JP6654215B2 - Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method - Google Patents

Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method Download PDF

Info

Publication number
JP6654215B2
JP6654215B2 JP2018084747A JP2018084747A JP6654215B2 JP 6654215 B2 JP6654215 B2 JP 6654215B2 JP 2018084747 A JP2018084747 A JP 2018084747A JP 2018084747 A JP2018084747 A JP 2018084747A JP 6654215 B2 JP6654215 B2 JP 6654215B2
Authority
JP
Japan
Prior art keywords
iron
carbon material
filter paper
lithium ion
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018084747A
Other languages
Japanese (ja)
Other versions
JP2018169399A (en
Inventor
春山 泰三
泰三 春山
立花 和宏
和宏 立花
知之 伊藤
知之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Color Ltd
Original Assignee
Mikuni Color Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Color Ltd filed Critical Mikuni Color Ltd
Priority to JP2018084747A priority Critical patent/JP6654215B2/en
Publication of JP2018169399A publication Critical patent/JP2018169399A/en
Application granted granted Critical
Publication of JP6654215B2 publication Critical patent/JP6654215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、炭素材料分散スラリーに関するものであり、さらに詳しくは、リチウムイオン二次電池正極板用電極スラリー用の非水系炭素材料スラリー及びそれを使ったリチウムイオン二次電池に関する。   The present invention relates to a carbon material-dispersed slurry, and more particularly, to a non-aqueous carbon material slurry for an electrode slurry for a positive electrode plate of a lithium ion secondary battery and a lithium ion secondary battery using the same.

リチウムイオン電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、パワーツールなどの電動工具などの電源として広く用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されている。
リチウムイオン電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極活物質の電位に起因することが知られている。
Lithium-ion batteries have features such as high energy density and long life, so they are used in home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools such as power tools. It has been widely used as a power source for electric vehicles and the like, and has recently been applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).
Lithium-ion batteries are secondary batteries that have a structure in which lithium dissolves as ions from the positive electrode during charging, moves to the negative electrode and is occluded, and lithium ions return from the negative electrode to the positive electrode during discharging. It is known that this is caused by the potential of the active material.

この種のリチウムイオン電池は、正極、負極、及びこの両電極に挟まれたイオン伝導層から構成され、当該イオン伝導層には、ポリエチレン、ポリプロピレン等の多孔質フィルムからなるセパレータに非水系の電解液を満たしたものが用いられている。
セパレータは、電池の中で正極と負極を隔離し、かつ電解液を保持して正極と負極との間のイオン伝導性を確保する役割を果たす部材である。例えばリチウムイオン電池のセパレータとしては、空孔内に電解液を保持して電極間のリチウムイオン伝導の通路を形成し得る、電気化学的に不活性な多孔質体(多孔質膜を含む)が使用されており、一般的にはポリエチレンやポリプロピレンなどからなる微多孔性ポリオレフィンフィルムが使用されている。
This type of lithium ion battery includes a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes. The ion conductive layer has a non-aqueous electrolytic solution on a separator made of a porous film such as polyethylene or polypropylene. The one filled with liquid is used.
The separator is a member that plays a role in isolating the positive electrode and the negative electrode in the battery and holding the electrolytic solution to ensure ionic conductivity between the positive electrode and the negative electrode. For example, as a separator of a lithium ion battery, an electrochemically inactive porous body (including a porous membrane) capable of forming a lithium ion conduction path between electrodes by holding an electrolytic solution in pores is used. In general, a microporous polyolefin film made of polyethylene, polypropylene, or the like is used.

負極を構成する負極活物質には、リチウムをイオン状態で可逆的にインターカレートする材料が用いられる。負極活物質としてはカーボン材料、酸化ケイ素系化合物、チタン酸リチウム、或いはスズ合金、或いはこれら負極材料の混合物を主体とするものが多用されており、例えば黒鉛質炭素材料、ピッチコークス、繊維状カーボンなどが知られている。
正極を構成する正極活物質としては、LiCoO2、LiNixMnyCo−x−yO2、LiNiO2、などの層状岩塩型リチウム金属酸化物のほか、LiMn24、LiNi0.5Mn0.54などのマンガン系のスピネル型リチウム金属酸化物、LiFePOなどのオリビン型が知られている。
As the negative electrode active material forming the negative electrode, a material that reversibly intercalates lithium in an ionic state is used. As the negative electrode active material, a carbon material, a silicon oxide-based compound, lithium titanate, or a tin alloy, or a mixture mainly containing these negative electrode materials is mainly used. For example, a graphitic carbon material, pitch coke, fibrous carbon Etc. are known.
Examples of the positive electrode active material constituting the positive electrode include layered rock salt type lithium metal oxides such as LiCoO 2 , LiNixMnyCo 1- x-yO 2 , and LiNiO 2 , and manganese such as LiMn 2 O 4 and LiNi 0.5 Mn 0.5 O 4. An olivine type such as a spinel type lithium metal oxide based on LiFePO 4 is known.

ところで、リチウムイオン電池は、充放電回数が進むに連れ、負極においてデンドライトが成長して電極間で短絡を起すという課題が指摘されている。このようなデンドライトの成長には様々な原因が考えられるが、正極活物質に含まれる鉄などの異物が寄与していると言われている。すなわち、正極材料中に混入している鉄やステンレス鋼などの異物が充放電を繰り返すうちに溶出し、負極等に析出してデンドライトを生成すると言われている。鉄は、様々な原因により正極材料中に混入することが考えられる。特に、カーボンブラック等の炭素材料の製造は、鉄やステンレス鋼などの金属からなる燃焼炉が用いられるので、炭素材料の製造過程においてすでに、鉄分が混入することを避けることはほとんど不可能に近いと考えられる。   By the way, it has been pointed out that a problem with lithium ion batteries is that as the number of times of charging and discharging progresses, dendrite grows in the negative electrode and short-circuit occurs between the electrodes. Various causes can be considered for such dendrite growth, but it is said that foreign matters such as iron contained in the positive electrode active material contribute. That is, it is said that foreign substances such as iron and stainless steel mixed in the positive electrode material elute during repeated charge and discharge, and are deposited on the negative electrode and the like to generate dendrites. Iron is considered to be mixed into the positive electrode material for various reasons. In particular, since the production of carbon materials such as carbon black uses a combustion furnace made of a metal such as iron or stainless steel, it is almost impossible to avoid the contamination of iron already in the production process of the carbon material. it is conceivable that.

