JPH1123653A - Method and apparatus for testing reliability at joint of electronic device - Google Patents

Method and apparatus for testing reliability at joint of electronic device

Info

Publication number
JPH1123653A
JPH1123653A JP18105597A JP18105597A JPH1123653A JP H1123653 A JPH1123653 A JP H1123653A JP 18105597 A JP18105597 A JP 18105597A JP 18105597 A JP18105597 A JP 18105597A JP H1123653 A JPH1123653 A JP H1123653A
Authority
JP
Japan
Prior art keywords
substrate
electronic component
joint
strain
reliability test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18105597A
Other languages
Japanese (ja)
Inventor
Toshikazu Matsuo
俊和 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18105597A priority Critical patent/JPH1123653A/en
Publication of JPH1123653A publication Critical patent/JPH1123653A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reproduce a dynamic state being produced through thermal expansion at the time of actual use of an electronic device mechanically in order to perform a reliability test of an area bonding system electronic device. SOLUTION: A board 2 mounting an electronic device 1 is chucked at a catching part 20 fixed to a tension test machine or a fatigue test machine and deformed in the direction of plane by applying a mechanical load. A reliability test can be performed at a mounting part under conditions agreeing with actual use of the electronic device 1 by deforming the board 2 in the plane direction thereby reproducing a dynamic state due to the difference of thermal expansion between an area bonding electronic device 1 and the board 2 being produced at the time of actual use of the electronic device 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品実装部の
接合信頼性を評価する電子部品接合部信頼性試験装置及
び電子部品接合部信頼性試験方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component joint reliability test apparatus and an electronic component joint reliability test method for evaluating the joint reliability of an electronic component mounting portion.

【0002】[0002]

【従来の技術】電子部品を基板に実装した後、電子部品
が基板に正しく実装されたかどうかの信頼性試験が行わ
れる。以下、従来の信頼性試験について説明する。
2. Description of the Related Art After an electronic component is mounted on a board, a reliability test is performed to determine whether the electronic component has been correctly mounted on the board. Hereinafter, a conventional reliability test will be described.

【0003】図8は従来の電子部品接合部信頼性試験装
置の全体斜視図である。図8において、1は接合部の信
頼性試験対象となる電子部品であり、ベアチップ、CS
P(Chip Scall Package)等下面に
多数の接合端子を有するエリア接合方式の電子部品であ
る。2は電子部品1が実装された基板でガラス繊維入り
エポキシ樹脂積層板等から構成されている。3は電子部
品1と基板2を電気的、機械的に接合する接合部であ
る。4は電子部品1の側面に位置し、電子部品1に強制
変位を加えるための変位作用部材であり、鉄鋼等剛性が
高い材料で構成されている。5は基板2の周辺に設けら
れた、基板2を固定するための固定部材であり、鉄鋼等
剛性が高い材料で構成されている。6は基板2上に設け
られ、基板2と外部装置とを電気的に接合するためのコ
ネクタである。7は基板2上に形成され、接合部3とコ
ネクタ6とを電気的に接合する配線パターンであり、銅
等で形成されている。8は電子部品1、及び接合部3の
電気的性能を測定するための電気性能測定装置である。
FIG. 8 is an overall perspective view of a conventional electronic component joint reliability test apparatus. In FIG. 8, reference numeral 1 denotes an electronic component to be subjected to a reliability test of a joint, and includes a bare chip and a CS.
This is an area-joining type electronic component having a large number of joining terminals on the lower surface such as P (Chip Scale Package). Reference numeral 2 denotes a substrate on which the electronic component 1 is mounted, which is made of a glass fiber-containing epoxy resin laminate or the like. Reference numeral 3 denotes a joining portion that electrically and mechanically joins the electronic component 1 and the substrate 2. Reference numeral 4 denotes a displacement acting member located on a side surface of the electronic component 1 for forcibly displacing the electronic component 1, and is made of a material having high rigidity such as steel. Reference numeral 5 denotes a fixing member provided around the substrate 2 for fixing the substrate 2, and is made of a highly rigid material such as steel. Reference numeral 6 denotes a connector provided on the substrate 2 for electrically connecting the substrate 2 to an external device. Reference numeral 7 denotes a wiring pattern formed on the substrate 2 for electrically connecting the joint 3 and the connector 6, and is made of copper or the like. Reference numeral 8 denotes an electrical performance measuring device for measuring the electrical performance of the electronic component 1 and the joint 3.

【0004】図9は従来の電子部品接合部信頼性試験装
置の強制変位作用時の側断面図である。図9において、
9は接合部3の内部に設けられ、電子部品1と基板2と
を電気的、機械的に接合するための半田である。10は
電子部品1、基板2、半田9の間の隙間を封止するため
の樹脂で、エポキシ等で構成されている。但し、接合部
3は半田9による接合のみで樹脂10を封止しない場合
や、樹脂10の代わりに、ニッケル等の導電性材料を混
入した樹脂を使用し、半田9を使用しない場合もある。
FIG. 9 is a side sectional view of a conventional electronic component joint reliability test apparatus during a forced displacement action. In FIG.
Reference numeral 9 denotes a solder provided inside the joint portion 3 for electrically and mechanically joining the electronic component 1 and the substrate 2. Reference numeral 10 denotes a resin for sealing a gap between the electronic component 1, the substrate 2, and the solder 9, and is made of epoxy or the like. However, the bonding portion 3 may not be sealed with the resin 10 only by bonding with the solder 9, or may be a resin mixed with a conductive material such as nickel instead of the resin 10, and may not use the solder 9.

