a lithium ion battery is taken out, mixed with a color developing solution, and the presence or absence of iron is detected by confirming that the mixed solution turns blue.
The electrolyte for a lithium ion battery is not particularly limited as long as it is an electrolyte that can be used for a lithium ion battery.
Since the coloring solution is already iron ions, no iron ionizing agent is required, but there is no problem even if it exists.
There are no particular limitations on the way the current flows as long as iron can be dissolved in the solvent.
Although the counter electrode is a platinum electrode and the reference electrode is silver, the counter electrode and the reference electrode are metallic lithium if the conditions are similar to those of a lithium ion battery.

〔遠心法〕
炭素含有スラリーと鉄分のイオン化剤を充分混合し、遠心分離機により、溶媒と炭素材料含有物を分離し、溶媒と呈色液を混合しその混合液が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
[Centrifuge]
By thoroughly mixing the carbon-containing slurry and the iron ionizing agent, separating the solvent and the carbon material-containing material with a centrifuge, mixing the solvent and the color liquid, and confirming that the liquid mixture turns blue. This is a detection method for detecting the presence or absence of iron.

〔検出感度〕
後述する実施例で明らかなように、1ppmの鉄イオンを含む塩化第2鉄の溶液2gに呈色液1gを混合した時に、イオン交換水2gに呈色液1gを混合した参照溶液と比較することで、青色に変色していることが確認された。1ppmの鉄イオンの感度が確認された。
これに対し、ICPやXPSでは検出感度は1ppmであるので、意外にも、ICPやXPSと比較して、同等であり、低コストで短時間に鉄分の確認ができることが判明した。
〔Detection sensitivity〕
As will be apparent from the examples described later, when 1 g of the coloring solution is mixed with 2 g of a ferric chloride solution containing 1 ppm of iron ions, a comparison is made with a reference solution in which 1 g of the coloring solution is mixed with 2 g of ion-exchanged water. It was confirmed that the color changed to blue. The sensitivity of 1 ppm iron ion was confirmed.
On the other hand, the detection sensitivity of ICP and XPS is 1 ppm, and it was surprisingly found that it is equivalent to ICP and XPS, and iron can be confirmed at a low cost in a short time.

〔本発明の方法を利用したリチウムイオン電池の製造工程管理方法〕
本発明の検出方法を利用して、炭素材料含有スラリーを製造し、あるいはリチウムイオン電池を製造する方法は、特に限定されず、以上説明した、炭素材料中の鉄分を検出する方法、炭素材料含有スラリー中の鉄分を検出する方法、のいずれか1つ以上を用いて、鉄分含有量を管理する工程を含む、炭素材料含有スラリーや、これを用いたリチウムイオン電池を製造することができる。例えば、図−1に示すように、炭素材料にろ紙法1を適用したり、炭素材料含有スラリーにろ紙法2を適用したり、炭素材料スラリーを用いて作成した電極板に、ろ紙法2や電気化学的溶解法を適用することが、好適である。これらの1つ又は2つ以上を採用してもよい。
[Manufacturing Process Management Method for Lithium Ion Battery Using the Method of the Present Invention]
The method for producing a carbon material-containing slurry using the detection method of the present invention or the method for producing a lithium ion battery is not particularly limited, and the above-described method for detecting iron content in a carbon material, containing a carbon material Using any one or more of the methods for detecting the iron content in the slurry, a carbon material-containing slurry including a step of managing the iron content and a lithium ion battery using the carbon material-containing slurry can be produced. For example, as shown in FIG. 1, the filter paper method 1 is applied to the carbon material, the filter paper method 2 is applied to the carbon material-containing slurry, or the filter paper method 2 is applied to the electrode plate formed using the carbon material slurry. It is preferred to apply an electrochemical dissolution method. One or more of these may be employed.

〔炭素材料含有スラリー作製〕
リチウムイオン電池の製造に利用する場合の1例を挙げるが、目的とするリチウムイオン電池の炭素材料含有スラリーが得られれば、途中の工程は限定されない。
[Production of carbon material-containing slurry]
Although an example in the case of utilizing for manufacture of a lithium ion battery is given, the process in the middle will not be limited if the carbon material containing slurry of the target lithium ion battery is obtained.

