JPH11235009A - Current lead of rotor of superconducting rotating machine - Google Patents

Current lead of rotor of superconducting rotating machine

Info

Publication number
JPH11235009A
JPH11235009A JP10035999A JP3599998A JPH11235009A JP H11235009 A JPH11235009 A JP H11235009A JP 10035999 A JP10035999 A JP 10035999A JP 3599998 A JP3599998 A JP 3599998A JP H11235009 A JPH11235009 A JP H11235009A
Authority
JP
Japan
Prior art keywords
rotor
current lead
electric machine
tube
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10035999A
Other languages
Japanese (ja)
Inventor
Toshio Honda
登志男 本多
Daisuke Murata
大輔 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10035999A priority Critical patent/JPH11235009A/en
Publication of JPH11235009A publication Critical patent/JPH11235009A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To prevent a contact failure between constituting members with good cooling capability of a current lead. SOLUTION: In a current lead which supplies current from a room temperature part to a low temperature part of the rotor of a superconducting rotating machine, a multiple-layer pipe is constituted of an inner pipe 7 with fins of a conductive metal having fins 7a extending at the inside circumference side in the axial direction and protruding in the radial direction and an outer pipe 8 with fins of a conductive metal which forms coolant flowing channels in the axial direction between the outside circumferential surface of the inner pipe 7 with fins and each fin. Furthermore, passing holes 9 are each provided in the pipe wall between the fins 7a of the inner pipe 7 with fins in the axial direction with an appropriate space, so that the coolant flowing channels can be communicated with each other in the radial direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は常温部分から低温部
分に電流を供給する超電導回転電機の回転子の電流リー
ドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for a rotor of a superconducting rotary electric machine for supplying a current from a normal temperature portion to a low temperature portion.

【0002】[0002]

【従来の技術】従来、超電導回転電機の回転子の電流リ
ードのように常温部分から低温部分、特に液体ヘリウム
温度領域に大電流を供給する場合、常温部分からの伝導
熱及び電流によるジュール熱が低温部分に侵入しないよ
うにするため、電流リードヘリウムの蒸発ガス等で冷却
することが行われている。
2. Description of the Related Art Conventionally, when a large current is supplied from a normal temperature portion to a low temperature portion, particularly a liquid helium temperature region, like a current lead of a rotor of a superconducting rotary electric machine, conduction heat from the normal temperature portion and Joule heat due to current are generated. In order to prevent intrusion into the low-temperature portion, cooling is performed using a vaporized gas of current lead helium or the like.

【0003】この初期のものは単に円筒状の電流リード
の外周をヘリウムの蒸発ガスで冷却することが行われた
が、冷却性能があまり良好でないため、電流リードの内
部に熱交換機を設けたタイプのものが使用されている。
[0003] In this early type, the outer periphery of a cylindrical current lead was simply cooled with helium evaporating gas. However, since the cooling performance was not so good, a heat exchanger was provided inside the current lead. Are used.

【0004】図12は従来の超電導回転電機の回転子の
電流リードの一例を示す横断面図であり、図13は同電
流リードの縦断面図である。図12及び図13に示すよ
うに導電性金属からなる多数のパイプ1を導電性金属か
らなる外筒2内に挿入し、外筒2内のパイプ1との空隙
を導電性充填部材3にて密に充填し、パイプ内部を冷媒
流路4とする構造である。また、電流リードの両端には
常温側端子5と低温側端子6が接続されている。
FIG. 12 is a cross sectional view showing an example of a current lead of a rotor of a conventional superconducting rotary electric machine, and FIG. 13 is a longitudinal sectional view of the current lead. As shown in FIGS. 12 and 13, a large number of pipes 1 made of a conductive metal are inserted into an outer cylinder 2 made of a conductive metal, and a gap with the pipe 1 in the outer cylinder 2 is filled with a conductive filling member 3. The structure is such that the inside of the pipe is densely filled and the refrigerant channel 4 is used. A normal temperature terminal 5 and a low temperature terminal 6 are connected to both ends of the current lead.

【0005】このような構成の超電導回転電機の回転子
の電流リードにおいて、電流はパイプ1、外筒2、充填
部材3部分を常温側から低温側に向って流れ、気体冷媒
はパイプ内部を低温側から常温側に向って流れる。この
場合、管内を流れる気体冷媒、特にガスヘリウム等はそ
の粘性が温度に依存し、温度が低ければ管内を流れ易く
なり、反対に温度が高ければ管内を流れにくくなるとい
う特性がある。
[0005] In the current lead of the rotor of the superconducting rotary electric machine having such a configuration, current flows through the pipe 1, the outer cylinder 2, and the filling member 3 from the normal temperature side to the low temperature side, and the gas refrigerant flows through the inside of the pipe at the low temperature. Flows from the side to the room temperature side. In this case, the viscosity of the gas refrigerant flowing in the pipe, particularly gas helium, depends on the temperature. The lower the temperature, the easier it is to flow in the pipe, and the higher the temperature, the harder it is to flow in the pipe.

