JPH11236628A - Pre-treatment of sintering raw material - Google Patents

Pre-treatment of sintering raw material

Info

Publication number
JPH11236628A
JPH11236628A JP3855198A JP3855198A JPH11236628A JP H11236628 A JPH11236628 A JP H11236628A JP 3855198 A JP3855198 A JP 3855198A JP 3855198 A JP3855198 A JP 3855198A JP H11236628 A JPH11236628 A JP H11236628A
Authority
JP
Japan
Prior art keywords
raw material
sintering
sintering raw
granulator
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3855198A
Other languages
Japanese (ja)
Inventor
Koichi Nushishiro
晃一 主代
Nobuyuki Oyama
伸幸 大山
Katsutoshi Igawa
勝利 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3855198A priority Critical patent/JPH11236628A/en
Publication of JPH11236628A publication Critical patent/JPH11236628A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for pre-treating a sintering raw material, with which fine grain contained in the sintering raw material is made pseudo-grain having suitable size and the permeability of a sintering raw material layer is better than that of the conventional method. SOLUTION: In mixing the raw material for producing the sintered ore for blast furnace with a Dweight Lloyd type sintering machine by using a drum type mixer 5, the raw material 1 is charged into a truncated cone shaped rotary cylindrical body and screened, and the grain in the finest side in the screened grains is palletized by adding the moisture in a pelletizer 3 and the pellet having large diameter is mixed with the grain in the coarse side with the drum type mixer 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結原料の事前処
理方法に関し、特に、ドワイト・ロイド(以下、DLと
いう)型焼結機を用いて高炉へ装入する焼結鉱を製造す
るに際して、使用原料の適正化を図る技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method for a sintering raw material, and more particularly to a method for producing a sintered ore to be charged into a blast furnace using a Dwight Lloyd (hereinafter referred to as DL) type sintering machine. This is a technique for optimizing the raw materials used.

【0002】[0002]

【従来の技術】DL型焼結機を用いて高炉装入原料とし
ての焼結鉱を製造するには、まず、粉鉄鉱石に石灰石及
び粉コークスを添加混合し、これに水を加えてドラム型
ミキサで混合・造粒し、焼結原料を準備する。そして、
この焼結原料は、ホッパを経由し、DL焼結機上を回転
駆動しているエンドレス方式のパレットに供給され、焼
結原料の堆積層(以下、焼結原料層という)を形成す
る。該DL焼結機には、その幅方向に複数の燃焼用バー
ナを配列させてある点火炉が設けられており、且つパレ
ットは移動しているので、焼結原料層は、該点火炉の下
を通過する際に、その上層部の粉コークスに点火され
る。また、パレットの下方には、ウィンド・ボックス
(風函ともいう)が密接、配設され、その内部は吸気ブ
ロアで負圧にしてあるので、前記点火によって高温にな
った部分(燃焼帯あるいはヒート・フロントという)
は、パレットが焼結機の終端側に移動する間に、上層部
から下層部へと進行する。そして、該燃焼帯内では、石
灰石が熱分解して生石灰となる反応、鉄鉱石粒子と生石
灰が反応して融液を形成する反応、融液を介して粒子同
士が融着する現象が生じ、最終的には、焼結原料層の全
体が塊状となる。この塊状体は、焼結機の後端から排出
後に破砕、分級され、所定の粒度分布を有する焼結鉱と
される。従って、品質に優れた焼結鉱を効率良く生産す
るには、焼結原料層内の通気性、つまり空気が焼結原料
層の上面から下面へ抜ける容易度が重要な要因となるの
で、従来よりその事前処理が種々行われている。
2. Description of the Related Art In order to produce a sintered ore as a raw material for a blast furnace using a DL type sintering machine, first, limestone and coke fine are added to and mixed with fine iron ore, and water is added thereto to form a drum. Mix and granulate with a mold mixer to prepare a raw material for sintering. And
The sintering raw material is supplied to an endless pallet that is rotationally driven on a DL sintering machine via a hopper, and forms a sintering raw material layer (hereinafter referred to as a sintering raw material layer). The DL sintering machine is provided with an ignition furnace in which a plurality of combustion burners are arranged in the width direction, and the pallet is moving. When passing through, the coke breeze in the upper layer is ignited. In addition, a wind box (also referred to as a wind box) is closely arranged below the pallet, and the inside of the pallet is under a negative pressure by an intake blower.・ It is called front)
Progresses from the upper part to the lower part while the pallet moves to the terminal side of the sintering machine. In the combustion zone, a reaction occurs in which limestone is thermally decomposed into quicklime, a reaction in which iron ore particles and quicklime react to form a melt, and a phenomenon in which particles fuse together through the melt occurs. Eventually, the entire sintering raw material layer becomes massive. This lump is crushed and classified after being discharged from the rear end of the sintering machine, to be a sintered ore having a predetermined particle size distribution. Therefore, in order to efficiently produce high-quality sintered ore, the air permeability in the sintering material layer, that is, the ease with which air can escape from the upper surface to the lower surface of the sintering material layer is an important factor. Various pre-processing is performed.