【0005】以上のように構成された電子部品接合部信
頼性試験装置について、以下にその動作を説明する。図
8、図9において、基板2は固定部材5によって固定さ
れている。電子部品の実使用時には、電子部品の発熱、
又は使用雰囲気温度の上昇等により、電子部品1と基板
2の線膨張係数の差によって接合部3に熱応力等の力学
的負荷が生じ、熱疲労破損をする。この力学的負荷を機
械的に再現する目的で、変位作用部材4によって電子部
品1に対して水平方向に強制変位を与える。
[0005] The operation of the electronic component joint reliability test apparatus configured as described above will be described below. 8 and 9, the substrate 2 is fixed by a fixing member 5. When electronic components are actually used, heat generated by the electronic components,
Alternatively, a mechanical load such as a thermal stress is generated in the joint 3 due to a difference in a linear expansion coefficient between the electronic component 1 and the substrate 2 due to an increase in a use atmosphere temperature, and the thermal fatigue damage occurs. For the purpose of mechanically reproducing the mechanical load, the displacement action member 4 applies a forced displacement to the electronic component 1 in the horizontal direction.

【0006】図10は従来の電子部品接合部信頼性試験
装置の強制変位作用時の側断面図である。図10におい
て、電子部品1に水平方向の強制変位を与えると、電子
部品1の水平方向の変位に伴って、接合部3を形成する
半田9、樹脂10に一様なせん断変形が生じ、応力など
の力学的な負荷が作用する。電子部品1の実使用時に
は、電源ON,OFFや雰囲気温度の変化によって電子
部品1の温度が変化するため、電子部品1に与えられる
水平方向の強制変位を繰り返し作用させる。強制変位の
繰り返し数の増加と共に、接合部3を形成する半田9、
樹脂10が疲労破損を生じる。信頼性試験中の疲労破損
は、接合部3の電気抵抗値の増加等を、配線パターン
7、コネクタ6を介して電気性能測定装置8によって測
定することで評価する。
FIG. 10 is a side cross-sectional view of a conventional electronic component joint reliability test apparatus during a forced displacement action. In FIG. 10, when a forced displacement in the horizontal direction is given to the electronic component 1, the solder 9 and the resin 10 forming the joint 3 are uniformly sheared by the horizontal displacement of the electronic component 1, resulting in a stress. And other mechanical loads. When the electronic component 1 is actually used, the temperature of the electronic component 1 changes due to power ON / OFF and changes in the ambient temperature, so that the horizontal forced displacement applied to the electronic component 1 is repeatedly applied. With the increase in the number of repetitions of the forced displacement, the solder 9 forming the joint 3,
Resin 10 causes fatigue failure. The fatigue damage during the reliability test is evaluated by measuring an increase in the electric resistance value of the joint 3 and the like by the electric performance measuring device 8 via the wiring pattern 7 and the connector 6.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記従
来の構成では、電子部品に水平方向の強制変位を与える
ため、接合部全体が一様なせん断変形をし、実使用時に
生じる部品と基板の熱膨張差による接合部の力学的状態
を再現できていないという問題点があった。
However, in the above-described conventional structure, the electronic parts are subjected to a forced displacement in the horizontal direction, so that the entire joint is uniformly sheared and deformed, and the heat generated between the parts and the substrate during actual use is reduced. There was a problem that the mechanical state of the joint due to the difference in expansion could not be reproduced.

【0008】本発明は上記した課題に鑑み、電子部品と
基板との接合部に、熱膨張差によって生じる力学的状態
を再現することができる電子部品接合部信頼性試験装置
及び電子部品接合部信頼性試験方法を提供することを目
的とする。
SUMMARY OF THE INVENTION In view of the above-described problems, the present invention provides an electronic component joint reliability test apparatus and an electronic component joint reliability which can reproduce a mechanical state caused by a difference in thermal expansion at a joint between an electronic component and a substrate. The purpose is to provide a sex test method.

【0009】[0009]

【課題を解決するための手段】本発明の電子部品接合部
信頼性試験装置は、電子部品が実装された基板の対向す
る縁部をチャックして基板に面方向の機械的荷重を付与
するつかみ部と、基板の配線パターンと測定装置とを電
気的に接続するコネクタとを備えた。この構成により、
電子部品と基板の接合部に熱膨張差によって生じる力学
的状態を再現し、接合部の信頼性の測定試験を行うこと
が出来る。
According to the present invention, there is provided a reliability test apparatus for a joint of an electronic component, which grips opposing edges of a substrate on which the electronic component is mounted and applies a mechanical load in a plane direction to the substrate. And a connector for electrically connecting the wiring pattern of the substrate and the measuring device. With this configuration,
The mechanical state caused by the difference in thermal expansion at the joint between the electronic component and the substrate can be reproduced, and a measurement test of the reliability of the joint can be performed.

【0010】[0010]

【発明の実施の形態】請求項1に記載の発明は、電子部
品が実装された基板の対向する縁部をチャックして基板
に面方向の機械的荷重を付与するつかみ部と、基板の配
線パターンと測定装置とを電気的に接続するコネクタと
を有する。この構成により、電子部品と基板との接合部
に、熱膨張差によって生じる力学的負荷を再現すること
ができる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a substrate on which an electronic component is mounted, according to a first embodiment of the present invention; It has a connector for electrically connecting the pattern and the measuring device. With this configuration, a mechanical load caused by a difference in thermal expansion can be reproduced at a joint between the electronic component and the substrate.