そこで従来、材料から鉄等を除去すべく、材料を、所定の強度の磁場を通過させて鉄分の除去を図る方法が提案されている(特許文献1、特許文献2参照)。また、炭素材料や炭素材料を含有するスラリー中の鉄等の異物の管理には、磁場により除去された異物の量の測定や工程中の半製品を硝酸や塩酸、王水等により分解処理し蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置により鉄分を定量することが一般的である(原子吸光分析装置や誘導結合プラズマ発光分光検出装置による分析方法について特許文献3、蛍光X線分析装置による分析方法について特許文献4、特許文献5参照)。   Therefore, in order to remove iron or the like from the material, a method has been proposed in which the material is passed through a magnetic field of a predetermined strength to remove iron (see Patent Documents 1 and 2). In addition, to control foreign substances such as iron in carbon materials and slurries containing carbon materials, the amount of foreign substances removed by a magnetic field is measured, and semi-finished products in the process are decomposed with nitric acid, hydrochloric acid, aqua regia, etc. It is common to quantify iron using an X-ray fluorescence spectrometer, an atomic absorption spectrometer, or an inductively coupled plasma emission spectrometer (for analysis methods using an atomic absorption spectrometer or an inductively coupled plasma emission spectrometer, see Patent Document 3, An analysis method using a fluorescent X-ray analyzer is disclosed in Patent Documents 4 and 5).

特開2003−119026号公報JP 2003-119026 A 特開2003−119029号公報JP 2003-119029 A

特開2010−078381号公報JP 2010-078381 A 特開2000−310586号公報JP 2000-310586 A 特開2008−157752号公報JP 2008-157752 A

以上のように、リチウムイオン電池に使用する材料中への鉄等の異物混入防止のための対策は採られているが、工程管理には依然として蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置等の検出機器以外の有効な方法は提案されていない。ここで、蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置による鉄分の測定にはまず、サンプルを酸溶解やアルカリ融解する必要があり、この処理に多くの時間がかかるため、工程検査としての採用には問題がある。また、蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置の分析装置自体非常が高価なことから、これらの分析方法は費用対効果を考えても工程検査としての採用は困難である。   As described above, measures have been taken to prevent foreign substances such as iron from entering materials used in lithium-ion batteries, but process control still requires X-ray fluorescence spectroscopy, atomic absorption spectroscopy, inductive coupling, etc. An effective method other than a detection device such as a plasma emission spectrometer has not been proposed. Here, the measurement of iron content by a fluorescent X-ray analyzer, an atomic absorption spectrometer, or an inductively coupled plasma emission spectrometer requires first dissolving the sample in an acid or an alkali, which takes a lot of time. However, there is a problem in adoption as a process inspection. In addition, since the analyzers themselves, such as a fluorescent X-ray analyzer, an atomic absorption analyzer, and an inductively coupled plasma emission spectrometer, are very expensive, it is difficult to adopt these analytical methods as a process inspection even in consideration of cost effectiveness. It is.

本発明は、蛍光X線分析装置や原子吸光分析装置や誘導結合プラズマ発光分光分析装置による分析方法に代わり、工程検査として導入できるように、鉄分を早く、安く検出できる検出方法を確立することを課題とする。   The present invention aims to establish a detection method that can detect iron quickly and inexpensively so that it can be introduced as a process inspection instead of an analysis method using an X-ray fluorescence spectrometer, an atomic absorption spectrometer, or an inductively coupled plasma emission spectrometer. Make it an issue.

本発明者らは、呈色反応を利用した工程管理を行うことを試み、その結果、意外にも、簡易な方法で、鋭敏な検出が可能となることを見出し、本発明に到達した。すなわち、本発明は、
(化1)
反応式:Fe2++〔Fe(CN)〕=KFeIIIFeII(CN)↓+3K+

の反応により、フェリシアン化カリウムが2価の鉄イオンと反応して、青色沈殿ができることを応用した発明であり、炭素材混合物中の鉄分を、薬品や電気化学的な方法を用いて、鉄分を鉄イオンにしたのちに、呈色液を用いて鉄分を検出する検出方法である。またこのような本発明の検出方法を用いて管理されたリチウムイオン電池の製造方法であり、デントライトの成長を抑えたリチウムイオン電池を効率的に得ることができるものである。
The present inventors have attempted to carry out a process control utilizing a color reaction, and as a result, have surprisingly found that a sharp detection can be performed by a simple method, and have reached the present invention. That is, the present invention
(Formula 1)
Reaction formula: Fe 2 ++ K 3 [Fe (CN) 6 ] = KFeIIIFeII (CN) 6 ↓ + 3K +

The invention is an application of the fact that potassium ferricyanide reacts with divalent iron ions by the reaction of the above to form a blue precipitate, and the iron in the carbon material mixture is converted into iron using a chemical or electrochemical method. This is a detection method in which iron is detected by using a color liquid after ionization. Further, the present invention relates to a method for manufacturing a lithium ion battery managed using the detection method of the present invention, and it is possible to efficiently obtain a lithium ion battery in which the growth of dendrites is suppressed.

すなわち、本発明は、
(1)炭素材料含有塗布膜中の鉄分を検出する方法であって、呈色液を含ませたろ紙を炭素材料含有塗布膜に接触させ、板で挟むことを特徴とする検出方法、
にある。
That is, the present invention
(1) A method for detecting iron in a carbon material-containing coating film, wherein a filter paper containing a coloring liquid is brought into contact with the carbon material-containing coating film and sandwiched between plates.
It is in.

本発明により、炭素材料中の鉄分の検出が簡易かつ鋭敏に行うことが可能となり、炭素材料の製造や炭素材料を用いた電池の製造の工程管理に容易に導入することが可能であり、ひいてはデンドライトの生成の抑えられた電池の製造を効率的に行うことが可能となる。   According to the present invention, detection of iron in a carbon material can be performed easily and sharply, and it can be easily introduced into the process control of the production of a carbon material and the production of a battery using the carbon material. It is possible to efficiently manufacture a battery in which generation of dendrite is suppressed.