【0003】ところで、焼結原料に微粉が多くなると、
当然のことながら、焼結原料層の通気性が低下する。そ
のため、従来より、ドラム型ミキサ内で焼結原料に水分
を添加し、該微粉を比較的粒度の大きい粒子に付着させ
る造粒を行い、見掛け上、粒子を大きくすることが行わ
れている(このことを擬似粒子化という)。しかしなが
ら、かかるドラム型ミキサ内での造粒は、必ずしも満足
できる状況にあるとは言えない。
[0003] By the way, when the fine powder increases in the sintering raw material,
As a matter of course, the permeability of the sintering raw material layer is reduced. For this reason, conventionally, water has been added to the sintering raw material in a drum type mixer to granulate the fine powder to adhere to particles having a relatively large particle size, thereby apparently increasing the size of the particles ( This is called pseudo-particle formation). However, granulation in such a drum mixer is not always in a satisfactory state.

【0004】そこで、特公昭62−47928号公報及
び特公平1−53335号公報は、予め微粉を圧縮成形
や押し出し成形で大きくしてから、焼結原料に加えて造
粒する技術を提案した。しかしながら、この特公昭62
−47928号公報及び特公平1−53335号公報に
記載の技術は、粗粒子を含まない微粉のみを対象として
おり、また大きくした微粒子の焼結原料全体での使用量
が少なかったので、通気性の改善効果は期待した程でな
かった。さらに、焼結原料の大部分を占める鉄鉱石粉
は、微粉から粗粒まで広い粒度分布を有しているので、
そのうちの微粉部分のみを造粒するには、別途に分級操
作が必要となる。
Therefore, Japanese Patent Publication No. Sho 62-47928 and Japanese Patent Publication No. Hei 1-53335 have proposed a technique in which fine powder is previously enlarged by compression molding or extrusion molding, and then granulated in addition to a sintering raw material. However, this Tokujin Sho 62
The techniques described in JP-A-47928 and JP-B-1-53335 are intended only for fine powders containing no coarse particles, and the amount of the enlarged fine particles used in the entire sintering raw material is small, so that the air permeability is low. Was not as effective as expected. Furthermore, iron ore powder, which accounts for the majority of sintering raw materials, has a wide particle size distribution from fine powder to coarse particles,
In order to granulate only the fine powder portion, a separate classification operation is required.

【0005】この分級操作を加えた微粉の擬似粒子化を
行う技術として、特開平9−194956号公報は、
「粉鉱石を篩分け機で篩分け、この篩下鉱石を混練機で
混練した後、造粒機(通常、パンペレタイザーを用い
る)で造粒し焼結原料とする焼結原料の事前処理方法に
おいて、前記篩分け中の篩下鉱石に水分を添加する」技
術を開示した。これによって、焼結原料中の微粉のみを
大きくし、その後に通常の大きさの粒子と合流させてミ
キサで混合し、焼結原料を得るようにした。
Japanese Patent Application Laid-Open No. 9-194856 discloses a technique for forming fine particles into pseudo-particles through the classification operation.
"Pre-processing method of sintering raw material as sintering raw material by sieving fine ore with a sieving machine, kneading the ore under the sieve with a kneading machine, granulating with a granulator (usually using a pan pelletizer) Discloses a technique of adding water to the ore under the ore during the sieving. As a result, only the fine powder in the sintering raw material was enlarged, and thereafter, the particles were combined with particles of a normal size and mixed by a mixer to obtain a sintering raw material.