以下、本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

炭素材料(「デンカブラック粉状」(商品名。電気化学工業(株)製カーボンブラック))1gに鉄粉(ナカライテスク(株)製)0.1gを充分混合したものを「ろ紙法1」用サンプルとし、ガラス板(15cm×15cm)上に、呈色液を含ませたろ紙(5C)を気泡が入らないように密着させ、そのろ紙上に1gのろ紙法1用サンプルを散布し、その上からガラス板(15cm×15cm)で挟んでろ紙の青色への変色の有無を確認した。
より詳細には以下の操作を行った。
・炭素材料1gに鉄粉0.1gをポリエチレン袋に入れ密封する。
・炭素材料と鉄粉が入ったポリエチレン袋を良く振る。⇒ろ紙法1用サンプル
・ガラス板(15cm×15cm)上にろ紙をのせる。
・ろ紙上を呈色液でぬらす。
・ろ紙上にろ紙法1用サンプルを散布する。
・その上からガラス板をのせはさむ。
・ろ紙の青色への変色の有無を確認する。
Carbon fiber ("Denka black powder" (trade name; carbon black manufactured by Denki Kagaku Kogyo Co., Ltd.)) and iron powder (manufactured by Nacalai Tesque Co., Ltd.) 0.1 g are sufficiently mixed with "filter paper method 1" A filter paper (5C) containing a coloring solution on a glass plate (15 cm × 15 cm) so that no air bubbles enter, and 1 g of the filter paper method 1 sample is sprayed on the filter paper, From there, it was sandwiched between glass plates (15 cm × 15 cm), and the presence or absence of discoloration of the filter paper to blue was confirmed.
More specifically, the following operation was performed.
-Put 0.1 g of iron powder in 1 g of carbon material in a polyethylene bag and seal it.
・ Shake a polyethylene bag containing carbon material and iron powder well. ⇒ Place the filter paper on the sample glass plate (15cm x 15cm) for the filter paper method 1.
・ Wet the filter paper with the colored solution.
・ Spread the sample for filter paper method 1 on the filter paper.
・ Place a glass plate on top of it.
-Check for any discoloration of the filter paper to blue.

炭素材料(「アセチレンブラック粉状」(商品名。電気化学工業(株)製)アセチレンブラック)1gと鉄粉(ナカライテスク(株)製)0.1gと溶媒(N−メチル−2−ピロリドン 三菱化学(株)製)14gとPVDF溶液(「KFポリマー#7208」(商品名。クレハ(株)製) )0.5gを「あわとり練太郎」(商品名。株式会社シンキー製、自転・公転ミキサー)」で5分撹拌し、ろ紙法2用サンプルとした。「ろ紙法2」用サンプルをPETフィルム上にアプリケーター10milで塗布し、温風乾燥機(「ST−120」商品名。エスペック社製)100℃で20分間乾燥し、塗布膜を形成した。この塗布膜上に呈色液を含ませたろ紙を気泡が入らないように密着させ、さらにその上からガラス板で挟んでろ紙の青色への変色の有無を確認した。   Carbon material ("acetylene black powder form" (trade name; manufactured by Denki Kagaku Kogyo Co., Ltd.) acetylene black 1 g, iron powder (manufactured by Nacalai Tesque Co., Ltd.) 0.1 g and solvent (N-methyl-2-pyrrolidone Mitsubishi Chemical Co., Ltd. (14g) and PVDF solution ("KF Polymer # 7208" (trade name, manufactured by Kureha Co., Ltd.)) (0.5g) "Awatori Netaro" (trade name, manufactured by Shinky Co., Ltd.) The sample was stirred for 5 minutes with a “mixer” to obtain a sample for the filter paper method 2. A sample for “filter paper method 2” was applied on a PET film with an applicator of 10 mil, and dried at 100 ° C. for 20 minutes with a warm air dryer (“ST-120”, trade name, manufactured by Espec Corp.) to form a coating film. A filter paper containing a color developing solution was brought into close contact with this coating film so as not to contain air bubbles, and was further sandwiched by a glass plate from above to confirm whether the filter paper had changed to blue.