図1は、本発明の方法を利用したリチウムイオン電池の製造工程管理方法を示すフロー図である。FIG. 1 is a flowchart showing a method for managing a manufacturing process of a lithium ion battery using the method of the present invention. 図2は、鉄分の検出限界を示す写真である。FIG. 2 is a photograph showing the detection limit of iron. 図3は、実施例1のろ紙法1で得られた、ろ紙の青変の状態を示す写真である。FIG. 3 is a photograph showing the filter paper obtained by the filter paper method 1 of Example 1 and showing a blue discoloration state. 図4は、実施例2のろ紙法2で得られた、ろ紙の青変の状態を示す写真である。FIG. 4 is a photograph showing a filter paper obtained by the filter paper method 2 of Example 2 and showing a blue discoloration state. 図5は、実施例3のろ紙法2で得られた、ろ紙の青変の状態を示す写真である。FIG. 5 is a photograph showing the filter paper obtained by the filter paper method 2 of Example 3 and showing a blue discoloration state. 図6は、実施例4の電気化学的溶解法の結果を示す写真である。FIG. 6 is a photograph showing the result of the electrochemical dissolution method of Example 4. 図7は、実施例5の電気化学的溶解法の結果を示す写真である。FIG. 7 is a photograph showing the result of the electrochemical dissolution method of Example 5. 図8は、比較例1の結果を示す写真である。FIG. 8 is a photograph showing the result of Comparative Example 1. 図9は、比較例2の結果を示す写真である。FIG. 9 is a photograph showing the result of Comparative Example 2. 図10は、比較例3と実施例6の結果を示す写真である。FIG. 10 is a photograph showing the results of Comparative Example 3 and Example 6. 図11は、旗型電極を示す概略図である。FIG. 11 is a schematic diagram showing a flag electrode. 図12は、電気化学セルを示す概略図である。 図12の電気化学セル中、1はテフロンキャップ、2はガラスビーカー、3は対極(白金)、4は作用極(電気化学的溶解法用サンプル)、5は参照極(銀)、6はステンレスワイヤー、7は圧着端子、8はステンレスボルトナット、9はリチウムイオン電池用電解液である。FIG. 12 is a schematic diagram showing an electrochemical cell. In the electrochemical cell of FIG. 12, 1 is a Teflon cap, 2 is a glass beaker, 3 is a counter electrode (platinum), 4 is a working electrode (sample for electrochemical dissolution method), 5 is a reference electrode (silver), and 6 is stainless steel. A wire, 7 is a crimp terminal, 8 is a stainless bolt nut, and 9 is an electrolyte for a lithium ion battery.

以下、本発明を具体的に説明する。
〔炭素材料〕
本発明の対象となる炭素材料は特に限定されない。
例えば、ファーネスブラック、ランプブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック、天然黒鉛、人造黒鉛、カーボンナノチューブ、カーボン繊維等の炭素材料が挙げられる。粉末、粒状、針状その他、形状は問わない。
Hereinafter, the present invention will be described specifically.
(Carbon material)
The carbon material targeted by the present invention is not particularly limited.
For example, carbon materials such as furnace black, lamp black, channel black, acetylene black, thermal black, Ketjen black, natural graphite, artificial graphite, carbon nanotube, and carbon fiber can be used. Powder, granules, needles, and other shapes are not limited.

〔炭素材料含有スラリー〕
少なくとも炭素材料と溶媒を含む液状のものである。その他、活物質、バインダー、分散剤、添加剤を含んでいても問題ない。例えば、前記の特許文献1や特許文献2に記載のものも用いることができる。
[Carbon-containing slurry]
It is a liquid containing at least a carbon material and a solvent. In addition, there is no problem even if an active material, a binder, a dispersant, and an additive are included. For example, those described in Patent Documents 1 and 2 described above can also be used.

〔本発明の検出方法〕
本発明は、(i)炭素材料を検出する方法、(ii)炭素材料含有スラリーを検出する方法、(iii)炭素材料含有塗布膜を検出する方法、を提供するものである。(i)には以下の「ろ紙法1」、(ii)には以下の「ろ紙法2」又は「遠心法」、(iii)には以下の「ろ紙法2」又は「電気化学的溶解法」を用いことができる。
いずれの方法においても、鉄分のイオン化剤を用いて鉄分のイオン化溶液を作り、これとフェリシアン化カリウムもしくはフェロシアン化カリウムのうち1つ以上とを含む液を、呈色液として用い、この呈色液を炭素材料と接触させて、炭素材料中の鉄分を検出する。
(Detection method of the present invention)
The present invention provides (i) a method for detecting a carbon material, (ii) a method for detecting a slurry containing a carbon material, and (iii) a method for detecting a coating film containing a carbon material. (i) the following "filter paper method 1", (ii) the following "filter paper method 2" or "centrifugal method", and (iii) the following "filter paper method 2" or "electrochemical dissolution method" ] Can be used.
In either method, an ionizing solution of iron is prepared using an ionizing agent for iron, and a solution containing the solution and one or more of potassium ferricyanide or potassium ferrocyanide is used as a coloring solution. Contact with the material to detect iron in the carbon material.

〔鉄分のイオン化剤〕
鉄分のイオン化剤は鉄分をイオン化させる材料であれば特に限定されないが、塩化カリウム、塩化ナトリウム、塩酸が適している。
(Ionizing agent for iron)
The iron ionizing agent is not particularly limited as long as it is a material that ionizes iron, but potassium chloride, sodium chloride, and hydrochloric acid are suitable.

〔鉄分のイオン化剤溶液〕
鉄分のイオン化剤を含む溶液である。
以下に鉄分のイオン化溶液の一例を示す。
ガラス瓶にイオン交換水97重量%に塩化カリウム3重量%を配合し密栓しタッチミキサーで充分攪拌し未溶解物がないことを確認し、鉄分のイオン化剤溶液としたもの。
(Ionizing agent solution for iron)
This solution contains an iron ionizing agent.
An example of the iron ionization solution is shown below.
A glass bottle was mixed with 97% by weight of ion-exchanged water and 3% by weight of potassium chloride, sealed tightly, and sufficiently stirred with a touch mixer to confirm that there was no undissolved substance.

〔呈色液〕
鉄分のイオン化剤とフェリシアン化カリウム、もしくはフェロシアン化カリウムを含む溶液である。
以下に、呈色液の一例を示す。
ガラス瓶にイオン交換水95重量%にフェリシアン化カリウム2重量%と塩化カリウム3重量%を配合し密栓しタッチミキサーで充分攪拌し未溶解物がないことを確認し、呈色液としたもの。
(Color solution)
It is a solution containing an iron ionizing agent and potassium ferricyanide or potassium ferrocyanide.
Hereinafter, an example of the coloring liquid will be described.
A glass bottle was prepared by mixing 2% by weight of potassium ferricyanide and 3% by weight of potassium chloride in 95% by weight of ion-exchanged water, sealed tightly, and sufficiently stirred with a touch mixer to confirm that there was no undissolved substance.