【0011】請求項2に記載の発明は、電子部品が実装
された基板の対向する縁部をつかみ部でチャックし、機
械的荷重を付与して基板を面方向に変形させた状態で、
電子部品と基板の接合部の抵抗値を測定する。この構成
により、電子部品と基板の接合部に熱膨張差によって生
じる力学的状態を再現し、接合部の信頼性の測定試験を
行うことができる。
According to a second aspect of the present invention, in a state where opposing edges of a substrate on which electronic components are mounted are chucked with a grip portion, and a mechanical load is applied to deform the substrate in a plane direction,
Measure the resistance of the joint between the electronic component and the board. With this configuration, it is possible to reproduce a dynamic state caused by a difference in thermal expansion at a joint between the electronic component and the substrate, and to perform a measurement test of the reliability of the joint.

【0012】請求項3に記載の発明は、前記基板の配線
パターンの配線方向を、前記基板の変形時において、前
記機械的荷重の付与方向に対して所定の角度をなす方向
とした。この構成により、配線パターンの伸びによる配
線パターン内での電気抵抗値の変化を防止するといる作
用を有する。
According to a third aspect of the present invention, the wiring direction of the wiring pattern of the substrate is a direction that forms a predetermined angle with respect to the direction in which the mechanical load is applied when the substrate is deformed. This configuration has an effect of preventing a change in electric resistance value in the wiring pattern due to the expansion of the wiring pattern.

【0013】請求項4に記載の発明は、前記基板が複数
のパターンニング層を有する基板であって、前記基板の
いずれかの層にそれぞれ異なる方向にパターンニング形
成された複数のひずみゲージにより、異なった方向のひ
ずみを測定するようにした。この構成により、基板上の
任意の点の複数の方向のひずみを同時に測定するという
作用を有する。
According to a fourth aspect of the present invention, the substrate is a substrate having a plurality of patterning layers, and a plurality of strain gauges formed on one of the layers by patterning in different directions. The strain in different directions was measured. This configuration has an effect of simultaneously measuring strains at arbitrary points on the substrate in a plurality of directions.

【0014】(実施の形態1)図1は本発明の実施の形
態1における電子部品接合部信頼性試験装置の全体斜視
図である。図1において、電子部品1、基板2、接合部
3、コネクタ6、配線パターン7、電気性能測定装置8
であり、これらは従来例と同じである。20は基板2の
対向する2つの縁部をチャックし、機械的荷重によって
基板2の面方向に変形を加えるためのつかみ部である。
つかみ部20は鉄鋼等の剛性が高い材料で構成されてお
り、既存の疲労試験機、又は引張試験機等に取り付けら
れる。
(Embodiment 1) FIG. 1 is an overall perspective view of an electronic component joint reliability test apparatus according to Embodiment 1 of the present invention. In FIG. 1, an electronic component 1, a board 2, a joint 3, a connector 6, a wiring pattern 7, and an electrical performance measuring device 8
These are the same as the conventional example. Reference numeral 20 denotes a gripper for chucking two opposing edges of the substrate 2 and applying a deformation in the surface direction of the substrate 2 by a mechanical load.
The grip 20 is made of a highly rigid material such as steel, and is attached to an existing fatigue tester, tensile tester, or the like.

【0015】図2は本発明の実施の形態1における電子
部品接合部信頼性試験装置の基板変形前の側断面図、図
3は(a)同基板変形後の側断面図、図3(b)は同基
板変形後の一部拡大側断面図である。図2、図3におい
て、半田9、樹脂10は従来例と同じである。また接合
部3についても従来例と同様に、半田9による接合のみ
で樹脂10を封止しない場合や、樹脂10の代わりに、
ニッケル等の導電性材料を混入した樹脂を使用し、半田
9を使用しない場合もある。
FIG. 2 is a side cross-sectional view of the electronic component joint reliability test apparatus according to the first embodiment of the present invention before the substrate is deformed, FIG. 3A is a side cross-sectional view after the substrate is deformed, and FIG. () Is a partially enlarged side sectional view after the substrate deformation. 2 and 3, the solder 9 and the resin 10 are the same as in the conventional example. Also, as in the conventional example, the joint 3 is not sealed with the resin 10 only by the solder 9, or instead of the resin 10,
In some cases, a resin mixed with a conductive material such as nickel is used, and the solder 9 is not used.

【0016】以上のように構成された電子部品接合部信
頼性試験装置について、以下にその動作を説明する。基
板2はつかみ部20によってつかまれている。つかみ部
20を取り付けている疲労試験機、又は引長試験機等を
作動させると、つかみ部20が基板の面方向に引長、又
は圧縮等、機械的荷重を与える。
The operation of the thus constructed electronic part joint reliability test apparatus will be described below. The substrate 2 is gripped by the grip portion 20. When a fatigue tester or a tensile tester to which the grip 20 is attached is operated, the grip 20 applies a mechanical load such as elongation or compression in the surface direction of the substrate.