【0006】このため、このような構造の電流リード
は、断面上に温度分布があると、気体冷媒の流れ易いパ
イプと流れにくいパイプが生じ、同断面上で温度の低い
部分ばかりに気体冷媒が偏って流れるようになるため、
冷却効率が低下するという問題があった。また、充填部
材3と外筒2、及び充填部材3とパイプ1との密着が良
くないために密着部分の電機抵抗が高くなり、電流が同
断面上で一様に流れず、部分的にジュール発熱が大きく
なるという問題と、接触不良による熱伝導不良を生じ冷
却性能が低下するという問題もあった。
[0006] For this reason, in the current lead having such a structure, if there is a temperature distribution in the cross section, a pipe in which the gas refrigerant easily flows and a pipe in which the gas refrigerant hardly flows occur, and the gas refrigerant flows only in a low temperature portion on the cross section. Because it will flow unevenly,
There was a problem that the cooling efficiency was reduced. In addition, since the adhesion between the filling member 3 and the outer cylinder 2 and the adhesion between the filling member 3 and the pipe 1 are not good, the electric resistance at the contact portion increases, and the current does not flow uniformly on the same cross section, and the Joule is partially formed. There is also a problem that heat generation becomes large, and a problem that heat conduction is poor due to poor contact and cooling performance is reduced.

【0007】[0007]

【発明が解決しようとする課題】以上のように従来の超
電導回転電機の回転子の電流リードは、気体冷媒の偏流
に起因する冷却性能の低下、及び各部材間の接触不良に
起因する電気抵抗損失や熱伝導不良の生じ易い構造であ
った。
As described above, the current lead of the rotor of the conventional superconducting rotary electric machine has a reduced cooling performance due to the drift of the gaseous refrigerant and an electric resistance due to poor contact between the members. The structure was liable to cause loss and poor heat conduction.

【0008】本発明は上記のような事情に鑑みてなされ
たもので、その目的は冷却性能が良く、また構成部材同
志の接触不良を防止できる超電導回転電機の回転子の電
流リードを提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a current lead for a rotor of a superconducting rotary electric machine which has good cooling performance and can prevent poor contact between constituent members. It is in.

【0009】[0009]

【課題を解決するための手段】本発明は上記ような目的
を達成するため、次のような手段により超電導回転電機
の回転子の電流リードを構成するものである。請求項1
に対応する発明は、常温部分から低温部分に電流を供給
する超電導回転電機の回転子の電流リードにおいて、内
周側に軸方向に伸び、且つ半径方向に突出する複数のフ
ィンを有する導電性金属からなる内部のフィン付き管
と、内部のフィン付き管の外周面と各フィンとの間を軸
方向の冷媒流路とする導電性金属からなる外部のフィン
付き管とを一体化した多重管を構成し、且つ内部のフィ
ン付き管の各フィン間の管壁に複数の貫通孔をそれぞれ
軸方向に適宜の間隔を存して設けて冷媒流路を半径方向
に連通させたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a current lead for a rotor of a superconducting rotary electric machine by the following means. Claim 1
The present invention relates to a current lead of a rotor of a superconducting rotating electrical machine that supplies current from a normal temperature portion to a low temperature portion, wherein the conductive metal has a plurality of fins extending in an axial direction on an inner circumferential side and protruding in a radial direction. And a multi-tube integrated with an external finned tube made of a conductive metal having an axial refrigerant passage between the outer peripheral surface of the internal finned tube and each fin. A plurality of through holes are provided in the tube wall between the fins of the inner finned tube at appropriate intervals in the axial direction so that the refrigerant flow paths communicate with each other in the radial direction.

【0010】上記請求項1に対応する発明にあっては、
冷媒流路を半径方向に連通させたことで気体冷媒の偏流
を防止でき、冷却性能の向上を図ることができる。請求
項2に対応する発明は、請求項1に対応する発明の超電
導回転電機の回転子の電流リードにおいて、内部に配置
する管の管壁に設けられる貫通孔をリング状の溝により
形成したものである。
[0010] In the invention corresponding to claim 1 above,
By allowing the refrigerant flow paths to communicate in the radial direction, drift of the gas refrigerant can be prevented, and cooling performance can be improved. According to a second aspect of the present invention, there is provided a current lead of a rotor of a superconducting rotary electric machine according to the first aspect of the present invention, wherein a through hole formed in a pipe wall of a pipe disposed inside is formed by a ring-shaped groove. It is.

【0011】請求項3に対応する発明は、請求項1に対
応する発明の超電導回転電機の回転子の電流リードにお
いて、内部に配置する管の管壁に設けられる貫通孔を軸
方向にスパイラル状の溝により形成したものである。
According to a third aspect of the present invention, there is provided a current lead for a rotor of a superconducting rotary electric machine according to the first aspect of the present invention, wherein a through hole formed in a pipe wall of a pipe disposed inside has a spiral shape in an axial direction. Formed by the groove of FIG.