〔使用した試薬〕
後述する実施例では、以下の試薬を使用した。
フェリシアン化カリウム K〔Fe(CN)〕 試薬特級 ナカライテスク
塩化カリウム KCl 試薬特級 ナカライテスク
[Reagent used]
In the examples described below, the following reagents were used.
Potassium ferricyanide K 3 [Fe (CN) 6 ] Special grade reagent Nacalai Tesque Potassium chloride KCl Special grade reagent Nacalai Tesque

〔ろ紙法1〕
ガラス板上に、呈色液を含ませたろ紙を気泡が入らないように密着させ、そのろ紙の上に適量の炭素材を散布し、その上からガラス板で挟み、その時にろ紙が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
この時、ガラス板を使用しているのはろ紙の変色が挟んだ状態で確認できるために使用しているが、板に鉄分が含まれていない板であればガラス板に限定されない。
呈色液は鉄分のイオン化剤は鉄分をイオン化するものであれば特に限定されるものではないが、塩化カリウム、塩化ナトリウム、塩酸が特に適している。
[Filter paper method 1]
Attach the filter paper containing the color liquid to the glass plate so that air bubbles do not enter, sprinkle an appropriate amount of carbon material on the filter paper, sandwich it with a glass plate from above, and then the filter paper turns blue. This is a detection method for detecting the presence or absence of iron by confirming discoloration.
At this time, the glass plate is used because the discoloration of the filter paper can be confirmed in a sandwiched state, but the glass plate is not limited to a glass plate as long as the plate does not contain iron.
The coloring liquid is not particularly limited as long as the iron ionizing agent is one that ionizes iron, but potassium chloride, sodium chloride and hydrochloric acid are particularly suitable.

〔ろ紙法2〕
ガラス板上に、炭素材含有スラリーを塗布乾燥し、炭素材含有の塗布膜を形成する。この時、塗布膜の形成が困難な場合はバインダー成分を混合し、塗布膜を形成させても良い。この塗布膜上にろ紙を気泡が入らないように密着させ、さらにその上からガラス板で挟み、その時にろ紙が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
[Filter paper method 2]
A slurry containing a carbon material is applied and dried on a glass plate to form a coating film containing a carbon material. At this time, if it is difficult to form a coating film, a binder component may be mixed to form a coating film. This is a detection method for detecting the presence or absence of iron by adhering a filter paper to the coating film so as to prevent air bubbles from entering, further sandwiching the filter paper with a glass plate from above, and confirming that the filter paper turns blue at that time.

〔電気化学的溶解法〕
アルミ箔上に炭素材含有スラリーを塗布乾燥し、炭素材含有の塗布膜を形成する。炭素材含有の塗布膜を作用極にし、対極を白金電極、参照極を銀、リチウムイオン電池用電解液で電気化学セルを組み立て、電気化学セルに電流を流すことで、炭素材含有の塗膜中に含まれる鉄分を溶出させる。その後リチウムイオン電池用電解液を取り出し、呈色液と混合し、混合液が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
リチウムイオン電池用電解液はリチウムイオン電池に使用できる電解液であれば特に限定されない。
呈色液はすでに鉄イオンとなっているため特に鉄分のイオン化剤は必要ないが、あっても支障はない。
電流の流し方は鉄分を溶媒に溶解できれば特に限定されない。
対極を白金電極、参照極を銀としているが、リチウムイオン電池に近い条件とするならば対極及び参照極を金属リチウムとする。
(Electrochemical dissolution method)
A slurry containing a carbon material is applied on an aluminum foil and dried to form a coating film containing a carbon material. A carbon material-containing coating film is formed by assembling an electrochemical cell using a carbon material-containing coating film as a working electrode, a platinum electrode as a counter electrode, silver as a reference electrode, and an electrolyte for a lithium ion battery, and passing an electric current through the electrochemical cell. Elute the iron contained therein. Thereafter, the electrolyte solution for a lithium ion battery is taken out, mixed with a coloring solution, and the presence of iron is detected by confirming that the mixed solution turns blue.
The electrolyte for a lithium ion battery is not particularly limited as long as it can be used for a lithium ion battery.
Since the coloring solution is already iron ion, an iron ionizing agent is not particularly necessary, but there is no problem even if it is present.
There is no particular limitation on how the current flows, as long as iron can be dissolved in the solvent.
Although the counter electrode is a platinum electrode and the reference electrode is silver, if the conditions are close to those of a lithium ion battery, the counter electrode and the reference electrode are metallic lithium.

〔遠心法〕
炭素含有スラリーと鉄分のイオン化剤を充分混合し、遠心分離機により、溶媒と炭素材料含有物を分離し、溶媒と呈色液を混合しその混合液が青色に変色することを確認することで鉄分の有無を検出する検出方法である。
(Centrifugal method)
By thoroughly mixing the carbon-containing slurry and the iron ionizing agent, separating the solvent and the carbon material-containing material with a centrifuge, mixing the solvent and the colorant, and confirming that the mixture turns blue. This is a detection method for detecting the presence or absence of iron.

〔検出感度〕
後述する実施例で明らかなように、1ppmの鉄イオンを含む塩化第2鉄の溶液2gに呈色液1gを混合した時に、イオン交換水2gに呈色液1gを混合した参照溶液と比較することで、青色に変色していることが確認された。1ppmの鉄イオンの感度が確認された。
これに対し、ICPやXPSでは検出感度は1ppmであるので、意外にも、ICPやXPSと比較して、同等であり、低コストで短時間に鉄分の確認ができることが判明した。
〔Detection sensitivity〕
As will be apparent from the examples described later, when 1 g of the coloring solution is mixed with 2 g of a solution of ferric chloride containing 1 ppm of iron ions, a comparison is made with a reference solution obtained by mixing 1 g of the coloring solution with 2 g of ion-exchanged water. As a result, it was confirmed that the color changed to blue. The sensitivity of 1 ppm of iron ions was confirmed.
On the other hand, since ICP or XPS has a detection sensitivity of 1 ppm, it has been surprisingly found that the iron content is equivalent to that of ICP or XPS, and that iron can be confirmed in a short time at low cost.