【0006】しかしながら、この技術は、分級操作に一
般的な篩を用いたので、篩目の詰まりや処理量の制約が
あり、今だ実現するに至っていない。
However, since this technique uses a general sieve for the classification operation, there is a restriction in the clogging of the sieve and the processing amount, and it has not been realized yet.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、焼結原料に含まれる微粒を適正な大きさの擬似
粒子とし、焼結原料層の通気性を従来より良好にする焼
結原料の事前処理方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a sintering method in which fine particles contained in a sintering raw material are converted into pseudo-particles of an appropriate size, and the permeability of the sintering raw material layer is improved as compared with the prior art. It is intended to provide a pretreatment method for raw materials.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するため、DL型焼結機で使用する焼結原料の事前分
級の円滑化に鋭意努力し、その成果を本発明として完成
させた。すなわち、本発明は、高炉用焼結鉱をドワイト
・ロイド型焼結機で製造するための原料を、ドラム型ミ
キサで混合するに際し、前記原料を、横倒した円錐台形
の回転筒状体に装入して分級し、分級された最も細粒側
の粒子を造粒機内で水分を加えて造粒し、その大径化し
た粒子を前記ドラム型ミキサで粗粒側の粒子と混合する
ことを特徴とする焼結原料の事前処理方法である。
Means for Solving the Problems In order to achieve the above-mentioned object, the inventor has worked diligently to smooth the preliminary classification of the sintering raw materials used in the DL type sintering machine, and has completed the results as the present invention. Was. That is, according to the present invention, when a raw material for producing a blast furnace sintered ore with a Dwight Lloyd type sintering machine is mixed by a drum type mixer, the raw material is mounted on a horizontally-turned truncated conical rotary cylinder. And then classified, and the classified finest particles are granulated by adding moisture in a granulator, and the large-diameter particles are mixed with the coarse particles by the drum type mixer. This is a method for pre-processing sintering raw materials, which is a feature.

【0009】また、本発明は、前記原料が、鉄鉱石、石
灰石、ドロマイト、及び蛇紋岩の粉粒物であることを特
徴とする焼結原料の事前処理方法である。さらに、本発
明は、前記ドラム型ミキサでさらにコークス粉と混合す
ることを特徴とする焼結原料の事前処理方法である。加
えて、本発明は、前記分級を、原料の粒子径2mmを境
に行うことを特徴とする焼結原料の事前処理方法であ
る。
The present invention is also a method for pre-treating a sintering raw material, wherein the raw material is a powder of iron ore, limestone, dolomite, and serpentine. Further, the present invention is a method for pre-treating a sintering raw material, which further comprises mixing the coke powder with the drum type mixer. In addition, the present invention is a method for pre-processing a sintering raw material, wherein the classification is performed at a particle diameter of 2 mm of the raw material.

【0010】さらに加えて、本発明は、前記造粒機を、
ロール圧縮成形機とすることを特徴としたり、あるいは
前記造粒機内での造粒を、粒子径3〜10mmまで行う
ことを特徴とする焼結原料の事前処理方法でもある。本
発明によれば、従来難しかった原料の連続分級が円滑に
行えるようになり、微粒の粗粒化が容易に達成できるよ
うになる。その結果、焼結原料層の通気性が従来より向
上し、品質に優れた高炉用焼結鉱石が効率良く量産でき
るようになった。
[0010] In addition, the present invention provides the above granulator,
It is also a pretreatment method for a sintering raw material, characterized in that it is a roll compression molding machine, or that granulation in the granulator is performed to a particle diameter of 3 to 10 mm. ADVANTAGE OF THE INVENTION According to this invention, the continuous classification of the raw material which was difficult conventionally can be performed smoothly, and coarsening of fine particles can be easily achieved. As a result, the permeability of the sintering raw material layer is improved as compared with the conventional method, and high quality sintered ore for blast furnaces can be efficiently mass-produced.

【0011】[0011]