【0012】上記請求項2及び請求項3に対応する発明
にあっては、内部に配置する管壁に複数の溝を形成する
ことにより、冷媒流路の連通断面積を大きくでき、かつ
円周方向にも冷媒流路が連通されるため、気体冷媒の偏
流防止効果が向上し、結果として冷却性能を向上させる
ことができる。
In the invention corresponding to the second and third aspects, by forming a plurality of grooves in the pipe wall disposed inside, the communication cross-sectional area of the refrigerant flow path can be increased, and Since the refrigerant flow path is also communicated in the direction, the effect of preventing the gas refrigerant from drifting is improved, and as a result, the cooling performance can be improved.

【0013】請求項4に対応する発明は、常温部分から
低温部分に電流を供給する超電導回転電機の回転子の電
流リードにおいて、内周側に軸方向に伸び、且つ半径方
向に突出するスパイラル状のフィンを有する導電性金属
からなる内部のフィン付き管と、この内部のフィン付き
管7の外周面とスパイラル状のフィンとの間を軸方向の
冷媒流路とする導電性金属からなる外部のフィン付き管
とを一体化した多重管を構成し、且つ内部のフィン付き
管のフィン間の管壁に複数の貫通孔をそれぞれ設けて冷
媒流路を半径方向に連通させたものである。
According to a fourth aspect of the present invention, there is provided a current lead of a rotor of a superconducting rotary electric machine for supplying current from a normal temperature portion to a low temperature portion, wherein the spiral lead extends axially inwardly and protrudes radially. Inner finned tube made of a conductive metal having fins, and an external conductive metal made of a conductive metal having an axial refrigerant flow path between the outer peripheral surface of the inner finned tube 7 and the spiral fins. The finned tube and the finned tube are integrated into a multi-tube, and a plurality of through-holes are provided in the tube walls between the fins of the inner finned tube to connect the refrigerant flow paths in the radial direction.

【0014】上記請求項4に対応する発明にあっては、
フィンを軸方向にスパイラル状にすることにより、冷媒
のぬれぶち面積が大きくなるため、気体冷媒の熱交換率
が高くなり、冷却性能を向上させることができる。
[0014] In the invention corresponding to claim 4 above,
By making the fins spiral in the axial direction, the wetted area of the refrigerant increases, so that the heat exchange rate of the gas refrigerant increases and the cooling performance can be improved.

【0015】請求項5に対応する発明は、請求項1又は
請求項4に対応する発明の超電導回転電機の回転子の電
流リードにおいて、最内層のフィン付き管の内部に円柱
状の詰物を挿入したものである。
According to a fifth aspect of the present invention, in the current lead of the rotor of a superconducting rotary electric machine according to the first or fourth aspect of the present invention, a column-shaped filling is inserted into the innermost finned tube. It was done.

【0016】上記請求項5に対応する発明にあっては、
最内層のフィン付き管の内部に円柱状詰物を挿入するこ
とにより、気体冷媒が管摩擦抵抗の小さい最内層部に偏
って通過するのを防止でき、冷却性能を向上させること
ができる。
In the invention corresponding to the fifth aspect,
By inserting the cylindrical filler into the innermost finned tube, it is possible to prevent the gaseous refrigerant from passing unbalancedly to the innermost portion having a low tube frictional resistance, and to improve the cooling performance.

【0017】請求項6に対応する発明は、請求項1又は
請求項4に対応する発明の超電導回転電機の回転子の電
流リードにおいて、内部のフィン付き管と外部のフィン
付き管を合わせ抽伸にて一体化して多重管を構成したも
のである。
According to a sixth aspect of the present invention, there is provided a current lead for a rotor of a superconducting rotary electric machine according to the first or fourth aspect, wherein the inner finned tube and the outer finned tube are combined and drawn. To form a multiple tube.

【0018】請求項7に対応する発明は、請求項1又は
請求項4に対応する発明の超電導回転電機の回転子の電
流リードにおいて、内部のフィン付き管と外部のフィン
付き管を合わせ拡散接合にて一体化して多重管を構成し
たものである。
According to a seventh aspect of the present invention, in the current lead of the rotor of the superconducting rotary electric machine according to the first or fourth aspect, the inner finned tube and the outer finned tube are joined by diffusion bonding. To form a multiple tube.

【0019】上記請求項6及び請求項7に対応する発明
にあっては、管同志の密着性を向上させることで密着面
に生じる電気抵抗を低減でき、その上熱の伝導も良好と
なるため、冷却性能を向上させることができる。
In the inventions corresponding to the sixth and seventh aspects, the electric resistance generated on the contact surface can be reduced by improving the adhesion between the tubes, and the heat conduction is also improved. The cooling performance can be improved.