〔本発明の方法を利用したリチウムイオン電池の製造工程管理方法〕
本発明の検出方法を利用して、炭素材料含有スラリーを製造し、あるいはリチウムイオン電池を製造する方法は、特に限定されず、以上説明した、炭素材料中の鉄分を検出する方法、炭素材料含有スラリー中の鉄分を検出する方法、のいずれか1つ以上を用いて、鉄分含有量を管理する工程を含む、炭素材料含有スラリーや、これを用いたリチウムイオン電池を製造することができる。例えば、図−1に示すように、炭素材料にろ紙法1を適用したり、炭素材料含有スラリーにろ紙法2を適用したり、炭素材料スラリーを用いて作成した電極板に、ろ紙法2や電気化学的溶解法を適用することが、好適である。これらの1つ又は2つ以上を採用してもよい。
[Manufacturing process control method for lithium ion battery using the method of the present invention]
Utilizing the detection method of the present invention, a method for producing a carbon material-containing slurry, or a method for producing a lithium ion battery is not particularly limited, and as described above, a method for detecting iron in a carbon material, Using any one or more of the methods for detecting iron in the slurry, a carbon material-containing slurry including a step of controlling the iron content and a lithium ion battery using the same can be manufactured. For example, as shown in FIG. 1, filter paper method 1 is applied to a carbon material, filter paper method 2 is applied to a carbon material-containing slurry, or filter paper method 2 or It is preferred to apply an electrochemical dissolution method. One or two or more of these may be employed.

〔炭素材料含有スラリー作製〕
リチウムイオン電池の製造に利用する場合の1例を挙げるが、目的とするリチウムイオン電池の炭素材料含有スラリーが得られれば、途中の工程は限定されない。
(Preparation of slurry containing carbon material)
One example in the case of using for the production of a lithium ion battery will be described. However, the intermediate steps are not limited as long as the desired carbon material-containing slurry for the lithium ion battery is obtained.

以下、本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

炭素材料(「デンカブラック粉状」(商品名。電気化学工業(株)製カーボンブラック))1gに鉄粉(ナカライテスク(株)製)0.1gを充分混合したものを「ろ紙法1」用サンプルとし、ガラス板(15cm×15cm)上に、呈色液を含ませたろ紙(5C)を気泡が入らないように密着させ、そのろ紙上に1gのろ紙法1用サンプルを散布し、その上からガラス板(15cm×15cm)で挟んでろ紙の青色への変色の有無を確認した。
より詳細には以下の操作を行った。
・炭素材料1gに鉄粉0.1gをポリエチレン袋に入れ密封する。
・炭素材料と鉄粉が入ったポリエチレン袋を良く振る。⇒ろ紙法1用サンプル
・ガラス板(15cm×15cm)上にろ紙をのせる。
・ろ紙上を呈色液でぬらす。
・ろ紙上にろ紙法1用サンプルを散布する。
・その上からガラス板をのせはさむ。
・ろ紙の青色への変色の有無を確認する。
"Filter paper method 1" is obtained by sufficiently mixing 0.1 g of iron powder (manufactured by Denka Kagaku Kogyo Co., Ltd.) with 0.1 g of carbon material ("Denka Black Powder" (trade name; carbon black manufactured by Denki Kagaku Kogyo Co., Ltd.)). A filter paper (5C) containing a color liquid was adhered to a glass plate (15 cm × 15 cm) so as to prevent air bubbles from entering, and 1 g of a sample for filter paper method 1 was sprayed on the filter paper. From above, the filter paper was sandwiched between glass plates (15 cm × 15 cm) to check the color of the filter paper to blue.
More specifically, the following operation was performed.
・ 1 g of carbon material and 0.1 g of iron powder are put in a polyethylene bag and sealed.
・ Shake the polyethylene bag containing the carbon material and iron powder. ⇒Put the filter paper on the glass plate (15cm × 15cm) for the sample for filter paper method 1.
・ Wet the filter paper with the coloring solution.
・ Spray sample for filter paper method 1 on filter paper.
・ Place a glass plate on top of it.
・ Check if the filter paper has changed color to blue.

炭素材料(「アセチレンブラック粉状」(商品名。電気化学工業(株)製)アセチレンブラック)1gと鉄粉(ナカライテスク(株)製)0.1gと溶媒(N−メチル−2−ピロリドン 三菱化学(株)製)14gとPVDF溶液(「KFポリマー#7208」(商品名。クレハ(株)製) )0.5gを「あわとり練太郎」(商品名。株式会社シンキー製、自転・公転ミキサー)」で5分撹拌し、ろ紙法2用サンプルとした。「ろ紙法2」用サンプルをPETフィルム上にアプリケーター10milで塗布し、温風乾燥機(「ST−120」商品名。エスペック社製)100℃で20分間乾燥し、塗布膜を形成した。この塗布膜上に呈色液を含ませたろ紙を気泡が入らないように密着させ、さらにその上からガラス板で挟んでろ紙の青色への変色の有無を確認した。   1 g of carbon material ("acetylene black powder" (trade name; acetylene black, manufactured by Denki Kagaku Kogyo KK)), 0.1 g of iron powder (manufactured by Nacalai Tesque, Ltd.), and a solvent (N-methyl-2-pyrrolidone, Mitsubishi) 14 g of Chemical Co., Ltd.) and 0.5 g of PVDF solution (“KF Polymer # 7208” (trade name, manufactured by Kureha Corporation)) are mixed with “Awatori Neritaro” (trade name, manufactured by Sinky Co., Ltd. Mixer) "for 5 minutes to obtain a sample for filter paper method 2. A sample for "Filter Paper Method 2" was applied on a PET film with an applicator of 10 mil, and dried at 100 ° C. for 20 minutes in a hot air drier (“ST-120” manufactured by Espec Corporation) to form a coating film. A filter paper containing a color liquid was adhered to the coating film so as to prevent air bubbles from entering, and then sandwiched between the glass plates with a glass plate to check whether the filter paper had changed to blue.

炭素材料(「アセチレンブラック粉状」(商品名、電気化学工業(株)製アセチレンブラック))20gと鉄粉(ナカライテスク(株)製)2gと分散剤(「PVP K−15」商品名、ISP社製)2gと溶媒(N−メチル−2−ピロリドン 三菱化学(株)製)76gと0.5mmジルコニアビーズ(「YTZ」商品名、ニッカトー社製)を用い分散機(ペイントシェーカー 浅田鉄工社製)で2時間分散し、分散液を作製した。作製した分散液5gに、PVDF溶液(KFポリマー#7208 クレハ製)5gを「あわとり練太郎」(商品名。株式会社シンキー製、自転・公転ミキサー)で撹拌し、「ろ紙法2」用
サンプルとした。「ろ紙法2」用サンプルをガラス板上にスピンコーター1000rpm×10秒で塗布した。温風乾燥機で100℃、20分で乾燥し、塗布膜を形成する。この塗布膜上にろ紙を気泡が入らないように密着させ、さらにその上からガラス板で挟んでろ紙の青色への変色の有無を確認した。
20 g of a carbon material ("acetylene black powder" (trade name, acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.)), 2 g of iron powder (manufactured by Nacalai Tesque, Inc.), and a dispersant ("PVP K-15" trade name, Dispersion machine (Paint shaker Asada Tekkosha) using 2 g of ISP, 76 g of solvent (N-methyl-2-pyrrolidone, manufactured by Mitsubishi Chemical Corporation) and 0.5 mm zirconia beads (trade name of YTZ, manufactured by Nikkato) For 2 hours to prepare a dispersion. To 5 g of the prepared dispersion, 5 g of a PVDF solution (KF polymer # 7208 made by Kureha) was stirred with "Awatori Neritaro" (trade name; manufactured by Shinky Co., Ltd., rotation / revolution mixer), and a sample for "Filter paper method 2" was prepared. And A sample for "filter paper method 2" was applied on a glass plate at 1000 rpm for 10 seconds. It is dried at 100 ° C. for 20 minutes with a hot air drier to form a coating film. A filter paper was adhered to the coating film so as to prevent air bubbles from entering, and further sandwiched by a glass plate from above to check whether or not the filter paper turned blue.