【発明の実施の形態】以下、図面を参照し、本発明の実
施の形態を説明する。まず、本発明に係る事前処理方法
に従い、原料をDL型焼結機に装入するまでの工程を図
1に示す。図1によれば、原料1は、分級機11に供給
され、そこで細粒側と粗粒側に分級される。そして、細
粒側のみが、造粒機3へ供給され、水分を加えて大径化
された後、ドラム型ミキサ5に送られる。一方、粗粒側
は、直接にドラム型ミキサ5に供給され、前記細粒側及
び別ルートで供給されるコークス粉4と一緒になって混
合され、所謂焼結原料13としてDL型焼結機6へ供給
される。なお、原料1としては、鉄鉱石、石灰石、蛇紋
岩、珪石、高炉や転炉で発生したスラグ、該焼結機6で
発生した所謂返鉱等である。表1に、それらの配合割合
を、表2に、配合した後(以下、分級前原料1という)
の粒度分布を例示しておく。
Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 shows the steps until the raw materials are charged into a DL-type sintering machine according to the pretreatment method according to the present invention. According to FIG. 1, the raw material 1 is supplied to a classifier 11, where it is classified into a fine grain side and a coarse grain side. Then, only the fine granule side is supplied to the granulator 3, and after being increased in diameter by adding moisture, is sent to the drum mixer 5. On the other hand, the coarse-grain side is directly supplied to the drum-type mixer 5 and mixed together with the fine-grain side and the coke powder 4 supplied by another route. 6. The raw material 1 is iron ore, limestone, serpentine, quartzite, slag generated in a blast furnace or a converter, so-called remineralization generated in the sintering machine 6, and the like. Table 1 shows the compounding ratios of these compounds in Table 2 after compounding (hereinafter referred to as “raw material 1 before classification”).
An example of the particle size distribution is shown below.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】ところで、本発明の重要ポイントは、上記
工程において分級機11を篩式から粒子の転動分離方式
に改めたことにある。それは、図2に示すように、横倒
した円錐台形の筒体2で形成されている。そして、該筒
体2は、予め定めた速度で回転している。この場合、該
筒体2の中央部付近に供給された分級前原料1は、該筒
体2の壁に沿い持ち上げられたり、落下する転動を繰り
返す。この運動によって、供給した分級前原料1のうち
の細粒側7は、図2で矢印Aで示すように、下方に集ま
り、壁の傾斜を利用して筒体2の大径側に流れる。一
方、粗粒側8は、矢印Bで示すように、表面に集まり、
且つ筒体2の小径側に流れるようになる。従って、該筒
体2の両端に出口12を開口し、適切な仕切板9、10
を設けると、供給された分級前原料1は、連続的に細粒
の多いものと粗粒の多いものとに分離して、該筒体2か
ら排出される。この分級による細粒側と粗粒側の境界粒
径は、出口12に設ける仕切板9、10の高さにより調
節可能であるが、本発明では、後工程に配置した造粒機
3の負荷を抑えるため、0.5〜2mmから選ばれるこ
とが好ましい。また、この粒子径は、0.5〜1.0m
mの範囲から選ばれたものであると、造粒機の負荷をよ
り抑えれるので、一層好ましい。ここで、境界粒子径の
下限を0.5mmとするのは、粗粒側に0.5mm以下
が多いと、そのままで焼結原料となった場合、原料層の
通気が急激に悪化する。そのため、少なくとも0.5m
m以下は、分離して造粒することが通気改善に必要だか
らである。さらに、粒子径2mmを超えての分離造粒
は、造粒機負荷が大きくなり過ぎ、この負荷を抑えるた
めに、本発明では、前記境界粒子径の上限を2mmとす
る。粒子径2mmを超えると、そのままでも、もはや原
料層の通気に対する悪影響は軽減するからである。
An important point of the present invention is that the classifier 11 is changed from a sieve type to a rolling separation type of particles in the above process. As shown in FIG. 2, it is formed by a truncated frustoconical cylinder 2. The cylinder 2 is rotating at a predetermined speed. In this case, the raw material 1 before classification supplied near the center of the cylindrical body 2 is repeatedly rolled up and down along the wall of the cylindrical body 2. By this movement, the fine-grain side 7 of the supplied raw material 1 before classification gathers downward as shown by the arrow A in FIG. 2 and flows to the large-diameter side of the cylindrical body 2 by utilizing the inclination of the wall. On the other hand, the coarse grain side 8 gathers on the surface as shown by the arrow B,
In addition, it flows to the small diameter side of the cylindrical body 2. Therefore, outlets 12 are opened at both ends of the cylindrical body 2 and appropriate partition plates 9, 10
Is provided, the supplied raw material 1 before classification is continuously separated into one having many fine particles and one having many coarse particles, and is discharged from the cylindrical body 2. The boundary grain size between the fine grain side and the coarse grain side by this classification can be adjusted by the height of the partition plates 9 and 10 provided at the outlet 12, but in the present invention, the load of the granulator 3 arranged in the subsequent process is adjusted. Is preferably selected from the range of 0.5 to 2 mm in order to suppress the above. The particle size is 0.5 to 1.0 m.
It is more preferable that the weight is selected from the range of m because the load on the granulator can be further suppressed. Here, the lower limit of the boundary particle diameter is set to 0.5 mm. When there is a large amount of 0.5 mm or less on the coarse particle side, when the raw material becomes a sintering raw material as it is, the ventilation of the raw material layer rapidly deteriorates. Therefore, at least 0.5m
This is because it is necessary to separate and granulate in order to improve the ventilation. Further, the separation granulation exceeding the particle diameter of 2 mm excessively increases the load on the granulator. In order to suppress this load, the upper limit of the boundary particle diameter is set to 2 mm in the present invention. If the particle diameter exceeds 2 mm, the adverse effect on the ventilation of the raw material layer is reduced as it is.