【0020】[0020]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明の第1の実施の形態を
示す超電導回転電機の回転子の電流リードの横断面図、
図2は同じく縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a first embodiment of the present invention,
FIG. 2 is a longitudinal sectional view of the same.

【0021】第1の実施の形態では、図1及び図2に示
すように内周側に軸方向に伸び、且つ半径方向に突出す
る複数のフィン7aを等間隔に有する導電性金属からな
る内部のフィン付き管7と、同様に内周側に軸方向に伸
び、且つ半径方向に突出するフィン8aを等間隔に有
し、内部のフィン付き管7の外周面と各フィン8aとの
間を軸方向の冷媒流路4とする導電性金属からなる外部
のフィン付き管8とを一体化した多重管を構成し、且つ
内部のフィン付き管7の各フィン8a間の管壁に複数の
貫通孔9をそれぞれ設けて冷媒流路4を半径方向に連通
させたものである。この場合、貫通孔9は軸方向に対し
ても適宜間隔を存して設けられる。
In the first embodiment, as shown in FIGS. 1 and 2, an inner portion made of a conductive metal having a plurality of fins 7a extending in the axial direction toward the inner periphery and projecting in the radial direction at regular intervals. And fins 8a which extend in the axial direction to the inner peripheral side and protrude in the radial direction at equal intervals, so that the outer peripheral surface of the inner finned pipe 7 and each fin 8a A multi-tube is formed by integrating an external finned tube 8 made of a conductive metal serving as an axial refrigerant flow path 4, and a plurality of through-holes are formed in a tube wall between the fins 8 a of the internal finned tube 7. Holes 9 are provided to connect the coolant flow paths 4 in the radial direction. In this case, the through holes 9 are provided at appropriate intervals in the axial direction.

【0022】従って、このような構成の電流リードとす
れば、内部のフィン付き管7の各フィン7a間の管壁に
それぞれ貫通孔9を設けて冷媒流路4を半径方向に連通
させることにより、気体冷媒の偏流を防止することがで
き、冷却性能を向上させることができる。
Accordingly, with the current lead having such a configuration, the through holes 9 are provided in the pipe walls between the fins 7a of the inner finned pipe 7 so that the refrigerant flow path 4 communicates in the radial direction. In addition, the drift of the gas refrigerant can be prevented, and the cooling performance can be improved.

【0023】図3は本発明の第2の実施の形態を示す超
電導回転電機の回転子の電流リードの横断面図、図4は
同じく縦断面図であり、図1及び図2と同一部分には同
一符号を付して説明する。
FIG. 3 is a transverse sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a second embodiment of the present invention, and FIG. 4 is a longitudinal sectional view of the same, which is the same as FIG. 1 and FIG. Will be described with the same reference numerals.

【0024】第2の実施の形態では、図3及び図4に示
すように内周側に軸方向に伸び、且つ半径方向に突出す
る複数のフィン7aを等間隔に有する導電性金属からな
る内部のフィン付き管7と、同様に内周側に軸方向に伸
び、且つ半径方向に突出するフィン8aを等間隔に有
し、内部のフィン付き管7の外周面と各フィン8aとの
間を軸方向の冷媒流路4とする導電性金属からなる外部
のフィン付き管8とを一体化した多重管を構成し、且つ
内部のフィン付き管7の管壁に冷媒流路4に連通する貫
通孔としてリング状の溝10を軸方向に適宜の間隔を存
して設けるようにしたものである。
In the second embodiment, as shown in FIGS. 3 and 4, an inner portion made of a conductive metal having a plurality of fins 7a extending in the axial direction toward the inner periphery and projecting in the radial direction at regular intervals. And fins 8a which extend in the axial direction to the inner peripheral side and protrude in the radial direction at equal intervals, so that the outer peripheral surface of the inner finned pipe 7 and each fin 8a A multiplex pipe is formed by integrating an external finned pipe 8 made of a conductive metal as an axial refrigerant flow path 4, and a through-hole communicating with the refrigerant flow path 4 is formed in a pipe wall of the internal finned pipe 7. Ring holes 10 are provided as holes at appropriate intervals in the axial direction.

【0025】従って、このような構成の電流リードとす
れば、第1の実施の形態のように貫通孔を設けたものに
比べて冷媒流路4の連通断面積を大きくでき、且つ円周
方向にも冷媒流路4が連通されるため、気体冷媒の偏流
防止効果が向上し、結果として冷却性能を向上させるこ
とができる。
Accordingly, with the current lead having such a configuration, the communication cross-sectional area of the refrigerant flow path 4 can be increased as compared with the current lead having the through hole as in the first embodiment, and the circumferential direction can be improved. Since the refrigerant flow path 4 is also connected to the refrigerant flow, the effect of preventing the gas refrigerant from drifting is improved, and as a result, the cooling performance can be improved.