炭素材料(「アセチレンブラック粉状」(商品名、電気化学工業(株)製アセチレンブラック))20gと鉄粉(ナカライテスク(株)製)2gと分散剤(「PVP K−15」商品名、ISP社製)2gと溶媒(N−メチル−2−ピロリドン 三菱化学(株)製)76gと0.5mmジルコニアビーズ(「YTZ」商品名、ニッカトー社製)を用い分散機(ペイントシェーカー 浅田鉄工社製)で2時間分散し、分散液を作製した。作製した分散液5gに、PVDF溶液(KFポリマー#7208 クレハ製)5gを「あわとり練太郎」(商品名。株式会社シンキー製、自転・公転ミキサー)で撹拌し、「ろ紙法2」用サンプルとした。「ろ紙法2」用サンプルをガラス板上にスピンコーター1000rpm×10秒で塗布した。温風乾燥機で100℃、20分で乾燥し、塗布膜を形成する。この塗布膜上にろ紙を気泡が入らないように密着させ、さらにその上からガラス板で挟んでろ紙の青色への変色の有無を確認した。   20 g of carbon material (“acetylene black powder” (trade name, acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.)) and 2 g of iron powder (manufactured by Nacalai Tesque Co., Ltd.) and a dispersant (“PVP K-15” trade name, 2 g of ISP (manufactured by ISP), 76 g of solvent (manufactured by N-methyl-2-pyrrolidone, Mitsubishi Chemical Corporation) and 0.5 mm zirconia beads (trade name “YTZ”, manufactured by Nikkato Co., Ltd.) For 2 hours to prepare a dispersion. 5 g of PVDF solution (manufactured by Kureha, KF Polymer # 7208, Kureha) was stirred with 5 g of the prepared dispersion with “Awatori Nertaro” (trade name, made by Shinky Co., Ltd., a rotation / revolution mixer), and a sample for “filter paper method 2” It was. A sample for “filter paper method 2” was applied on a glass plate at a spin coater of 1000 rpm × 10 seconds. Dry in a hot air dryer at 100 ° C. for 20 minutes to form a coating film. A filter paper was closely attached to the coating film so that no bubbles were introduced, and was further sandwiched by a glass plate from above to confirm whether the filter paper had changed to blue.

1cm×1cmの大きさの旗型アルミ箔上に、炭素材料含有スラリーを塗布乾燥し炭素材含有の塗布膜を形成した。炭素材料含有の塗布膜を作用極にし、対極を白金電極、参照極を銀、リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)10gで電気化学セルを組み立て、電気化学セルに通電した。試験管にリチウムイオン電池用電解液2gを取り出し、呈色液1gと混合し、混合液の青色への変色の有無を確認した。
通電装置は、POTENTIOSTAT/GALVANOSTAT(HA−151 北斗電工社製)を用いた。電気化学セルの概略は、図−12に示す。電極は、概略を図−11に示す旗型電極である。通電条件は、1mA/s×30分である。
炭素材料含有スラリーの製造、塗布膜の製造を含む詳細は、以下の通りである。
・炭素材料20g+鉄粉2g+分散剤2g+溶媒76g+0.5mmジルコニアビーズ300gをポリ容器に入れる。
・分散機(ペイントシェーカー)で2時間分散する。⇒炭素含有スラリー(1)
・活物質96g+PVDF溶液10g+炭素含有スラリー(1)10gを練太郎で5分攪拌する。⇒炭素材料含有スラリー(2)
・炭素材料含有スラリー(2)を旗型アルミ箔上にディッピング法で塗布する。
・塗布旗型アルミ箔を温風乾燥機で乾燥条件100℃×20分で乾燥させる。⇒電気化学的溶解法用サンプル
・電気化学セルを組み立てる。
作用極:電気化学的溶解法用サンプル、対極:白金、参照極:銀
リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)10g
・電気化学セルに通電する。
通電装置:POTENTIOSTAT/GALVANOSTAT(HA−151 北斗電工社製)
通電条件:1mA/s×30分
・試験管にリチウムイオン電池用電解液2gと呈色液1gと混合する。
・混合液の青色への変色の有無を確認する。
A carbon material-containing slurry was applied and dried on a flag-type aluminum foil having a size of 1 cm × 1 cm to form a carbon material-containing coating film. Using a coating film containing a carbon material as a working electrode, a counter electrode as a platinum electrode, a reference electrode as silver, and an electrolyte for a lithium ion battery (1M LiPF6 (EC: DEC = 1: 1) manufactured by Kishida Chemical Co., Ltd.) 10 g Assembly and energization of the electrochemical cell. 2 g of the electrolyte solution for lithium ion batteries was taken out into a test tube and mixed with 1 g of a color developing solution, and the presence or absence of a color change of the mixed solution to blue was confirmed.
POTENTOSTAT / GALVANOSTAT (HA-151 Hokuto Denko Co., Ltd.) was used as the energization device. An outline of the electrochemical cell is shown in FIG. The electrode is a flag electrode schematically shown in FIG. The energization condition is 1 mA / s × 30 minutes.
Details including the production of the carbon material-containing slurry and the production of the coating film are as follows.
20 g of carbon material + 2 g of iron powder + 2 g of dispersant + 76 g of solvent + 300 g of 0.5 mm zirconia beads are put in a plastic container.
-Disperse for 2 hours with a disperser (paint shaker). ⇒ Slurry containing carbon (1)
・ 96 g of active material + 10 g of PVDF solution + 10 g of the carbon-containing slurry (1) is stirred for 5 minutes with Nertaro. ⇒ Slurries containing carbon material (2)
-Apply carbon material-containing slurry (2) onto flag-type aluminum foil by dipping.
-The coated flag-shaped aluminum foil is dried with a hot air dryer under drying conditions of 100 ° C for 20 minutes. ⇒Assemble the sample and electrochemical cell for electrochemical dissolution method.
Working electrode: Sample for electrochemical dissolution method, counter electrode: platinum, reference electrode: silver lithium ion battery electrolyte (1M LiPF6 (EC: DEC = 1: 1), manufactured by Kishida Chemical Co., Ltd.) 10 g
-Energize the electrochemical cell.
Current-carrying device: POTENTOSTAT / GALVANOSTAT (HA-151, manufactured by Hokuto Denko)
Current-carrying conditions: 1 mA / s × 30 minutes. A test tube is mixed with 2 g of an electrolyte solution for a lithium ion battery and 1 g of a color solution.
-Check for any discoloration of the mixture to blue.