【0015】加えて、本発明で、前記境界粒子径の上限
を1mm以下にすることが望ましいとしたのは、分級前
原料の一部分が造粒機の負荷となるのみで、造粒機負荷
が低減されること、さらにこの1mm以下の部分を造粒
すると、通気改善効果も大きく向上することになり、造
粒機負荷の低減及び通気改善の両方を満足するからであ
る。
In addition, in the present invention, the upper limit of the boundary particle diameter is desirably set to 1 mm or less, because only a part of the raw material before classification becomes a load of the granulator, and the load of the granulator is reduced. This is because when the portion of 1 mm or less is granulated, the effect of improving the ventilation is greatly improved, and both the reduction of the load on the granulator and the improvement of the ventilation are satisfied.

【0016】つまり、表2に示した粒子径分布を有する
分級前原料1の例で説明すると、それは、粒子径が2m
m以下は約60重量%、1mm以下は約43重量%、
0.5mm以下は約30重量%である。この分級前原料
1を分級機に供給し、境界粒子径1mmで分級すると、
その内部で転動する結果、分級時に造粒も生じる。従っ
て、上記のように、粒子径1mm以下が約43重量%存
在していても、この分級操作によって実際に1mmで分
級される量は、約10重量%になる。この程度の重量%
であれば、その後の造粒機での造粒負荷は軽く、処理費
用の大幅な増加が防止できるのである。なお、粒子径2
mm以下でも実際に分級される量は減少するが、通気改
善効果に比べて、処理費用が増加し易い。
That is, as an example of the raw material 1 before classification having the particle size distribution shown in Table 2, it is assumed that the particle size is 2 m
m or less is about 60% by weight, 1mm or less is about 43% by weight,
0.5 mm or less is about 30% by weight. When the raw material 1 before classification is supplied to a classifier and classified with a boundary particle diameter of 1 mm,
As a result of rolling inside, granulation also occurs during classification. Therefore, as described above, even if about 43% by weight of a particle diameter of 1 mm or less is present, the amount actually classified at 1 mm by this classification operation is about 10% by weight. This weight percent
Then, the granulation load in the subsequent granulator is light, and it is possible to prevent a large increase in the processing cost. In addition, particle diameter 2
Even if the diameter is less than mm, the amount actually classified is reduced, but the processing cost is liable to increase as compared with the ventilation improvement effect.

【0017】なお、上記分級機11に供給される分級前
原料1には、適切な量の水分を添加することが望まし
い。水分の添加により微粉が大きくなり、またその造粒
物の強度が向上するからである。その際、必要に応じて
結合剤(所謂バインダ)を添加しても良い。 かかる転
動分離によれば、篩式の分級に比べて分級効率は低下す
るが、目詰まりや処理能力不足が解消できるようにな
る。
It is desirable that an appropriate amount of water be added to the raw material 1 before classification supplied to the classifier 11. This is because the addition of moisture increases the size of the fine powder and improves the strength of the granulated product. At that time, a binder (a so-called binder) may be added as necessary. According to the rolling separation, the classification efficiency is lower than that of the sieve classification, but clogging and insufficient processing capacity can be eliminated.

【0018】次に、本発明では、図1の工程で使用する
造粒機3の種類を特に限定しないことにする。前記した
細粒側が3〜10mm程度の大きさに造粒できれば良い
からであり、例えば、ロール圧縮成形機、押し出し成形
機やパン・ペレタイザ等が利用できる。ここで、造粒物
の粒径を3〜10mmが望ましいとした理由は、3mm
未満では、造粒による焼結原料層の通気改善効果が小さ
く、10mmを超えだと、大きい粒子が増え過ぎ、焼結
が不十分となって、焼結歩留(製品焼結鉱/焼結原料使
用量−床敷鉱使用量)及び焼結鉱のシャッター強度(2
mの高さから鉄板上に4回落下させた後の+10mm量
で評価)が低下するからである。
Next, in the present invention, the type of the granulator 3 used in the step of FIG. 1 is not particularly limited. This is because it is only necessary to granulate the fine particles to a size of about 3 to 10 mm. For example, a roll compression molding machine, an extrusion molding machine, a bread pelletizer, or the like can be used. Here, the reason why the particle size of the granulated material is preferably 3 to 10 mm is 3 mm
If it is less than 10 mm, the effect of improving the air permeability of the sintering material layer by granulation is small, and if it is more than 10 mm, large particles increase too much and sintering becomes insufficient. Raw material usage-bedding ore usage) and sinter ore shutter strength (2
This is because the value of +10 mm after dropping four times from the height of m onto the iron plate is reduced.