【0017】図3(a)は基板変形時の側断面図、図3
(b)は同一部拡大の側断面図である。図3において、
与えられた機械的荷重によって、基板2は面方向に変形
し、基板2は荷重方向に一様な垂直ひずみを生じる。基
板2の変形に伴って、接合部3を形成する半田9、樹脂
10はせん断変形をする。この際、電子部品1の中心か
ら荷重方向に沿った距離xによってせん断ひずみγの大
きさは異なる。即ちx1<x2のときγ1<γ2とな
り、熱膨張による力学的状態を再現することができる。
FIG. 3A is a side sectional view when the substrate is deformed.
(B) is a side sectional view of the same part enlarged. In FIG.
Due to the applied mechanical load, the substrate 2 is deformed in the plane direction, and the substrate 2 generates a uniform vertical strain in the load direction. As the substrate 2 deforms, the solder 9 and the resin 10 forming the joint 3 undergo shear deformation. At this time, the magnitude of the shear strain γ differs depending on the distance x along the load direction from the center of the electronic component 1. That is, when x1 <x2, γ1 <γ2, and a dynamic state due to thermal expansion can be reproduced.

【0018】電子部品1の実使用時には、電源ON,O
FFや雰囲気の変化によって電子部品の温度が変化する
ため、基板2を繰り返し変形させる。基板2の変形の繰
り返し数の増加と共に、実装部3を形成する半田9、樹
脂10が疲労破損を生じる。信頼性試験中の疲労破損
は、従来例と同様に、接合部3の電気抵抗値との増加等
を、配線パターン7、コネクタ6を介して電気性能測定
装置8によって測定することで評価する。
When the electronic component 1 is actually used, the power is turned on,
Since the temperature of the electronic component changes due to the change of the FF or the atmosphere, the substrate 2 is repeatedly deformed. As the number of repetitions of the deformation of the substrate 2 increases, the solder 9 and the resin 10 forming the mounting portion 3 cause fatigue damage. The fatigue failure during the reliability test is evaluated by measuring an increase in the electric resistance value of the joint 3 and the like with the electric performance measuring device 8 via the wiring pattern 7 and the connector 6 as in the conventional example.

【0019】なお、以上の説明では接合部3が半田9と
樹脂10で構成された場合について説明したが、半田9
による接合のみで樹脂10を封止しない場合や、樹脂1
0の代わりに、ニッケル等の導電性材料を混入した樹脂
10を使用し、半田9を使用しない場合に対しても同様
に実施可能である。
In the above description, the case where the joint 3 is made of the solder 9 and the resin 10 has been described.
When the resin 10 is not sealed only by bonding with
The present invention can be similarly applied to a case where a resin 10 mixed with a conductive material such as nickel is used instead of 0 and the solder 9 is not used.

【0020】(実施の形態2)更に、本発明の他の実施
の形態として、配線パターン7を、基板2の変形時に垂
直ひずみが生じない方向に配線した場合について説明す
る。
(Embodiment 2) Further, as another embodiment of the present invention, a case where the wiring pattern 7 is wired in a direction in which no vertical distortion occurs when the substrate 2 is deformed will be described.

【0021】図4は本発明の実施の形態2における電子
部品接合部信頼性試験装置の上面図である。図4におい
て、21は基板2上で荷重方向をx軸、荷重と垂直方向
をy軸とした場合に、x軸と角θをなす方向に配線され
た配線パターンであり、銅などで構成されている。
FIG. 4 is a top view of an electronic component joint reliability test apparatus according to Embodiment 2 of the present invention. In FIG. 4, reference numeral 21 denotes a wiring pattern wired in a direction forming an angle θ with the x-axis when the load direction is the x-axis and the load and the vertical direction are the y-axis on the substrate 2, and is made of copper or the like. ing.

【0022】角θは垂直ひずみが生じない方向の角度で
あり、基板2を等方等質の弾性体と仮定し、x方向のみ
に一様な垂直応力が作用した場合には基板2のポアソン
比をvとして、cos2θ=(v−1)/(v+1)を
満足するθで与えられる。ガラス繊維入りエポキシ樹脂
基板の場合は、θ=61°を中心として、±2°以内が
好ましい。
The angle θ is an angle in a direction in which no vertical strain is generated. Assuming that the substrate 2 is an isotropic homogeneous elastic body, when a uniform vertical stress acts only in the x direction, the Poisson When the ratio is v, it is given by θ that satisfies cos2θ = (v−1) / (v + 1). In the case of a glass fiber-containing epoxy resin substrate, the angle is preferably within ± 2 ° around θ = 61 °.

【0023】以上のように構成された電子部品接合部信
頼性試験装置について、以下にその動作を説明する。信
頼性試験中の疲労破損は、接合部3の電気抵抗値の増加
等を、配線パターン21、コネクタ6を介して電気性能
測定装置8によって測定することで評価する。信頼性試
験中の荷重作用時は、基板2に対してx方向にのみ荷重
を加えると、基板2はx方向に引長方向のひずみが生
じ、y方向には圧縮方向のひずみが生じる。このとき角
θ方向には垂直ひずみを生じないため、θ方向に配線さ
れた配線パターン21は配線方向の寸法変化を生じな
い。このため、基板2の変形時に配線パターン21の伸
びによる配線パターン21内での電気抵抗値の変化を防
止する。
The operation of the electronic component joint reliability test apparatus configured as described above will be described below. The fatigue failure during the reliability test is evaluated by measuring an increase in the electric resistance value of the joint 3 by the electric performance measuring device 8 via the wiring pattern 21 and the connector 6. When a load is applied to the substrate 2 only in the x direction during the application of a load during the reliability test, the substrate 2 undergoes strain in the elongation direction in the x direction and strain in the compression direction in the y direction. At this time, since vertical distortion does not occur in the angle θ direction, the wiring pattern 21 wired in the θ direction does not cause a dimensional change in the wiring direction. Therefore, when the substrate 2 is deformed, a change in the electric resistance value in the wiring pattern 21 due to the extension of the wiring pattern 21 is prevented.