通電装置、通電条件を以下の通りとした以外は実施例4と同様にして行った。
通電装置:POTENTIOSTAT/GALVANOSTAT(VERSASTAT4 東陽テクニカ社製)
通電条件:10mV/s×3サイクル 0V〜1.5V
炭素材料含有スラリーの製造、塗布膜の製造を含む詳細は、以下の通りである。
・炭素材料20g+鉄粉2g+分散剤2g+溶媒76g+0.5mmジルコニアビーズ300gをポリ容器に入れる。
・分散機(ペイントシェーカー)で2時間分散する。⇒炭素材料含有スラリー(1)
・活物質96g+PVDF溶液10g+炭素材料含有スラリー(1)10gを練太郎で5分攪拌する。⇒炭素材料含有スラリー(2)
・炭素材料含有スラリー(2)を旗型アルミ箔上にディッピング法で塗布する。
・塗布旗型アルミ箔を温風乾燥機で乾燥条件100℃×20分で乾燥させる。⇒電気化学的溶解法用サンプル
・電気化学セルを組み立てる。
作用極:電気化学的溶解法用サンプル、対極:白金、参照極:銀
リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)10g
・電気化学セルに通電する。
通電装置:POTENTIOSTAT/GALVANOSTAT(VERSASTAT4 東陽テクニカ社製)
通電条件:10mV/s×3サイクル 0V〜1.5V
・試験管にリチウムイオン電池用電解液2gと呈色液1gと混合する。
・混合液の青色への変色の有無を確認する。
The same operation as in Example 4 was performed except that the energization device and energization conditions were as follows.
Current-carrying device: POTENTISTAT / GALVANOSTAT (VERSASSTAT4 manufactured by Toyo Technica)
Energizing condition: 10 mV / s x 3 cycles 0V to 1.5V
Details including the production of the carbon material-containing slurry and the production of the coating film are as follows.
20 g of carbon material + 2 g of iron powder + 2 g of dispersant + 76 g of solvent + 300 g of 0.5 mm zirconia beads are put in a plastic container.
-Disperse for 2 hours with a disperser (paint shaker). ⇒ Slurry containing carbon material (1)
・ 96 g of active material + 10 g of PVDF solution + 10 g of the slurry containing carbon material (1) are stirred for 5 minutes with Nertaro. ⇒ Slurries containing carbon material (2)
-Apply carbon material-containing slurry (2) onto flag-type aluminum foil by dipping.
-The coated flag-shaped aluminum foil is dried with a hot air dryer under drying conditions of 100 ° C for 20 minutes. ⇒Assemble the sample and electrochemical cell for electrochemical dissolution method.
Working electrode: Sample for electrochemical dissolution method, counter electrode: platinum, reference electrode: silver lithium ion battery electrolyte (1M LiPF6 (EC: DEC = 1: 1), manufactured by Kishida Chemical Co., Ltd.) 10 g
-Energize the electrochemical cell.
Current-carrying device: POTENTISTAT / GALVANOSTAT (VERSASSTAT4 manufactured by Toyo Technica)
Energizing condition: 10 mV / s x 3 cycles 0V to 1.5V
-Mix 2g of electrolyte solution for lithium ion batteries and 1g of colored solution in a test tube.
-Check for any discoloration of the mixture to blue.