【0019】さらに、本発明では、コークス粉4の添加
は、分級前原料1の分級や造粒後に行うようにした。そ
の理由は、コークス粉4が造粒物に内装されると、該コ
ークス粉4の燃焼性が低下し、燃焼帯の温度が十分に確
保できずに、焼結現象を不十分にするばかりでなく、焼
結時間も長くなり、望ましくないからである。なお、コ
ークス粉4の粒径は、事前処理時に造粒物や粗粒への付
着性を良くするため、1mm以下が望ましい。
Further, in the present invention, the coke powder 4 is added after the classification and granulation of the raw material 1 before classification. The reason is that when the coke powder 4 is contained in the granulated material, the flammability of the coke powder 4 is reduced, the temperature of the combustion zone cannot be sufficiently secured, and the sintering phenomenon becomes insufficient. In addition, the sintering time becomes longer, which is not desirable. In addition, the particle size of the coke powder 4 is desirably 1 mm or less in order to improve the adhesion to the granulated material and coarse particles during the pretreatment.

【0020】[0020]

【実施例】図1及び図2に示した装置を用い、本発明に
係る焼結原料の事前処理方法を実施し、その効果確認の
ため、DL型焼結機6で高炉用焼結鉱を製造した。その
際に使用した原料1の配合と配合後の粒度分布は、表1
及び2に示した通りであり、また円錐台形状分級機(以
下、分級機11)及び造粒機3(ロール圧縮成形機)の
仕様は、以下の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pretreatment method for a sintering raw material according to the present invention was carried out using the apparatus shown in FIGS. Manufactured. Table 1 shows the blending of raw material 1 and the particle size distribution after blending.
And 2, and the specifications of the truncated cone classifier (hereinafter, classifier 11) and the granulator 3 (roll compression molding machine) are as follows.

【0021】分級機 筒体の最大内径 : 2 m 筒体の最小内径 : 1.5 m 筒体の長さ : 4 m 筒体の回転速度 : 18 rpm造粒機 ロールの外径 : 1000 mm ロール回転速度 : 8 rpm なお、該分級前原料1の供給量は、5 トン/分であ
り、操業は8時間連続して行われた。また、分級機11
では、供給された分級前原料1に対し7重量%の水分を
添加し、仕切板9、10の高さで、分級境界の粒径を1
mmに設定した。さらに、造粒機3では、造粒物の粒径
が8mm程度になるようにした。
Maximum inner diameter of classifier cylinder: 2 m Minimum inner diameter of cylinder: 1.5 m Length of cylinder: 4 m Rotation speed of cylinder: 18 rpm Outer diameter of granulator roll: 1000 mm roll Rotation speed: 8 rpm The supply amount of the raw material 1 before classification was 5 tons / minute, and the operation was continuously performed for 8 hours. Classifier 11
Then, 7% by weight of water was added to the supplied raw material 1 before classification, and the particle size at the classification boundary was 1 at the height of the partition plates 9 and 10.
mm. Further, in the granulator 3, the particle size of the granulated product was set to about 8 mm.

【0022】かかる操業を行うことで、分級機11で
は、ほぼ定常的に原料供給量の %が1mm以下の細
粒側に排出され、残部が粗粒側へ流れた。従って、最終
的にドラム型ミキサ5を経由した焼結原料13の粒度分
布及び焼結原料層(厚みL)としての通気抵抗(差圧Δ
P/厚みL)は、表3のようになった。これに対して、
前記分級機11及び造粒機3を用いない従来の原料事前
処理方法でも操業を行った。その結果を、表3に同時に
示す。表3より、本発明に係る事前処理方法で準備した
焼結原料13の通気抵抗が、従来法による値よりも大幅
に小さくなっていることが明らかである。
By performing such an operation, in the classifier 11,% of the raw material supply amount was almost constantly discharged to the fine grain side of 1 mm or less, and the remainder flowed to the coarse grain side. Therefore, finally, the particle size distribution of the sintering raw material 13 via the drum type mixer 5 and the airflow resistance (differential pressure Δ) as the sintering raw material layer (thickness L)
P / thickness L) was as shown in Table 3. On the contrary,
The operation was also performed by the conventional raw material pretreatment method without using the classifier 11 and the granulator 3. Table 3 shows the results at the same time. From Table 3, it is clear that the ventilation resistance of the sintering raw material 13 prepared by the pretreatment method according to the present invention is significantly smaller than the value obtained by the conventional method.