1cm×1cmの大きさの旗型アルミ箔上に、炭素材料含有スラリーを塗布乾燥し炭素材含有の塗布膜を形成した。炭素材料含有の塗布膜を作用極にし、対極を白金電極、参照極を銀、リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)10gで電気化学セルを組み立て、電気化学セルに通電した。試験管にリチウムイオン電池用電解液2gを取り出し、呈色液1gと混合し、混合液の青色への変色の有無を確認した。
通電装置は、POTENTIOSTAT/GALVANOSTAT(HA−151 北斗電工社製)を用いた。電気化学セルの概略は、図−12に示す。電極は、概略を図−11に示す旗型電極である。通電条件は、1mA/s×30分である。
炭素材料含有スラリーの製造、塗布膜の製造を含む詳細は、以下の通りである。
・炭素材料20g+鉄粉2g+分散剤2g+溶媒76g+0.5mmジルコニアビーズ300gをポリ容器に入れる。
・分散機(ペイントシェーカー)で2時間分散する。⇒炭素含有スラリー(1)
・活物質96g+PVDF溶液10g+炭素含有スラリー(1)10gを練太郎で5分攪拌する。⇒炭素材料含有スラリー(2)
・炭素材料含有スラリー(2)を旗型アルミ箔上にディッピング法で塗布する。
・塗布旗型アルミ箔を温風乾燥機で乾燥条件100℃×20分で乾燥させる。⇒電気化学的溶解法用サンプル
・電気化学セルを組み立てる。
作用極:電気化学的溶解法用サンプル、対極:白金、参照極:銀
リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)10g
・電気化学セルに通電する。
通電装置:POTENTIOSTAT/GALVANOSTAT(HA−151 北斗電工社製)
通電条件:1mA/s×30分
・試験管にリチウムイオン電池用電解液2gと呈色液1gと混合する。
・混合液の青色への変色の有無を確認する。
A slurry containing a carbon material was applied and dried on a flag-shaped aluminum foil having a size of 1 cm × 1 cm to form a coating film containing a carbon material. A coating film containing a carbon material is used as a working electrode, a counter electrode is a platinum electrode, a reference electrode is silver, and an electrolyte for lithium ion batteries (1M LiPF6 (EC: DEC = 1: 1) manufactured by Kishida Chemical Co., Ltd.) is used to form an electrochemical cell with 10 g. Assembled and energized the electrochemical cell. 2 g of the electrolyte solution for a lithium ion battery was taken out into a test tube, mixed with 1 g of a coloring solution, and the presence or absence of discoloration of the mixed solution to blue was confirmed.
As the current applying device, POTENTISTAT / GALVANOSTAT (HA-151 manufactured by Hokuto Denko KK) was used. An outline of the electrochemical cell is shown in FIG. The electrode is a flag electrode schematically shown in FIG. The energization condition is 1 mA / s × 30 minutes.
The details including the production of the slurry containing the carbon material and the production of the coating film are as follows.
20 g of carbon material + 2 g of iron powder + 2 g of dispersant + 76 g of solvent + 300 g of 0.5 mm zirconia beads are put in a plastic container.
-Disperse with a disperser (paint shaker) for 2 hours. ⇒Slurry containing carbon (1)
-96 g of the active material + 10 g of the PVDF solution + 10 g of the carbon-containing slurry (1) are stirred with Nertaro for 5 minutes. ⇒Slurry containing carbon material (2)
・ Apply the carbon material-containing slurry (2) to the flag-shaped aluminum foil by dipping.
Dry the coated flag type aluminum foil with a hot air drier at 100 ° C. for 20 minutes. ⇒Assemble the sample and electrochemical cell for electrochemical dissolution method.
Working electrode: Sample for electrochemical dissolution method, Counter electrode: Platinum, Reference electrode: Electrolyte for silver lithium ion battery (1M LiPF6 (EC: DEC = 1: 1) manufactured by Kishida Chemical Co.) 10 g
-Apply power to the electrochemical cell.
Energizing device: POTENTOSTAT / GALVANOSTAT (HA-151 manufactured by Hokuto Denko)
Energizing conditions: 1 mA / s × 30 min. 2 g of electrolyte for lithium ion battery and 1 g of color solution are mixed in a test tube.
・ Confirm the color change of the mixture to blue.