【0024】(実施の形態3)図5は本発明の実施の形
態3における電子部品接合部信頼性試験装置の裏面図で
ある。図5において、22は基板2上の電子部品1の裏
側に設けられ、基板2の荷重方向のひずみを検出するた
めのひずみゲージであり、銅などによって基板2上に直
接パターンニングされている。23はひずみゲージ22
が検出したひずみの値を測定するためのひずみ計測装置
である。
(Embodiment 3) FIG. 5 is a rear view of an electronic component joint reliability test apparatus according to Embodiment 3 of the present invention. In FIG. 5, reference numeral 22 denotes a strain gage provided on the back side of the electronic component 1 on the substrate 2 for detecting a strain in the load direction of the substrate 2 and is directly patterned on the substrate 2 by copper or the like. 23 is a strain gauge 22
Is a strain measuring device for measuring the value of the detected strain.

【0025】以上のように構成された電子部品接合部信
頼性試験装置について、以下にその動作を説明する。信
頼性試験中、基板2に荷重を加え、基板2にひずみが生
じると、ひずみゲージ22が荷重方向のひずみを検出
し、そのひずみの値は、配線パターン21、コネクタ6
を介して、ひずみ計測装置23によって測定される。従
って、基板2に生じるひずみを計測するための、ひずみ
ゲージ22が不要になる。更に基板2を多層基板とし、
多層基板内層にもひずみゲージ22を設けた場合につい
て説明する。
The operation of the electronic component joint reliability test apparatus configured as described above will be described below. When a load is applied to the board 2 during the reliability test and a strain is generated in the board 2, the strain gauge 22 detects the strain in the load direction, and the value of the strain is determined by the wiring pattern 21 and the connector 6.
Is measured by the strain measuring device 23 via Therefore, the strain gauge 22 for measuring the strain generated in the substrate 2 becomes unnecessary. Further, the substrate 2 is a multilayer substrate,
The case where the strain gauge 22 is provided also on the inner layer of the multilayer substrate will be described.

【0026】図6は本発明の実施の形態3における電子
部品接合部信頼性試験装置の多層基板内層透視図であ
り、図6(a)は多層基板内層、図6(b)は多層基板
裏面である。24はその内層にもパターンニングを可能
とするために用いられる多層基板であり、ガラス繊維入
りエポキシ樹脂積層板等から構成されている。25は多
層基板24の内層において、多層基板24の板厚方向の
電子部品1、ひずみゲージ22を通る直線上に設けられ
た、荷重と垂直方向のひずみを検出するためのひずみゲ
ージであり、ひずみゲージ22と同様に、銅などによっ
て多層基板24の内層に直接パターンニングされてい
る。ひずみゲージ22とひずみゲージ25は、板厚方向
の直線上にパターンニングされており、互いに異った方
向のひずみを測定する。
FIG. 6 is a perspective view of an inner layer of a multilayer substrate of an electronic component joint reliability test apparatus according to Embodiment 3 of the present invention. FIG. 6 (a) is an inner layer of the multilayer substrate, and FIG. It is. Reference numeral 24 denotes a multi-layer substrate used for enabling patterning of the inner layer, and is made of a glass fiber-containing epoxy resin laminate or the like. Reference numeral 25 denotes a strain gauge provided on a straight line passing through the electronic component 1 and the strain gauge 22 in the thickness direction of the multilayer board 24 in the inner layer of the multilayer board 24 to detect a load and a strain in a vertical direction. Like the gauge 22, the inner layer of the multilayer substrate 24 is directly patterned by copper or the like. The strain gauge 22 and the strain gauge 25 are patterned on a straight line in the thickness direction, and measure strains in directions different from each other.

【0027】以上のように構成された電子部品接合部信
頼性試験装置について、以下にその動作を説明する。信
頼性試験中、多層基板24に荷重を加え、多層基板24
にひずみが生じるとひずみゲージ22が荷重方向のひず
みを検出し、ひずみゲージ25が荷重と垂直方向のひず
みを検出する。
The operation of the thus configured electronic component joint reliability test apparatus will be described below. During the reliability test, a load is applied to the multilayer substrate 24 to
When the strain occurs, the strain gauge 22 detects the strain in the load direction, and the strain gauge 25 detects the strain in the direction perpendicular to the load.

【0028】ひずみゲージ22,25から検出されたひ
ずみは、配線パターン21、コネクタ6を介して、ひず
み計測装置23によって同時にひずみの値が測定され
る。ひずみゲージ22,25は多層基板24の被測定方
向に対して板厚方向に一直線上に位置しているため、被
測定個所の複数の方向のひずみを同時に測定できる。基
板2、多層基板24に作用しているひずみの値から接合
部3に作用しているひずみ、又は応力を算出する場合
は、基板2、多層基板24に生じたひずみを境界条件と
し、有限要素方等、数値解析手法を用いる。なお、以上
の説明はひずみゲージ22を多層基板裏面に設けた場合
についてであるが、ひずみゲージ22,25とも多層基
板内層に設けた場合についても同様に実施可能である。
The strain detected from the strain gauges 22 and 25 is simultaneously measured by the strain measuring device 23 via the wiring pattern 21 and the connector 6. Since the strain gauges 22 and 25 are located on a straight line in the thickness direction with respect to the measurement direction of the multilayer substrate 24, strains in a plurality of directions at the measurement location can be measured simultaneously. When calculating the strain or the stress acting on the joint 3 from the value of the strain acting on the substrate 2 and the multilayer substrate 24, the strain generated in the substrate 2 and the multilayer substrate 24 is used as a boundary condition, and the finite element Use a numerical analysis method. Although the above description is about the case where the strain gauge 22 is provided on the back surface of the multilayer substrate, the same can be applied to the case where both the strain gauges 22 and 25 are provided on the inner layer of the multilayer substrate.