【0023】[0023]

【表3】 [Table 3]

【0024】その後引き続き、これら焼結原料13は、
DL型焼結機6のパレットに連続して装入され、焼結操
業が行われた。その結果を焼結鉱の生産性及び歩留で図
3に示す。図3より、細粒の分級及び造粒を行わない従
来の事前処理方法を経由した場合に比較して、本発明に
係る事前処理方法を経由した場合の焼結鉱は、その歩留
が格段と向上し、生産性の増加が達成されることが確認
された。また、造粒による粉鉱の緻密化の効果で、焼結
鉱の強度も向上した。
Subsequently, these sintering raw materials 13
The sintering operation was performed by continuously loading the pallet of the DL type sintering machine 6. The results are shown in FIG. 3 in terms of the productivity and yield of the sinter. From FIG. 3, the yield of the sintered ore obtained through the pretreatment method according to the present invention is remarkably higher than that obtained through the conventional pretreatment method that does not perform classification and granulation of fine particles. It was confirmed that an increase in productivity was achieved. In addition, the strength of the sintered ore was improved due to the effect of densification of the fine ore by granulation.

【0025】なお、主な焼結条件は、以下の通りであっ
た。 焼結原料層の厚み(L) :520 mm パレット進行速度 :2.9 m/分 ウインド・ボックスの負圧 :1500mmH2
The main sintering conditions were as follows. Thickness (L) of sintering raw material layer: 520 mm Pallet traveling speed: 2.9 m / min Negative pressure of wind box: 1500 mmH 2 O

【0026】[0026]

【発明の効果】以上説明したように、本発明により、焼
結原料の通気性を従来より大幅に改善することができ
た。その結果、焼結鉱の生産性を従来より向上させるこ
とができた。
As described above, according to the present invention, the permeability of the sintering raw material can be greatly improved as compared with the prior art. As a result, the productivity of the sintered ore was able to be improved more than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る焼結原料の事前処理方法を実施す
る工程のフロー図である。
FIG. 1 is a flow chart of a process for carrying out a pretreatment method for a sintering raw material according to the present invention.

【図2】本発明の実施に利用する円錐台形状の分級機の
一例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of a frustum-shaped classifier used for carrying out the present invention.

【図3】本発明及び従来の事前処理法を経由した焼結原
料での焼結操業結果を比較する図である。
FIG. 3 is a diagram comparing the results of sintering operations with sintering raw materials via the present invention and a conventional pretreatment method.

【符号の説明】[Explanation of symbols]