通電装置、通電条件を以下の通りとした以外は実施例4と同様にして行った。
通電装置:POTENTIOSTAT/GALVANOSTAT(VERSASTAT4 東陽テクニカ社製)
通電条件:10mV/s×3サイクル 0V〜1.5V
炭素材料含有スラリーの製造、塗布膜の製造を含む詳細は、以下の通りである。
・炭素材料20g+鉄粉2g+分散剤2g+溶媒76g+0.5mmジルコニアビーズ300gをポリ容器に入れる。
・分散機(ペイントシェーカー)で2時間分散する。⇒炭素材料含有スラリー(1)
・活物質96g+PVDF溶液10g+炭素材料含有スラリー(1)10gを練太郎で5分攪拌する。⇒炭素材料含有スラリー(2)
・炭素材料含有スラリー(2)を旗型アルミ箔上にディッピング法で塗布する。
・塗布旗型アルミ箔を温風乾燥機で乾燥条件100℃×20分で乾燥させる。⇒電気化学的溶解法用サンプル
・電気化学セルを組み立てる。
作用極:電気化学的溶解法用サンプル、対極:白金、参照極:銀
リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)10g
・電気化学セルに通電する。
通電装置:POTENTIOSTAT/GALVANOSTAT(VERSASTAT4 東陽テクニカ社製)
通電条件:10mV/s×3サイクル 0V〜1.5V
・試験管にリチウムイオン電池用電解液2gと呈色液1gと混合する。
・混合液の青色への変色の有無を確認する。
The operation was performed in the same manner as in Example 4 except that the energizing device and energizing conditions were as follows.
Powering device: POTENTISTAT / GALVANOSTAT (VERSASSTAT4 manufactured by Toyo Technica)
Energizing condition: 10 mV / s × 3 cycles 0 V to 1.5 V
The details including the production of the slurry containing the carbon material and the production of the coating film are as follows.
20 g of carbon material + 2 g of iron powder + 2 g of dispersant + 76 g of solvent + 300 g of 0.5 mm zirconia beads are put in a plastic container.
-Disperse with a disperser (paint shaker) for 2 hours. ⇒Slurry containing carbon material (1)
-96 g of the active material + 10 g of the PVDF solution + 10 g of the carbon material-containing slurry (1) are stirred for 5 minutes with Nerutarou. ⇒Slurry containing carbon material (2)
・ Apply the carbon material-containing slurry (2) to the flag-shaped aluminum foil by dipping.
Dry the coated flag type aluminum foil with a hot air drier at 100 ° C. for 20 minutes. ⇒Assemble the sample and electrochemical cell for electrochemical dissolution method.
Working electrode: Sample for electrochemical dissolution method, Counter electrode: Platinum, Reference electrode: Electrolyte for silver lithium ion battery (1M LiPF6 (EC: DEC = 1: 1) manufactured by Kishida Chemical Co.) 10 g
-Apply power to the electrochemical cell.
Powering device: POTENTISTAT / GALVANOSTAT (VERSASSTAT4 manufactured by Toyo Technica)
Energizing condition: 10 mV / s × 3 cycles 0 V to 1.5 V
Mix 2 g of electrolyte for lithium ion battery and 1 g of color solution in a test tube.
・ Confirm the color change of the mixture to blue.

炭素含有スラリー40gと鉄粉0.4g鉄分のイオン化剤溶液10gを「あわとり練太郎」(型番AR−100、株式会社シンキー社製)で混合し、その得られた混合液10g
を遠心分離機(トミー精工社製)で溶媒と沈殿物に分離した。分離した溶媒2gと呈色液1gを混合し、混合液の青色への変色の有無を確認した。
より具体的には以下のように行った。
・炭素含有スラリー40g+鉄粉0.4g+0.5規定塩酸20gを練太郎(AR−100)で1分攪拌する。
・混合液を遠心分離器(GRX−220 トミー精工社製)10000rpm×5分で遠心分離する。
・上澄みをメンブレンフィルター(PTFEタイプ 孔径1.00μm)でろ過する。
・ろ液2gと呈色液1gを混合する。
・混合液の青色への変色の有無を確認する。
40 g of the carbon-containing slurry and 10 g of an ionizing agent solution containing 0.4 g of iron powder and 10 g of an iron content were mixed with "Awatori Neritaro" (model number AR-100, manufactured by Shinky Corporation), and the resulting mixed solution 10 g
Was separated into a solvent and a precipitate by a centrifuge (manufactured by Tommy Seiko). 2 g of the separated solvent and 1 g of the coloring liquid were mixed, and the presence or absence of discoloration of the mixed liquid to blue was confirmed.
More specifically, the procedure was performed as follows.
-40 g of carbon-containing slurry + 0.4 g of iron powder + 20 g of 0.5 N hydrochloric acid are stirred for 1 minute with Nerita (AR-100).
-The mixture is centrifuged with a centrifuge (GRX-220, manufactured by Tommy Seiko) at 10,000 rpm for 5 minutes.
・ The supernatant is filtered through a membrane filter (PTFE type, pore size: 1.00 μm).
Mix 2 g of the filtrate and 1 g of the coloring solution.
・ Confirm the color change of the mixture to blue.

比較例1Comparative Example 1

ガラス板(15cm×15cm)上に、呈色液を含ませたろ紙(5C)を気泡が入らないように密着させ、その上からガラス板(15cm×15cm)で挟んでろ紙の青色への変色の有無を確認した。   A filter paper (5C) impregnated with a color liquid is adhered on a glass plate (15 cm x 15 cm) so that air bubbles do not enter, and the filter paper is discolored to blue by sandwiching it with a glass plate (15 cm x 15 cm) from above. Was checked.

比較例2Comparative Example 2

リチウムイオン電池用電解液(1M LiPF6 (EC:DEC=1:1)キシダ化学社製)2gと呈色液1gと混合し、混合液の青色への変色の有無を確認した。   2 g of an electrolyte solution for lithium ion batteries (1M LiPF6 (EC: DEC = 1: 1, manufactured by Kishida Chemical Co., Ltd.)) and 1 g of a coloring solution were mixed, and the presence or absence of discoloration of the mixed solution to blue was confirmed.

比較例3Comparative Example 3

0.5規定塩酸2gと呈色液1gを混合し、混合液の青色への変色の有無を確認した。   2 g of 0.5N hydrochloric acid and 1 g of the coloring solution were mixed, and the presence or absence of discoloration of the mixture to blue was confirmed.

〔実施例1〜6と比較例1〜3の結果〕
呈色の有無を、表−1に示す。本発明の方法により、簡易に炭素材料中の鉄分が検出できることがわかった。
[Results of Examples 1 to 6 and Comparative Examples 1 to 3]
Table 1 shows the presence or absence of coloration. It has been found that the iron content in the carbon material can be easily detected by the method of the present invention.

Figure 0006654215
Figure 0006654215

図−3〜5に、実施例1〜3での「ろ紙法1」と「ろ紙法2」により得られた、青変した部分のあるろ紙の写真を示す。いずれも、炭素材料中に鉄分が含まれていることにより、青変し、検出可能であることがわかった。
図−6及び7に、実施例4及び5での電気化学的溶解法による結果を示す。炭素材料中の鉄分により、青変しており、検出可能であることがわかった。
図−8に、比較例1の結果を示す。青変部分はなく、実施例1〜3の「ろ紙法」の結果の青変が、炭素材料由来であることがわかり、この方法により炭素材料中の鉄分の検出ができることがわかった。
図−9に、比較例2の結果を示す。青変部分はなく、実施例4及び5の青変が、炭素材料由来であり、この方法により炭素材料中の鉄分の検出ができることがわかった。
FIGS. 3 to 5 show photographs of the filter paper having a blue-colored portion obtained by the “filter paper method 1” and the “filter paper method 2” in Examples 1 to 3. In any case, it turned out that the carbon content contained iron contained turned blue and was detectable.
FIGS. 6 and 7 show the results of the electrochemical dissolution method in Examples 4 and 5. It turned blue due to the iron content in the carbon material and was found to be detectable.
FIG. 8 shows the results of Comparative Example 1. There was no blue discoloration portion, and it was found that the blue discoloration as a result of the "filter paper method" of Examples 1 to 3 was derived from a carbon material, and that this method could detect iron in the carbon material.
FIG. 9 shows the results of Comparative Example 2. There was no blue discoloration portion, and the blue discoloration of Examples 4 and 5 was derived from the carbon material, and it was found that the iron content in the carbon material could be detected by this method.