【0026】図5は本発明の第3の実施の形態を示す超
電導回転電機の回転子の電流リードの横断面図、図6は
同じく縦断面図であり、図1及び図2と同一部分には同
一符号を付して説明する。
FIG. 5 is a transverse sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a third embodiment of the present invention, and FIG. 6 is a longitudinal sectional view of the same, which is the same as FIG. 1 and FIG. Will be described with the same reference numerals.

【0027】第3の実施の形態では、図5及び図6に示
すように内周側に軸方向に伸び、且つ半径方向に突出す
る複数のフィン7aを等間隔に有する導電性金属からな
る内部のフィン付き管7と、同様に内周側に軸方向に伸
び、且つ半径方向に突出するフィン8aを等間隔に有
し、内部のフィン付き管7の外周面と各フィン8aとの
間を軸方向の冷媒流路4とする導電性金属からなる外部
のフィン付き管8とを一体化した多重管を構成し、且つ
内部のフィン付き管7の管壁に冷媒流路4に連通する貫
通孔としてスパイラル状の溝11を設けるようにしたも
のである。
In the third embodiment, as shown in FIGS. 5 and 6, an inner portion made of a conductive metal having a plurality of fins 7a extending in the axial direction toward the inner periphery and projecting in the radial direction at regular intervals. And fins 8a which extend in the axial direction to the inner peripheral side and protrude in the radial direction at equal intervals, so that the outer peripheral surface of the inner finned pipe 7 and each fin 8a A multiplex pipe is formed by integrating an external finned pipe 8 made of a conductive metal as an axial refrigerant flow path 4, and a through-hole communicating with the refrigerant flow path 4 is formed in a pipe wall of the internal finned pipe 7. A spiral groove 11 is provided as a hole.

【0028】従って、このような構成の電流リードとし
ても、第2の実施の形態と同様の作用効果を得ることが
できる。図7は本発明の第4の実施の形態を示す超電導
回転電機の回転子の電流リードの横断面図、図8は同じ
く縦断面図であり、図1及び図2と同一部分には同一符
号を付して説明する。
Therefore, even with the current lead having such a configuration, the same operation and effect as those of the second embodiment can be obtained. FIG. 7 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a fourth embodiment of the present invention, and FIG. 8 is a vertical cross-sectional view thereof. The description will be made with reference to FIG.

【0029】第4の実施の形態では、図7及び図8に示
すように内周側に半径方向に突出するスパイラル状のフ
ィン7bを軸方向に形成した導電性金属からなる内部の
フィン付き管7と、同様に内周側に半径方向に突出する
スパイラル状のフィン8bが軸方向に形成され、内部の
フィン付き管7の外周面とスパイラル状のフィン8bと
の間を軸方向の冷媒流路4とする導電性金属からなる外
部のフィン付き管8とを一体化した多重管を構成し、且
つ内部のフィン付き管7のスパイラル状のフィン8b間
の管壁に複数の貫通孔9をそれぞれ設けて冷媒流路4を
半径方向に連通させたものである。
In the fourth embodiment, as shown in FIGS. 7 and 8, an inner finned tube made of a conductive metal and having a spiral fin 7b protruding in the radial direction on the inner peripheral side in the axial direction. 7 and a spiral fin 8b similarly protruding in the radial direction on the inner peripheral side is formed in the axial direction, and the refrigerant flow in the axial direction flows between the outer peripheral surface of the inner finned tube 7 and the spiral fin 8b. A multi-tube is formed by integrating an external finned tube 8 made of a conductive metal as the passage 4, and a plurality of through holes 9 are formed in the tube wall between the spiral fins 8 b of the internal finned tube 7. Each is provided so that the refrigerant flow path 4 communicates in the radial direction.

【0030】従って、このような構成の電流リードとす
れば、フィンが軸方向に真っ直ぐ伸びているものと比較
して、冷媒のぬれぶち面積が大きくなるため、気体冷媒
の熱交換率が高くなり、冷却性能を向上させることがで
きる。
Therefore, with the current lead having such a structure, the heat exchange rate of the gaseous refrigerant increases because the wet area of the refrigerant is larger than that of the fins extending straight in the axial direction. The cooling performance can be improved.

【0031】図9は本発明の第5の実施の形態を示す超
電導回転電機の回転子の電流リードの横断面図であり、
図1と同一部分には同一符号を付してその説明を省略
し、ここでは異なる点についてのみ述べる。
FIG. 9 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention.
The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. Only different points will be described here.

【0032】第5の実施の形態では、図9に示すように
内部のフィン付き管7の各フィン8a間の管壁に複数の
貫通孔9をそれぞれ設けて冷媒流路4を半径方向に連通
させ、さらに内部のフィン付き管7の内部に円柱状詰物
12を挿入するようにしたものである。
In the fifth embodiment, as shown in FIG. 9, a plurality of through holes 9 are provided in the pipe wall between the fins 8a of the internal finned pipe 7 to communicate the refrigerant flow path 4 in the radial direction. Then, the column-shaped filling 12 is inserted into the inside of the finned tube 7 inside.