【0029】(実施の形態4)図7は本発明の実施の形
態4における電子部品接合部信頼性試験装置の透視図で
ある。図7において、26は電子部品1が実装された基
板であり基板2と同様にガラス繊維入りエポキシ樹脂積
層板等から構成されている。基板26は基板幅Aがつか
み部20の幅より十分大きくなっており、かつ、つかみ
部20からひずみゲージ22間までの距離Bと基板幅A
との関係A<Bとなるように形成されている。27はつ
かみ部20の両脇に位置する低ひずみ領域である。つか
み部20の両脇はサンブナンの定理により作用する応
力、及びひずみが小さい。コネクタ6は低ひずみ領域2
7内に設けられている。配線パターン21は、全て、実
施の形態2で述べた角θで配線されている。A<Bであ
るため、ひずみゲージ22からコネクタ6まで一本の直
線でパターンを配線できない場合は、角θで配線された
パターンの組合せで配線パターン21を形成する。ガラ
ス繊維入りエポキシ樹脂基板の場合は、θ=61°を中
心にして、±2°以内が好ましい。
(Embodiment 4) FIG. 7 is a perspective view of an electronic component joint reliability test apparatus according to Embodiment 4 of the present invention. In FIG. 7, reference numeral 26 denotes a substrate on which the electronic component 1 is mounted, which is made of a glass fiber-containing epoxy resin laminate or the like, like the substrate 2. In the substrate 26, the substrate width A is sufficiently larger than the width of the grip portion 20, and the distance B between the grip portion 20 and the strain gauge 22 and the substrate width A
Are formed so as to satisfy the relationship A <B. Reference numeral 27 denotes a low strain region located on both sides of the grip portion 20. Both sides of the grip portion 20 have small stress and strain acting according to the Saint-Venant's theorem. Connector 6 is in low strain area 2
7. The wiring patterns 21 are all wired at the angle θ described in the second embodiment. Since A <B, if a pattern cannot be wired with a single straight line from the strain gauge 22 to the connector 6, the wiring pattern 21 is formed by combining the patterns wired at the angle θ. In the case of a glass fiber-containing epoxy resin substrate, the angle is preferably within ± 2 ° around θ = 61 °.

【0030】以上のように構成された電子部品接合部信
頼性試験装置について、以下にその動作を説明する。信
頼性試験中の疲労破損は、接合部3の電気抵抗値の増加
等を、配線パターン21、コネクタ6を介して電気性能
測定装置8によって測定することで評価する。同時に、
ひずみゲージ22が基板26の荷重方向のひずみを検出
し、そのひずみの値は、配線パターン21、コネクタ6
を介して、ひずみ計測装置23によって測定される。基
板26の両端に荷重が作用した場合A<Bであるので、
サンブナンの定理によりひずみゲージ22が設けられた
部分には荷重方向に一様な垂直応力が生じる。このた
め、ひずみゲージ22でひずみを検出する領域内でひず
みが一様になるという作用を有する。また、コネクタ6
は低ひずみ領域27に設けられているので、コネクタ6
と基板26の接合部に生じる力学的負荷が小さくなると
いう作用を有する。なお、実施の形態3で説明したよう
に、基板26を多層基板とし、多層基板内層にもひずみ
ゲージを設けた場合についても同様に実施可能である。
The operation of the electronic component joint reliability test apparatus configured as described above will be described below. The fatigue failure during the reliability test is evaluated by measuring an increase in the electric resistance value of the joint 3 by the electric performance measuring device 8 via the wiring pattern 21 and the connector 6. at the same time,
The strain gauge 22 detects the strain in the load direction of the substrate 26, and the value of the strain is represented by the wiring pattern 21, the connector 6
Is measured by the strain measuring device 23 via Since A <B when a load is applied to both ends of the substrate 26,
According to Saint-Venant's theorem, a uniform vertical stress is generated in a portion where the strain gauge 22 is provided in the load direction. Therefore, the strain gauge 22 has an effect that the strain becomes uniform in a region where the strain is detected. In addition, connector 6
Is provided in the low strain region 27,
Has the effect of reducing the mechanical load generated at the joint between the substrate and the substrate 26. Note that, as described in the third embodiment, a case where the substrate 26 is a multilayer substrate and a strain gauge is also provided in the inner layer of the multilayer substrate can be similarly implemented.