炭素含有スラリー40gと鉄粉0.4g鉄分のイオン化剤溶液10gを「あわとり練太郎」(型番AR−100、株式会社シンキー社製)で混合し、その得られた混合液10gを遠心分離機(トミー精工社製)で溶媒と沈殿物に分離した。分離した溶媒2gと呈色液1gを混合し、混合液の青色への変色の有無を確認した。
より具体的には以下のように行った。
・炭素含有スラリー40g+鉄粉0.4g+0.5規定塩酸20gを練太郎(AR−100)で1分攪拌する。
・混合液を遠心分離器(GRX−220 トミー精工社製)10000rpm×5分で遠心分離する。
・上澄みをメンブレンフィルター(PTFEタイプ 孔径1.00μm)でろ過する。
・ろ液2gと呈色液1gを混合する。
・混合液の青色への変色の有無を確認する。
40 g of carbon-containing slurry and 10 g of iron ionization agent solution 10 g of iron powder are mixed with “Awatori Netaro” (model number AR-100, manufactured by Shinky Co., Ltd.), and the resulting mixture 10 g is centrifuged. It was separated into a solvent and a precipitate by Tommy Seiko Co., Ltd. 2 g of the separated solvent and 1 g of the color developing solution were mixed, and the presence or absence of the color change of the mixed solution to blue was confirmed.
More specifically, it was performed as follows.
-Stir 40 g of carbon-containing slurry + 0.4 g of iron powder + 20 g of 0.5 N hydrochloric acid with Nertaro (AR-100) for 1 minute.
-The mixed solution is centrifuged at 10,000 rpm x 5 minutes by a centrifuge (GRX-220, manufactured by Tommy Seiko Co., Ltd.).
-Filter the supernatant with a membrane filter (PTFE type pore size 1.00 μm).
-Mix 2g of filtrate and 1g of colored solution.
-Check for any discoloration of the mixture to blue.

比較例1Comparative Example 1

ガラス板(15cm×15cm)上に、呈色液を含ませたろ紙(5C)を気泡が入らないように密着させ、その上からガラス板(15cm×15cm)で挟んでろ紙の青色への変色の有無を確認した。   A filter paper (5C) containing a color developing solution is closely attached to a glass plate (15 cm × 15 cm) so that air bubbles do not enter, and the filter paper is colored blue by being sandwiched by the glass plate (15 cm × 15 cm). The presence or absence was confirmed.

比較例2Comparative Example 2

リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)2gと呈色液1gと混合し、混合液の青色への変色の有無を確認した。   2 g of an electrolyte for a lithium ion battery (1M LiPF6 (EC: DEC = 1: 1) manufactured by Kishida Chemical Co., Ltd.) and 1 g of a colored solution were mixed, and the presence or absence of a color change of the mixed solution to blue was confirmed.

比較例3Comparative Example 3

0.5規定塩酸2gと呈色液1gを混合し、混合液の青色への変色の有無を確認した。   2 g of 0.5 N hydrochloric acid and 1 g of the color developing solution were mixed, and the presence or absence of discoloration of the mixed solution to blue was confirmed.

〔実施例1〜6と比較例1〜3の結果〕
呈色の有無を、表−1に示す。本発明の方法により、簡易に炭素材料中の鉄分が検出できることがわかった。
[Results of Examples 1 to 6 and Comparative Examples 1 to 3]
Table 1 shows the presence or absence of coloration. It has been found that the iron content in the carbon material can be easily detected by the method of the present invention.

Figure 2015105906
Figure 2015105906

図−3〜5に、実施例1〜3での「ろ紙法1」と「ろ紙法2」により得られた、青変した部分のあるろ紙の写真を示す。いずれも、炭素材料中に鉄分が含まれていることにより、青変し、検出可能であることがわかった。
図−6及び7に、実施例4及び5での電気化学的溶解法による結果を示す。炭素材料中の鉄分により、青変しており、検出可能であることがわかった。
図−8に、比較例1の結果を示す。青変部分はなく、実施例1〜3の「ろ紙法」の結果の青変が、炭素材料由来であることがわかり、この方法により炭素材料中の鉄分の検出ができることがわかった。
図−9に、比較例2の結果を示す。青変部分はなく、実施例4及び5の青変が、炭素材料由来であり、この方法により炭素材料中の鉄分の検出ができることがわかった。
FIGS. 3 to 5 show photographs of filter papers having a blue discolored portion obtained by “filter paper method 1” and “filter paper method 2” in Examples 1-3. In both cases, it turned out that the carbon material turned blue due to the iron content and was detectable.
FIGS. 6 and 7 show the results of the electrochemical dissolution method in Examples 4 and 5. FIG. It turned out to be blue and detectable by the iron content in the carbon material.
FIG. 8 shows the result of Comparative Example 1. There was no blue discoloration part, it turned out that the blue discoloration of the result of the "filter paper method" of Examples 1-3 originates in a carbon material, and it turned out that the iron content in a carbon material can be detected by this method.
FIG. 9 shows the result of Comparative Example 2. There was no blue discoloration part, and the blue discoloration of Examples 4 and 5 was derived from the carbon material, and it was found that the iron content in the carbon material can be detected by this method.