1 原料(分級前原料) 2 円錐台形状の筒体 3 造粒機 4 コークス粉 5 ドラム型ミキサ 6 DL型焼結機(焼結機) 7 細粒原料 8 粗粒原料 9 細粒側の仕切板 10 粗粒側の仕切板 11 分級機 12 出口 13 焼結原料 DESCRIPTION OF SYMBOLS 1 Raw material (raw material before classification) 2 Frustoconical cylindrical body 3 Granulator 4 Coke powder 5 Drum mixer 6 DL type sintering machine (sintering machine) 7 Fine-grained raw material 8 Coarse-grained raw material 9 Fine-grain side partition Plate 10 Coarse-grain side partition plate 11 Classifier 12 Outlet 13 Sintering raw material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高炉用焼結鉱をドワイト・ロイド型焼結
機で製造するための原料を、ドラム型ミキサで混合する
に際し、 前記原料を、横倒した円錐台形の回転筒状体に装入して
分級し、分級された最も細粒側の粒子を造粒機内で水分
を加えて造粒し、その大径化した粒子を前記ドラム型ミ
キサで粗粒側の粒子と混合することを特徴とする焼結原
料の事前処理方法。
When mixing a raw material for producing a blast furnace sintered ore with a Dwight Lloyd type sintering machine by a drum type mixer, the raw material is charged into an inverted truncated conical rotary cylinder. Then, the classified finest particles are granulated by adding moisture in a granulator, and the large-sized particles are mixed with the coarse particles by the drum mixer. Pre-treatment method for sintering raw materials.
【請求項2】 前記原料が、鉄鉱石、石灰石、ドロマイ
ト、及び蛇紋岩の粉粒物であることを特徴とする請求項
1記載の焼結原料の事前処理方法。
2. The method for pre-treating a sintering raw material according to claim 1, wherein the raw material is a powder of iron ore, limestone, dolomite, and serpentine.
【請求項3】 前記ドラム型ミキサでさらにコークス粉
と混合することを特徴とする請求項1又は2記載の焼結
原料の事前処理方法。
3. The pretreatment method for a sintering raw material according to claim 1, wherein said drum type mixer further mixes with coke powder.
【請求項4】 前記分級を、原料の粒子径2mmを境に
行うことを特徴とする請求項1〜3いずれかに記載の焼
結原料の事前処理方法。
4. The pretreatment method for a sintering raw material according to claim 1, wherein the classification is performed at a particle diameter of the raw material of 2 mm.
【請求項5】 前記造粒機を、ロール圧縮成形機とする
ことを特徴とする請求項1〜4いずれかに記載の焼結原
料の事前処理方法。
5. The pretreatment method for a sintering raw material according to claim 1, wherein the granulator is a roll compression molding machine.
【請求項6】 前記造粒機内での造粒を、粒子径3〜1
0mmまで行うことを特徴とする請求項1〜5いずれか
記載の焼結原料の事前処理方法。
6. The granulation in the granulator is carried out with a particle diameter of 3 to 1.
The method for pre-treating a sintering raw material according to any one of claims 1 to 5, wherein the method is performed up to 0 mm.
JP3855198A 1998-02-20 1998-02-20 Pre-treatment of sintering raw material Withdrawn JPH11236628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3855198A JPH11236628A (en) 1998-02-20 1998-02-20 Pre-treatment of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3855198A JPH11236628A (en) 1998-02-20 1998-02-20 Pre-treatment of sintering raw material

Publications (1)

Publication Number Publication Date
JPH11236628A true JPH11236628A (en) 1999-08-31

Family

ID=12528439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3855198A Withdrawn JPH11236628A (en) 1998-02-20 1998-02-20 Pre-treatment of sintering raw material

Country Status (1)

Country Link
JP (1) JPH11236628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029342A1 (en) * 2005-09-08 2007-03-15 Jfe Steel Corporation Fired agglomerated ore for iron manufacture and process for producing the same
WO2018101645A1 (en) 2016-12-02 2018-06-07 주식회사 포스코 Air permeability measuring device and sintering apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029342A1 (en) * 2005-09-08 2007-03-15 Jfe Steel Corporation Fired agglomerated ore for iron manufacture and process for producing the same
WO2018101645A1 (en) 2016-12-02 2018-06-07 주식회사 포스코 Air permeability measuring device and sintering apparatus
KR20180063714A (en) 2016-12-02 2018-06-12 주식회사 포스코 Apparatus for measuring permeability and Sintering apparatus

Similar Documents

Publication Publication Date Title
AU2005219521B2 (en) Method for the production of a raw sintering mixture
US8273287B2 (en) System for the production of ore with green agglomerates containing a proportion of fines
EP3631333B1 (en) Method of operating a sinter plant
WO1994005817A1 (en) Method for producing sintered ore
JP4228694B2 (en) Method for manufacturing raw materials for sintering
JPH11236628A (en) Pre-treatment of sintering raw material
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP3247276B2 (en) Blast furnace charging method
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP3675105B2 (en) Sintering raw material processing method
JP3797184B2 (en) Method for producing sintered ore
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP7024649B2 (en) Granulation method of raw material for sintering
JPH01104723A (en) Production of sintering raw material from iron making dust
JP7024648B2 (en) Granulation method of raw material for sintering
JPH10219361A (en) Treatment of sintering raw material
JPH0633151A (en) Production of burned agglomerate
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
LU100075B1 (en) Method of Operating a Pelletizing Plant
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JP2005248271A (en) Method for granulating sintering raw material
JP3198468B2 (en) Sinter production method
JPH05148557A (en) Production of sintered ore
JP3823478B2 (en) Method for producing crude zinc oxide / lead sintered ingot
JPS63128128A (en) Manufacture of sintered ore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510