【0031】[0031]

【発明の効果】以上のように本発明は、エリア接合部品
が実装された基板を、機械的荷重によって基板の面方向
に変形させることによって、エリア接合部品と基板との
接合部に熱膨張差によって生じる力学的負荷を再現可能
である。従って、電子部品の実使用時に即した条件の実
装部信頼性試験を行うことができ、実装部高信頼化が可
能となる。更に、基板の配線パターンの配線方向を、基
板の変形時において、垂直ひずみが生じない方向とした
ことによって、配線パターンの伸びによる配線パターン
内での電気抵抗値の変化を防止することが可能である。
従って、純粋に電子部品、及び接合部の電気性能の低下
を測定でき、測定精度の向上が図れる。
As described above, according to the present invention, the substrate on which the area bonding component is mounted is deformed in the plane direction of the substrate by a mechanical load, so that the thermal expansion difference is generated at the bonding portion between the area bonding component and the substrate. The mechanical loads caused by the phenomena can be reproduced. Therefore, it is possible to perform a mounting part reliability test under conditions suitable for the actual use of the electronic component, and it is possible to increase the mounting part reliability. Further, by setting the wiring direction of the wiring pattern of the substrate to a direction in which vertical distortion does not occur when the substrate is deformed, it is possible to prevent a change in the electric resistance value in the wiring pattern due to the expansion of the wiring pattern. is there.
Therefore, it is possible to purely measure the decrease in the electrical performance of the electronic component and the junction, and to improve the measurement accuracy.

【0032】また更には、基板として多層基板を用い、
多層基板の表面、裏面、内層の板厚方向の直線上に少な
くとも2つ以上のパターンニングによって形成されたひ
ずみゲージがあり、それらのひずみゲージはそれぞれ異
なった方向のひずみを測定するように配置されたことに
よって、基板上の任意の点の複数の方向のひずみを同時
に測定可能である。従って、接合部に作用する応力、ひ
ずみ等を数値解析する際に必要な境界条件等を正確に得
ることができ、接合部の正確な応力、又はひずみの評価
が可能になる。
Further, a multilayer substrate is used as the substrate,
There are strain gauges formed by patterning of at least two or more on the straight line in the thickness direction of the front, back and inner layers of the multilayer substrate, and these strain gauges are arranged to measure strains in different directions. As a result, it is possible to simultaneously measure strains in a plurality of directions at an arbitrary point on the substrate. Therefore, it is possible to accurately obtain the boundary conditions and the like required when numerically analyzing the stress, strain, and the like acting on the joint, and to accurately evaluate the stress or strain of the joint.

【0033】また更には、配線パターンと外部の測定装
置とを電気的に接続するコネクタを、基板上のつかみ部
の両脇付近の低ひずみ領域に配置することにより、コネ
クタと基板との接合部の疲労破損を防止することが可能
である。従って、信頼性試験中のコネクタ接合部の断線
が生じず、信頼度の高い実装信頼性試験が可能となる。
Still further, a connector for electrically connecting the wiring pattern and an external measuring device is arranged in a low strain area near both sides of a grip on the board, so that a joint between the connector and the board is provided. It is possible to prevent fatigue damage. Therefore, disconnection of the connector joint portion does not occur during the reliability test, and a highly reliable mounting reliability test can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における電子部品接合部
信頼性試験装置の全体斜視図
FIG. 1 is an overall perspective view of an electronic component joint reliability test apparatus according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における電子部品接合部
信頼性試験装置の基板変形前の側断面図
FIG. 2 is a side cross-sectional view of an electronic component joint reliability test apparatus according to Embodiment 1 of the present invention before substrate deformation.

【図3】(a)本発明の実施の形態1における電子部品
接合部信頼性試験装置の基板変形後の側断面図 (b)本発明の実施の形態1における電子部品接合部信
頼性試験装置の基板変形後の一部拡大側断面図
FIG. 3A is a side cross-sectional view of the electronic component joint reliability test apparatus according to the first embodiment of the present invention after the substrate is deformed. FIG. 3B is an electronic component joint reliability test apparatus according to the first embodiment of the present invention. Partially enlarged side sectional view after deformation of the substrate

【図4】本発明の実施の形態2における電子部品接合部
信頼性試験装置の上面図
FIG. 4 is a top view of an electronic component joint reliability test apparatus according to Embodiment 2 of the present invention.

【図5】本発明の実施の形態3における電子部品接合部
信頼性試験装置の裏面図
FIG. 5 is a back view of an electronic component joint reliability test apparatus according to Embodiment 3 of the present invention.

【図6】(a)本発明の実施の形態3における電子部品
接合部信頼性試験装置の多層基板内層透視図 (b)本発明の実施の形態3における電子部品接合部信
頼性試験装置の多層基板内層透視図
FIG. 6A is a perspective view of an inner layer of a multilayer substrate of an electronic component joint reliability test apparatus according to a third embodiment of the present invention. FIG. 6B is a perspective view of the electronic component joint reliability test apparatus according to the third embodiment of the present invention. Substrate inner layer perspective view

【図7】本発明の実施の形態4における電子部品接合部
信頼性試験装置の透視図
FIG. 7 is a perspective view of an electronic component joint reliability test apparatus according to a fourth embodiment of the present invention.

【図8】従来の電子部品接合部信頼性試験装置の全体斜
視図
FIG. 8 is an overall perspective view of a conventional electronic component joint reliability test apparatus.

【図9】従来の電子部品接合部信頼性試験装置の強制変
位作用時の側断面図
FIG. 9 is a side cross-sectional view of a conventional electronic component joint reliability test apparatus during a forced displacement action.

【図10】従来の電子部品接合部信頼性試験装置の強制
変位作用時の側断面図
FIG. 10 is a side cross-sectional view of a conventional electronic component joint reliability test apparatus during a forced displacement action.