〔実施例6と比較例3の結果〕
実施例6と比較例3の結果を図−10に示す。実施例6では、比較例3より濃い緑色を呈しており、鉄分の存在により青変していることがわかった。
[Results of Example 6 and Comparative Example 3]
The results of Example 6 and Comparative Example 3 are shown in FIG. In Example 6, it turned out to be darker green than Comparative Example 3, and it turned out that it turned blue due to the presence of iron.

本発明により、炭素材料中の鉄分を鋭敏かつ簡易に検出することができ、電池材料としての工程管理に組み込むことにより鉄分の管理が容易となり、デンドライトの生成を防止できる。   According to the present invention, the iron content in the carbon material can be detected sharply and easily, and the iron content can be easily controlled by incorporating the iron content in the process control as the battery material, and the generation of dendrites can be prevented.

電気化学セル
1:テフロンキャップ
2:ガラスビーカー
3:対極(白金)
4:作用極(電気化学的溶解法用サンプル)
5:参照極(銀)
6:ステンレスワイヤー
7:圧着端子
8:ステンレスボルトナット
9:リチウムイオン電池用電解液
Electrochemical cell 1: Teflon cap 2: Glass beaker 3: Counter electrode (platinum)
4: Working electrode (sample for electrochemical dissolution method)
5: Reference electrode (silver)
6: Stainless steel wire 7: Crimp terminal 8: Stainless bolt nut 9: Electrolyte for lithium ion battery

Claims (1)

炭素材料含有塗布膜中の鉄分を検出する方法であって、呈色液を含ませたろ紙を炭素材含有塗布膜に接触させ、板で挟むことを特徴とする検出方法。 A method for detecting the iron of the carbon material-containing coating film, a filter paper moistened with Teiiroeki into contact with the carbon materials-containing coating film, the detection method characterized by sandwiching a plate.
JP2018084747A 2018-04-26 2018-04-26 Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method Active JP6654215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084747A JP6654215B2 (en) 2018-04-26 2018-04-26 Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084747A JP6654215B2 (en) 2018-04-26 2018-04-26 Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013248974A Division JP6351961B2 (en) 2013-12-02 2013-12-02 Method for detecting iron content, carbon material-containing slurry controlled by the detection method, and method for producing lithium ion battery

Publications (2)

Publication Number Publication Date
JP2018169399A JP2018169399A (en) 2018-11-01
JP6654215B2 true JP6654215B2 (en) 2020-02-26

Family

ID=64017927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084747A Active JP6654215B2 (en) 2018-04-26 2018-04-26 Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6654215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612946A (en) * 2019-01-11 2019-04-12 武汉钢铁有限公司 A kind of measuring method of stainless steel connecting line ingredient
CN113916965B (en) * 2021-10-12 2023-12-15 芜湖天弋能源科技有限公司 Method for detecting content of magnetic substance in lithium ion battery anode material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630503B2 (en) * 1973-07-23 1981-07-15
JPS5264952A (en) * 1975-11-25 1977-05-28 Nippon Seiko Kk Device for measuring performance of pivotal bearing
JP2000302551A (en) * 1999-04-15 2000-10-31 Denki Kagaku Kogyo Kk Carbon material for negative electrode of lithium secondary battery and accelerator for graphitization
JP2012242167A (en) * 2011-05-17 2012-12-10 Fujifilm Corp Raman spectroscopic method and apparatus

Also Published As

Publication number Publication date
JP2018169399A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
Liu et al. Alkali ions pre‐intercalated layered MnO2 nanosheet for zinc‐ions storage
JP7101155B2 (en) Rechargeable aluminum battery
Carbone et al. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery
JP6143945B2 (en) Zinc ion secondary battery and manufacturing method thereof
Tarnopolskiy et al. Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0. 4Mn1. 6O4 cathodes
US10615452B2 (en) High voltage rechargeable magnesium cell
CN105742585A (en) Methods for forming porous materials
CN101783407B (en) Method for producing active material and electrode, active material, and electrode
US9666866B2 (en) Transition metal hexacyanometallate electrode with water-soluble binder
CN102810669A (en) Positive electrode material for secondary battery and method for manufacturing the same
JP6605457B2 (en) Electrochemical device electrodes containing cobalt oxyhydroxide
Rezvani et al. Binder-induced surface structure evolution effects on Li-ion battery performance
Tekin et al. A new sodium‐based aqueous rechargeable battery system: the special case of Na0. 44MnO2/dissolved sodium polysulfide
Balland et al. The Role of Al3+‐Based Aqueous Electrolytes in the Charge Storage Mechanism of MnOx Cathodes
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
Lee et al. Solid permeable interface (spi) on a high-voltage positive electrode of lithium-ion batteries
JP6654215B2 (en) Iron detection method, carbon material-containing slurry controlled by the detection method, and lithium ion battery manufacturing method
JP2010138039A (en) Purification method and purification device for carbon material, and nonaqueous electrolyte secondary battery
CN105489884B (en) The method that electronation graphene oxide/magnesium improves nickle cobalt lithium manganate chemical property
JP6351961B2 (en) Method for detecting iron content, carbon material-containing slurry controlled by the detection method, and method for producing lithium ion battery
JP5120213B2 (en) Water-based lithium ion secondary battery
CN112952075B (en) Composite negative electrode material, preparation method thereof, negative electrode material and lithium ion battery
JP5050346B2 (en) Water-based lithium secondary battery
Li et al. The Influence of Different Carbon Sources on Li3V2 (PO4) 3/C Synthesized by a Hybrid Sol–Gel Method as Cathode for Lithium‐Ion Batteries
KR20150045833A (en) Method for fabricating positive electrode material absorbed with binder, positive electrode material absorbed with binder and positive electrode comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200129

R150 Certificate of patent or registration of utility model

Ref document number: 6654215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250