〔実施例6と比較例3の結果〕
実施例6と比較例3の結果を図−10に示す。実施例6では、比較例3より濃い緑色を呈しており、鉄分の存在により青変していることがわかった。
[Results of Example 6 and Comparative Example 3]
The results of Example 6 and Comparative Example 3 are shown in FIG. In Example 6, it showed darker green than Comparative Example 3, and it turned out that it has changed into blue by presence of iron content.

本発明により、炭素材料中の鉄分を鋭敏かつ簡易に検出することができ、電池材料としての工程管理に組み込むことにより鉄分の管理が容易となり、デンドライトの生成を防止できる。   According to the present invention, the iron content in the carbon material can be detected sharply and easily, and the iron content can be easily managed by incorporating it into the process management as the battery material, and the formation of dendrites can be prevented.

電気化学セル
1:テフロンキャップ
2:ガラスビーカー
3:対極(白金)
4:作用極(電気化学的溶解法用サンプル)
5:参照極(銀)
6:ステンレスワイヤー
7:圧着端子
8:ステンレスボルトナット
9:リチウムイオン電池用電解液
Electrochemical cell 1: Teflon cap 2: Glass beaker 3: Counter electrode (platinum)
4: Working electrode (sample for electrochemical dissolution method)
5: Reference electrode (silver)
6: Stainless wire 7: Crimp terminal 8: Stainless steel bolt nut 9: Electrolyte for lithium ion battery

Claims (8)

炭素材料中の鉄分を検出方法であって、呈色液を含ませたろ紙上に炭素材を乗せ、板で挟むことを特徴とする検出方法。 A method for detecting iron content in a carbon material, wherein the carbon material is placed on a filter paper containing a coloring solution and sandwiched between plates. 炭素材料含有スラリー中の鉄分を検出する方法であって、炭素材料含有スラリーを基板に塗布乾燥した試験片の炭素材含有物塗布面に、呈色液を含ませたろ紙で覆い、板で挟むことを特徴とする検出方法。 A method for detecting iron content in a slurry containing carbon material, wherein the carbon material-containing slurry is coated on a substrate and covered with a carbon paper-containing material coated surface of a test piece and covered with a filter paper containing a coloring solution, and sandwiched between plates. A detection method characterized by the above. 炭素材料含有スラリー中の鉄分を検出する方法であって、炭素材料含有スラリーを基板に塗布乾燥した試験片をから、電気化学的に鉄分を溶媒に溶解し、その溶媒を呈色液と混合することを特徴とする検出方法。 A method for detecting iron content in a slurry containing carbon material, wherein a test piece obtained by applying and drying a slurry containing carbon material on a substrate is electrochemically dissolved in a solvent, and the solvent is mixed with a color solution. A detection method characterized by the above. 炭素材料含有スラリー中の鉄分を検出する方法であって、炭素材料含有スラリーと鉄分のイオン化剤とを混合し、遠心分離した後、上澄み溶液と呈色液を混合することを特徴とする検出方法。 A method for detecting iron content in a carbon material-containing slurry, comprising mixing a carbon material-containing slurry and an iron ionizing agent, centrifuging, and then mixing a supernatant solution and a color solution. . 請求項1から4のいずれかに記載の検出方法であって、呈色液が、(i)鉄分のイオン化剤と、(ii)フェリシアン化カリウム及び/又はフェロシアン化カリウム、とを含む溶液であることを特徴とする検出方法。 The detection method according to any one of claims 1 to 4, wherein the color solution is a solution containing (i) an ionizing agent for iron and (ii) potassium ferricyanide and / or potassium ferrocyanide. Feature detection method. 請求項1から5のいずれかに記載の検出方法を用いて鉄分含有量を管理する工程を含む炭素材料含有スラリーの製造方法。 The manufacturing method of the carbon material containing slurry including the process of managing iron content using the detection method in any one of Claim 1 to 5. 炭素材料含有塗布膜中の鉄分を検出する方法であって、呈色液を含ませたろ紙を炭素材含有塗布膜に接触させ、板で挟むことを特徴とする検出方法。 A method for detecting iron content in a carbon material-containing coating film, wherein the filter paper containing a color developing solution is brought into contact with the carbon material-containing coating film and sandwiched between plates. 請求項7記載の検出方法を用いて鉄分含有量を管理する工程を含むリチウムイオン電池の製造方法。

The manufacturing method of a lithium ion battery including the process of managing iron content using the detection method of Claim 7.