【0033】従って、このような構成の電流リードとす
れば、第1の実施の形態と同様の作用効果に加えて、内
部のフィン付き管7の内部に挿入された円柱状詰物12
により、気体冷媒が管摩擦抵抗の小さい内部のフィン付
き管7に偏って通かするのを防止でき、冷却性能を向上
させることができる。
Therefore, with the current lead having such a configuration, in addition to the same operation and effect as in the first embodiment, the column-shaped filler 12 inserted into the inside of the finned tube 7 is formed.
Thereby, it is possible to prevent the gaseous refrigerant from flowing to the inner finned pipe 7 having a small pipe frictional resistance, and to improve the cooling performance.

【0034】図10は本発明の第6の実施の形態を示す
超電導回転電機の回転子の電流リードの横断面図であ
り、図1と同一部分には同一符号を付して説明する。第
6の実施の形態では、図10に示すように内周側に軸方
向に伸び、且つ半径方向に突出する複数のフィン7aを
等間隔に有する導電性金属からなる内部のフィン付き管
7と、同様に内周側に軸方向に伸び、且つ半径方向に突
出するフィン8aを等間隔に有する導電性金属からなる
外部のフィン付き管8とを同心円状に配置し、内部のフ
ィン付き管7と外部のフィン付き管8との間に存する隙
間を合せ抽伸、あるいは拡散接合を行うことにより一体
化して多重管を構成したものである。
FIG. 10 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a sixth embodiment of the present invention. The same parts as those in FIG. In the sixth embodiment, as shown in FIG. 10, an inner finned tube 7 made of a conductive metal having a plurality of fins 7a extending in the axial direction inwardly and projecting in the radial direction at equal intervals is provided. Similarly, an outer finned tube 8 made of a conductive metal and having a fin 8a extending in the axial direction on the inner peripheral side and protruding in the radial direction at an equal interval is concentrically arranged. The gap between the finned tube 8 and the external finned tube 8 is integrated to form a multiple tube by drawing or diffusion bonding.

【0035】図11に内部のフィン付き管7と外部のフ
ィン付き管8が一体化された電流リードの横断面図を示
す。上記のように合せ抽伸、あるいは拡散接合を実施す
ることにより、内部のフィン付き管7と外部のフィン付
き管8のフィン部が接合され、機械的にも電気的にも一
体化された状態となる。従って、管同志の密着性を向上
させることで密着面に生じる電気抵抗を低減でき、その
上熱の伝導も良好となるため、冷却性能を向上させるこ
とができる。
FIG. 11 is a cross-sectional view of a current lead in which the inner finned tube 7 and the outer finned tube 8 are integrated. By performing the matching drawing or the diffusion bonding as described above, the fin portions of the inner finned tube 7 and the outer finned tube 8 are joined, and a state in which both the fin portions are mechanically and electrically integrated. Become. Therefore, by improving the adhesion between the tubes, it is possible to reduce the electric resistance generated on the contact surface, and also to improve the heat conduction, thereby improving the cooling performance.

【0036】[0036]

【発明の効果】以上述べたように本発明によれば、気体
冷媒の偏流及び構成部材間の接触不良が防止できるの
で、電流の偏流が少なく、且つ冷却性能の高い超電導回
転電機の回転子の電流リードを提供することができる。
As described above, according to the present invention, the drift of the gaseous refrigerant and the poor contact between the constituent members can be prevented, so that the drift of the current is small and the cooling performance of the superconducting rotary electric machine is high. A current lead can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す超電導回転電
機の回転子の電流リードの横断面図。
FIG. 1 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a first embodiment of the present invention.

【図2】同実施の形態の縦断面図。FIG. 2 is a longitudinal sectional view of the embodiment.

【図3】本発明の第2の実施の形態を示す超電導回転電
機の回転子の電流リードの横断面図。
FIG. 3 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a second embodiment of the present invention.

【図4】同実施の形態の縦断面図。FIG. 4 is a longitudinal sectional view of the embodiment.

【図5】本発明の第3の実施の形態を示す超電導回転電
機の回転子の電流リードの横断面図。
FIG. 5 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a third embodiment of the present invention.

【図6】同実施の形態の縦断面図。FIG. 6 is a longitudinal sectional view of the embodiment.

【図7】本発明の第4の実施の形態を示す超電導回転電
機の回転子の電流リードの横断面図。
FIG. 7 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a fourth embodiment of the present invention.

【図8】同実施の形態の縦断面図。FIG. 8 is a longitudinal sectional view of the embodiment.

【図9】本発明の第5の実施の形態を示す超電導回転電
機の回転子の電流リードの横断面図。
FIG. 9 is a cross-sectional view of a current lead of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention.