【符号の説明】[Explanation of symbols]

1 電子部品 2 基板 3 接合部 4 変位作用部材 5 固定部材 6 コネクタ 7 配線パターン 8 電気性能測定装置 9 半田 10 樹脂 20 つかみ部 21 配線パターン 22 ひずみゲージ 23 ひずみ計測装置 24 多層基板 25 ひずみゲージ 26 基板 27 低ひずみ領域 REFERENCE SIGNS LIST 1 electronic component 2 board 3 joint 4 displacement action member 5 fixing member 6 connector 7 wiring pattern 8 electrical performance measuring device 9 solder 10 resin 20 gripping portion 21 wiring pattern 22 strain gauge 23 strain measuring device 24 multilayer substrate 25 strain gauge 26 substrate 27 Low strain region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電子部品が実装された基板の対向する縁部
をチャックして基板に面方向の機械的荷重を付与するつ
かみ部と、基板の配線パターンと測定装置とを電気的に
接続するコネクタとを有することを特徴とする電子部品
接合部信頼性試験装置。
An electrical connection is made between a grip portion for chucking opposing edges of a substrate on which electronic components are mounted and applying a mechanical load in a plane direction to the substrate, a wiring pattern of the substrate, and a measuring device. An electronic component joint reliability test apparatus having a connector.
【請求項2】電子部品が実装された基板の対向する縁部
をつかみ部でチャックし、機械的荷重を付与して基板を
面方向に変形させた状態で、電子部品と基板の接合部の
抵抗値を測定することを特徴とする電子部品接合部信頼
性試験方法。
2. An electronic device according to claim 1, further comprising: gripping an opposing edge of the substrate on which the electronic component is mounted with a grip portion; applying a mechanical load to the substrate to deform the substrate in a plane direction; A method for testing the reliability of a joint of an electronic component, comprising measuring a resistance value.
【請求項3】前記基板の配線パターンの配線方向を、前
記基板の変形時において、前記機械的荷重の付与方向に
対して所定の角度をなす方向としたことを特徴とする請
求項2記載の電子部品接合部信頼性試験方法。
3. A wiring pattern according to claim 2, wherein the wiring direction of the wiring pattern of the substrate is a direction forming a predetermined angle with respect to the direction of applying the mechanical load when the substrate is deformed. Test method for reliability of joints of electronic components.
【請求項4】前記基板が複数のパターンニング層を有す
る基板であって、前記基板のいずれかの層にそれぞれ異
なる方向にパターンニング形成された複数のひずみゲー
ジにより、異なった方向のひずみを測定することを特徴
とする請求項2記載の電子部品接合部信頼性試験方法。
4. A substrate having a plurality of patterning layers, wherein strains in different directions are measured by a plurality of strain gauges formed on one of the layers by patterning in different directions. 3. The method for testing the reliability of a joint of an electronic component according to claim 2, wherein
JP18105597A 1997-07-07 1997-07-07 Method and apparatus for testing reliability at joint of electronic device Pending JPH1123653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18105597A JPH1123653A (en) 1997-07-07 1997-07-07 Method and apparatus for testing reliability at joint of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18105597A JPH1123653A (en) 1997-07-07 1997-07-07 Method and apparatus for testing reliability at joint of electronic device

Publications (1)

Publication Number Publication Date
JPH1123653A true JPH1123653A (en) 1999-01-29

Family

ID=16093995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18105597A Pending JPH1123653A (en) 1997-07-07 1997-07-07 Method and apparatus for testing reliability at joint of electronic device

Country Status (1)

Country Link
JP (1) JPH1123653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141090A (en) * 2015-05-28 2016-12-08 한국생산기술연구원 Apparatus for testing solder bump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141090A (en) * 2015-05-28 2016-12-08 한국생산기술연구원 Apparatus for testing solder bump

Similar Documents

Publication Publication Date Title
US7094061B1 (en) Printed circuit board with integral strain gage
US7096748B2 (en) Embedded strain gauge in printed circuit boards
US6948377B2 (en) Method and apparatus for detecting the strain levels imposed on a circuit board
CN111623702B (en) Method for testing strain of welding spot of integrated circuit component
JPH1123653A (en) Method and apparatus for testing reliability at joint of electronic device
US8344521B2 (en) Semiconductor device, semiconductor package and wiring structure
Albrecht et al. Impact of warpage effects on quality and reliability of solder joints
US9506823B2 (en) Bonding stress testing arrangement and method of determining stress
van der Sluis et al. Analysis of the three-dimensional delamination behavior of stretchable electronics applications
JP2000340916A (en) Printed wiring board
Mercado et al. Electronic packaging solder joint reliablity assessment with a mechanics-based StrainGage methodology
TWI411841B (en) Lcd module and method for measuring contact resistances between circuit boards therein
JP7462270B2 (en) Inspection method for device manufacturing equipment and device manufacturing equipment
JP3873438B2 (en) Semiconductor device
NL1044041B1 (en) Method for manufacturing device, device manufacturing apparatus, and mounting structure
TWI829696B (en) Probe, inspection jig, inspection device and method of manufacturing probe
Mercado et al. Handheld use condition-based bend test development
JPH04279867A (en) Three-dimensional acceleration sensor
JP2000171512A (en) Continuity inspection apparatus for printed-wiring board
JP4872468B2 (en) Semiconductor device
WO2006091188A1 (en) Printed circuit board with integral strain gage
JP3753023B2 (en) Bumped chip for measuring bonding damage
JPH11274247A (en) Semiconductor device
JPH065243B2 (en) Board inspection equipment
JP3573113B2 (en) Bonding damage measuring device and measuring method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620