JP2013248974A 2013-12-02 2013-12-02 Method for detecting iron content, carbon material-containing slurry controlled by the detection method, and method for producing lithium ion battery Active JP6351961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248974A JP6351961B2 (en) 2013-12-02 2013-12-02 Method for detecting iron content, carbon material-containing slurry controlled by the detection method, and method for producing lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248974A JP6351961B2 (en) 2013-12-02 2013-12-02 Method for detecting iron content, carbon material-containing slurry controlled by the detection method, and method for producing lithium ion battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018084747A Division JP6654215B2 (en) 2018-04-26 2018-04-26 Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2015105906A true JP2015105906A (en) 2015-06-08
JP6351961B2 JP6351961B2 (en) 2018-07-04

Family

ID=53436087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248974A Active JP6351961B2 (en) 2013-12-02 2013-12-02 Method for detecting iron content, carbon material-containing slurry controlled by the detection method, and method for producing lithium ion battery

Country Status (1)

Country Link
JP (1) JP6351961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845993A (en) * 2016-03-15 2016-08-10 芜湖天弋能源科技有限公司 Determination method for carbon content of lithium iron phosphate electrode material
CN109752293A (en) * 2019-01-24 2019-05-14 合肥国轩高科动力能源有限公司 Device for detecting stability of lithium ion battery slurry

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032990A (en) * 1973-07-23 1975-03-29
JPS6264952A (en) * 1985-09-17 1987-03-24 Mitsubishi Heavy Ind Ltd Method for discriminating surface purifying degree of boiler heat transfer pipe
JPH05149847A (en) * 1991-11-27 1993-06-15 Shin Etsu Handotai Co Ltd Analysis of impurity in graphite
JPH05169236A (en) * 1991-12-24 1993-07-09 Three Bond Co Ltd Resin impregnated composition
JPH05172805A (en) * 1991-12-24 1993-07-13 Three Bond Co Ltd Stability judgement method for resin-impregnated composition
JPH09260319A (en) * 1996-03-26 1997-10-03 Shin Etsu Handotai Co Ltd Method of quantitatively analyzing heavy metal ions in semiconductor polishing slurry
JPH11237372A (en) * 1998-02-20 1999-08-31 Seisuke Takashima Method for quantitative determination of ozone concentration in water
JPH11326309A (en) * 1998-05-21 1999-11-26 Tohoku Techno Arch:Kk Method and kit for simply judging elution amount of component in sample
JP2000302551A (en) * 1999-04-15 2000-10-31 Denki Kagaku Kogyo Kk Carbon material for negative electrode of lithium secondary battery and accelerator for graphitization
JP2006253420A (en) * 2005-03-10 2006-09-21 Nomura Micro Sci Co Ltd Method for quantitating metal in semiconductor polishing slurry
JP2007010407A (en) * 2005-06-29 2007-01-18 Shikoku Electric Power Co Inc Continuous iron analyzing method and analyzer therefor
JP2007051903A (en) * 2005-08-17 2007-03-01 Tokuyama Corp Analytical method for metal impurity
JP2009162656A (en) * 2008-01-08 2009-07-23 Toshiba Corp Method for detecting transition metal containing foreign substance
WO2012157254A1 (en) * 2011-05-17 2012-11-22 富士フイルム株式会社 Raman scattering measurement method and device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032990A (en) * 1973-07-23 1975-03-29
JPS6264952A (en) * 1985-09-17 1987-03-24 Mitsubishi Heavy Ind Ltd Method for discriminating surface purifying degree of boiler heat transfer pipe
JPH05149847A (en) * 1991-11-27 1993-06-15 Shin Etsu Handotai Co Ltd Analysis of impurity in graphite
JPH05169236A (en) * 1991-12-24 1993-07-09 Three Bond Co Ltd Resin impregnated composition
JPH05172805A (en) * 1991-12-24 1993-07-13 Three Bond Co Ltd Stability judgement method for resin-impregnated composition
JPH09260319A (en) * 1996-03-26 1997-10-03 Shin Etsu Handotai Co Ltd Method of quantitatively analyzing heavy metal ions in semiconductor polishing slurry
JPH11237372A (en) * 1998-02-20 1999-08-31 Seisuke Takashima Method for quantitative determination of ozone concentration in water
JPH11326309A (en) * 1998-05-21 1999-11-26 Tohoku Techno Arch:Kk Method and kit for simply judging elution amount of component in sample
JP2000302551A (en) * 1999-04-15 2000-10-31 Denki Kagaku Kogyo Kk Carbon material for negative electrode of lithium secondary battery and accelerator for graphitization
JP2006253420A (en) * 2005-03-10 2006-09-21 Nomura Micro Sci Co Ltd Method for quantitating metal in semiconductor polishing slurry
JP2007010407A (en) * 2005-06-29 2007-01-18 Shikoku Electric Power Co Inc Continuous iron analyzing method and analyzer therefor
JP2007051903A (en) * 2005-08-17 2007-03-01 Tokuyama Corp Analytical method for metal impurity
JP2009162656A (en) * 2008-01-08 2009-07-23 Toshiba Corp Method for detecting transition metal containing foreign substance
WO2012157254A1 (en) * 2011-05-17 2012-11-22 富士フイルム株式会社 Raman scattering measurement method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"「革新的炭素めっき技術」", 研究開発成果等報告書, JPN6017032415, March 2010 (2010-03-01), ISSN: 0003736042 *
芦沢武男: "フェロキシル試験についての考察", 金属表面技術, vol. 9, no. 10, JPN6017032414, 1958, JP, pages 383 - 387, ISSN: 0003736041 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845993A (en) * 2016-03-15 2016-08-10 芜湖天弋能源科技有限公司 Determination method for carbon content of lithium iron phosphate electrode material
CN105845993B (en) * 2016-03-15 2018-03-02 芜湖天弋能源科技有限公司 The Determination of Carbon of lithium iron phosphate electrode material
CN109752293A (en) * 2019-01-24 2019-05-14 合肥国轩高科动力能源有限公司 Device for detecting stability of lithium ion battery slurry