【図10】本発明の第6の実施の形態を示す電流リード
のフィン付き管配置時の横断面図。
FIG. 10 is a cross-sectional view of a current lead according to a sixth embodiment of the present invention when a finned tube is arranged.

【図11】同実施の形態において、フィン付き管を一体
化した後の横断面図。
FIG. 11 is a cross-sectional view after the finned tube is integrated in the embodiment.

【図12】従来の超電導回転電機の回転子の電流リード
を示す横断面図。
FIG. 12 is a cross-sectional view showing a current lead of a rotor of a conventional superconducting rotary electric machine.

【図13】同電流リードの縦断面図。FIG. 13 is a vertical sectional view of the current lead.

【符号の説明】[Explanation of symbols]

1……パイプ 2……外筒 3……導電性充填部材 4……冷却流路 5……常温側端子 6……低温側端子 7……内部のフィン付き管 7a……フィン 7b……スパイラル状のフィン 8……外部のフィン付き管 8a……フィン 8b……スパイラル状のフィン 9……貫通孔 10……溝 11……スパイラル状の溝 12……円柱状詰物 DESCRIPTION OF SYMBOLS 1 ... Pipe 2 ... Outer cylinder 3 ... Conductive filling member 4 ... Cooling channel 5 ... Room temperature side terminal 6 ... Low temperature side terminal 7 ... Internal finned tube 7a ... Fin 7b ... Spiral -Shaped fins 8 ... Tubes with external fins 8a--Fins 8b-Spiral-shaped fins 9--Through holes 10--Grooves 11-Spiral-shaped grooves 12-Column-shaped fillings

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 常温部分から低温部分に電流を供給する
超電導回転電機の回転子の電流リードにおいて、内周側
に軸方向に伸び、且つ半径方向に突出する複数のフィン
を有する導電性金属からなる内部のフィン付き管と、内
部のフィン付き管の外周面と各フィンとの間を軸方向の
冷媒流路とする導電性金属からなる外部のフィン付き管
とを一体化した多重管を構成し、且つ内部のフィン付き
管の各フィン間の管壁に複数の貫通孔をそれぞれ軸方向
に適宜の間隔を存して設けて冷媒流路を半径方向に連通
させたことを特徴とする超電導回転電機の回転子の電流
リード。
1. A current lead for a rotor of a superconducting rotary electric machine for supplying current from a normal temperature portion to a low temperature portion, comprising a conductive metal having a plurality of fins extending in an axial direction on an inner peripheral side and protruding in a radial direction. And a finned tube made of a conductive metal integrated with an outer circumferential surface of the inner finned tube and each fin as an axial refrigerant flow path. And a plurality of through-holes provided at appropriate intervals in the axial direction in the tube wall between the fins of the inner finned tube to radially communicate the refrigerant flow paths, wherein Current lead for the rotor of a rotating electric machine.
【請求項2】 請求項1記載の超電導回転電機の回転子
の電流リードにおいて、内部に配置する管の管壁に設け
られる貫通孔をリング状の溝により形成したことを特徴
とする超電導回転電機の回転子の電流リード。
2. The superconducting rotating electric machine according to claim 1, wherein a through hole formed in a tube wall of a tube disposed inside is formed by a ring-shaped groove. Rotor current lead.
【請求項3】 請求項1記載の超電導回転電機の回転子
の電流リードにおいて、内部に配置する管の管壁に設け
られる貫通孔を軸方向にスパイラル状の溝により形成し
たことを特徴とする超電導回転電機の回転子の電流リー
ド。
3. A current lead for a rotor of a superconducting rotary electric machine according to claim 1, wherein a through hole formed in a tube wall of a tube disposed inside is formed by a spiral groove in an axial direction. Current lead of rotor of superconducting rotating electric machine.
【請求項4】 常温部分から低温部分に電流を供給する
超電導回転電機の回転子の電流リードにおいて、内周側
に軸方向に伸び、且つ半径方向に突出するスパイラル状
のフィンを有する導電性金属からなる内部のフィン付き
管と、この内部のフィン付き管7の外周面とスパイラル
状のフィンとの間を軸方向の冷媒流路とする導電性金属
からなる外部のフィン付き管とを一体化した多重管を構
成し、且つ内部のフィン付き管のフィン間の管壁に複数
の貫通孔をそれぞれ設けて冷媒流路を半径方向に連通さ
せたことを特徴とする超電導回転電機の回転子の電流リ
ード。
4. A current lead of a rotor of a superconducting rotary electric machine for supplying a current from a normal temperature portion to a low temperature portion, a conductive metal having a spiral fin that extends in an axial direction on an inner peripheral side and protrudes in a radial direction. And an external finned tube made of a conductive metal having an axial refrigerant flow path between the outer peripheral surface of the inner finned tube 7 and the spiral fin. A superconducting rotary electric machine, wherein a plurality of through-holes are respectively provided in the pipe walls between the fins of the inner finned pipe to allow the refrigerant flow paths to communicate in the radial direction. Current lead.
【請求項5】 請求項1又は請求項4に記載の超電導回
転電機の回転子の電流リードにおいて、最内層のフィン
付き管の内部に円柱状の詰物挿入したことを特徴とする
超電導回転電機の回転子の電流リード。
5. A superconducting rotating electric machine according to claim 1, wherein a cylindrical filler is inserted into the innermost finned tube of the rotor of the rotating electric machine. Rotor current lead.
【請求項6】 請求項1又は請求項4に記載の超電導回
転電機の回転子の電流リードにおいて、内部のフィン付
き管と外部のフィン付き管を合わせ抽伸にて一体化して
多重管を構成したことを特徴とする超電導回転電機の回
転子の電流リード。
6. The current lead of a rotor of a superconducting rotary electric machine according to claim 1 or 4, wherein the inner finned tube and the outer finned tube are integrated by drawing and integrated to form a multi-tube. A current lead for a rotor of a superconducting rotating electric machine, characterized in that:
【請求項7】 請求項1又は請求項4に記載の超電導回
転電機の回転子の電流リードにおいて、内部のフィン付
き管と外部のフィン付き管を合わせ拡散接合にて一体化
して多重管を構成したことを特徴とする超電導回転電機
の回転子の電流リード。
7. A multi-tube comprising a current lead of a rotor of a superconducting rotary electric machine according to claim 1 or 4, wherein an inner finned tube and an outer finned tube are integrated by diffusion bonding. A current lead for a rotor of a superconducting rotating electric machine, characterized in that:
JP10035999A 1998-02-18 1998-02-18 Current lead of rotor of superconducting rotating machine Pending JPH11235009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10035999A JPH11235009A (en) 1998-02-18 1998-02-18 Current lead of rotor of superconducting rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10035999A JPH11235009A (en) 1998-02-18 1998-02-18 Current lead of rotor of superconducting rotating machine