Also Published As

Publication number Publication date
JP6351961B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
Carbone et al. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery
US11239469B2 (en) Pre-lithiation of anodes for high performance capacitor assisted battery
Kim et al. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries
Fan et al. Chloride‐reinforced carbon nanofiber host as effective polysulfide traps in lithium–sulfur batteries
Zampardi et al. Lithium‐Ion‐Transfer Kinetics of Single LiMn2O4 Particles
Zhou et al. Li‐metal‐free prelithiation of Si‐based negative electrodes for full Li‐Ion batteries
JP6143945B2 (en) Zinc ion secondary battery and manufacturing method thereof
US10615452B2 (en) High voltage rechargeable magnesium cell
JP2020031061A (en) Rechargeable aluminum battery
Farhat et al. Adiponitrile–lithium bis (trimethylsulfonyl) imide solutions as alkyl carbonate‐free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li‐ion batteries
Gordon et al. Enhancing cycle stability of lithium iron phosphate in aqueous electrolytes by increasing electrolyte molarity
Balland et al. The Role of Al3+‐Based Aqueous Electrolytes in the Charge Storage Mechanism of MnOx Cathodes
CN108780919A (en) All solid state lithium-sulfur cell and its manufacturing method
Hoffmann et al. Capacity distribution of large lithium‐ion battery pouch cells in context with pilot production processes
Ventosa et al. TiO2 (B)/Anatase Composites Synthesized by Spray Drying as High Performance Negative Electrode Material in Li‐Ion Batteries
Rezvani et al. Binder-induced surface structure evolution effects on Li-ion battery performance
US20210125791A1 (en) Incorporation of lithium-ion source material into an activated carbon electrode for a capacitor-assisted battery
KR20160121547A (en) Lithium ion batteries including stabilized lithium composite particles
Han et al. Succinonitrile as a high‐voltage additive in the electrolyte of LiNi0. 5Co0. 2Mn0. 3O2/graphite full batteries
Tekin et al. A new sodium‐based aqueous rechargeable battery system: the special case of Na0. 44MnO2/dissolved sodium polysulfide
Madec et al. Exploring interactions between electrodes in Li [NixMnyCo1-xy] O2/graphite cells through electrode/electrolyte interfaces analysis
CN104282885A (en) Surface coating method, and method for improving the electrochemical performance of an electrode for a lithium-based battery
Lee et al. Solid permeable interface (spi) on a high-voltage positive electrode of lithium-ion batteries
JP6654215B2 (en) Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method
Wang et al. High‐Rate and Long‐Life Au Nanorods/LiFePO4 Composite Cathode for Lithium‐Ion Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6351961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250