Publications (1)

Publication Number Publication Date
JPH11235009A true JPH11235009A (en) 1999-08-27

Family

ID=12457507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10035999A Pending JPH11235009A (en) 1998-02-18 1998-02-18 Current lead of rotor of superconducting rotating machine

Country Status (1)

Country Link
JP (1) JPH11235009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985925B2 (en) 2004-04-23 2011-07-26 Gsi Helmholtzzentrum Fuer Schwerionenforschung Gmbh Superconducting cable and method for the production thereof
CN109637739A (en) * 2018-12-20 2019-04-16 深圳供电局有限公司 A kind of quasi-isotropic high current-carrying hyperconductive cable electrical conductor
CN114221491A (en) * 2021-12-02 2022-03-22 国网江苏省电力有限公司经济技术研究院 Superconductive motor rotor heat exchanger structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985925B2 (en) 2004-04-23 2011-07-26 Gsi Helmholtzzentrum Fuer Schwerionenforschung Gmbh Superconducting cable and method for the production thereof
CN109637739A (en) * 2018-12-20 2019-04-16 深圳供电局有限公司 A kind of quasi-isotropic high current-carrying hyperconductive cable electrical conductor
CN109637739B (en) * 2018-12-20 2024-02-09 深圳供电局有限公司 Quasi-isotropic high current-carrying superconducting cable conductor
CN114221491A (en) * 2021-12-02 2022-03-22 国网江苏省电力有限公司经济技术研究院 Superconductive motor rotor heat exchanger structure

Similar Documents

Publication Publication Date Title
JPH09308183A (en) Liquid-cooled motor frame
JP2014522626A (en) Thermoelectric module and thermoelectric device, in particular automobile current generation thermoelectric module and thermoelectric device
JPH11235009A (en) Current lead of rotor of superconducting rotating machine
CN112104116A (en) Stator assembly, motor and electric drive axle system
JP2005056770A (en) Connector
JPH11121059A (en) Intermediate connection portion for superconducting cable
JP3587189B2 (en) Heat exchanger
JP4749432B2 (en) Rotating electric machine stator
CN113364168A (en) Stator module, motor and air conditioner
CN209963910U (en) Motor stator and motor with same
US20050199373A1 (en) Heat sink for an electronic power component
JP2001110594A (en) Electrode for plasma torch
JP3324169B2 (en) Constrictor type arc heater
CN114485216B (en) Radiating fin type heat exchanger and free piston Stirling generator
JP6875463B2 (en) motor
CN115833486B (en) In-tank direct-cooling generator based on heat pipe cooling
JPH10215561A (en) Rotor for superconducting rotary electric machine
JPH11223400A (en) Heat exchanger for heat engine
JPH11141755A (en) Thermal insulating hose
JP4407376B2 (en) Heat exchanger
SU957359A1 (en) Electric machine rotor
CN115528852A (en) Cooling device and motor with same
JPH0447853Y2 (en)
SU1257757A1 (en) Rotor of electric machine
CN115776190A (en) Motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220