JPH0447853Y2 - - Google Patents

Info

Publication number
JPH0447853Y2
JPH0447853Y2 JP1984103912U JP10391284U JPH0447853Y2 JP H0447853 Y2 JPH0447853 Y2 JP H0447853Y2 JP 1984103912 U JP1984103912 U JP 1984103912U JP 10391284 U JP10391284 U JP 10391284U JP H0447853 Y2 JPH0447853 Y2 JP H0447853Y2
Authority
JP
Japan
Prior art keywords
refrigerant
conductor
cable
refrigerant passage
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984103912U
Other languages
Japanese (ja)
Other versions
JPS6119910U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10391284U priority Critical patent/JPS6119910U/en
Publication of JPS6119910U publication Critical patent/JPS6119910U/en
Application granted granted Critical
Publication of JPH0447853Y2 publication Critical patent/JPH0447853Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 本考案は地中送電線等に使用される内部冷却式
CVケーブルに関するものである。
[Detailed explanation of the invention] "Industrial application field" This invention is an internal cooling type used for underground power transmission lines, etc.
It concerns CV cables.

「従来の技術」 近年、電力需要の増大に対応するため、電力ケ
ーブルの送電容量増大策が種々提案されており、
この送電容量増大策の一つとして、従来第2図に
示す如き内部冷却式CVケーブル(以下単にCVケ
ーブルと称す)が使用されている。
"Conventional technology" In recent years, various measures have been proposed to increase the power transmission capacity of power cables in order to cope with the increase in power demand.
As one measure to increase the power transmission capacity, an internally cooled CV cable (hereinafter simply referred to as CV cable) as shown in FIG. 2 has been used.

すなわち、このCVケーブルは、多数の素線1
からなる導体2の外側に架橋ポリエチレンからな
る絶縁層3を設け、この絶縁層3をポリ塩化ビニ
ル等からなる外部シース4で被覆するとともに、
前記導体2の内部に銅パイプ等からなる冷媒通路
5を設けるようにした構造からなつており、この
冷媒通路5の一端側から他端側に水、フロンガス
等の冷却媒体を通過させることによつて、導体2
の素線1を冷却して、ケーブルの送電容量を増加
させるようにしている。
In other words, this CV cable consists of a large number of strands 1
An insulating layer 3 made of cross-linked polyethylene is provided on the outside of the conductor 2 made of
It has a structure in which a refrigerant passage 5 made of a copper pipe or the like is provided inside the conductor 2, and a cooling medium such as water or fluorocarbon gas is passed from one end of the refrigerant passage 5 to the other end. Then, conductor 2
The strands 1 of the cable are cooled to increase the power transmission capacity of the cable.

然しながら、前記CVケーブルでは、1本の冷
媒通路が設けられているのみであるから、第2図
に示したケーブルの断面では、導体を構成する素
線1の温度が半径方向すなわち外方向に向かつて
徐々に高くなり、また、CVケーブルの長さ方向
では、冷媒の入口側から出口側に向かつて前記素
線1の温度が次第に高く成る傾向が避けられず、
従つて最も冷却条件が悪い素線によつて、送電容
量が制限されるという問題がある。また、冷却通
路5が単一であるために、冷媒の回収のための戻
り配管を別個に設けるとが必要になつて、施工コ
ストが高くなるという問題がある。
However, since the CV cable is provided with only one refrigerant passage, in the cross section of the cable shown in FIG. In addition, in the length direction of the CV cable, the temperature of the strand 1 inevitably tends to increase gradually from the refrigerant inlet side to the outlet side.
Therefore, there is a problem in that the power transmission capacity is limited by the strands that have the worst cooling conditions. Further, since the cooling passage 5 is single, it is necessary to separately provide a return pipe for recovering the refrigerant, which raises the problem of increased construction cost.

「考案が解決しようとする問題点」 本考案は上記の如き実情に鑑みてなされたもの
で、高い冷却能力により送電容量を増大させた
CVケーブルを提供するとともに、施工コストの
低いCVケーブルを提供することを目的とする。
``Problem that the invention attempts to solve'' This invention was made in view of the above-mentioned circumstances, and it increases power transmission capacity with high cooling capacity.
The purpose of the company is to provide CV cables, as well as CV cables with low construction costs.

「問題点を解決するための手段」 本考案は、上記の目的を達成するためになされ
たもので、その構成は、多数本束ねられた素線か
らなる導体2の中心部にパイプ状の内側冷媒通路
6を埋設し、前記導体の外側に沿つて断面中空扇
形管からなる外側冷媒通路7A〜7Lの複数条を
密接組合わせて円環状に設け、その周囲に絶縁層
3、外部シース4を順次設け、かつ、前記複数条
の外側冷媒通路において1本置きに冷媒を逆方向
に流通させたことを特徴とする内部冷却式CVケ
ーブルである。なお断面中空扇形管とは、内部が
中空で大弧面と小弧面とを有し全体として断面扇
形を呈するものを言い、導体の外側冷媒通路は大
弧面を外側に小弧面を内側にしてその複数条を密
接して組合わせ円環状にして構成される。
"Means for Solving the Problems" The present invention was made to achieve the above-mentioned object, and its structure consists of a pipe-shaped inner wall in the center of the conductor 2, which is made up of a large number of wires bundled together. A refrigerant passage 6 is buried, and a plurality of outer refrigerant passages 7A to 7L each having a hollow fan-shaped cross section are closely combined to form a ring along the outside of the conductor, and an insulating layer 3 and an outer sheath 4 are provided around the outer refrigerant passage 6. The internally cooled CV cable is characterized in that the refrigerant is sequentially provided in the plural outer refrigerant passages, and refrigerant is caused to flow in the opposite direction in every other refrigerant passage. Note that a hollow fan-shaped cross-sectional tube is one that is hollow inside, has a large arc surface and a small arc surface, and has a fan-shaped cross section as a whole, and the outer refrigerant passage of the conductor has a large arc surface on the outside and a small arc surface on the inside. It is constructed by combining a plurality of strips closely together to form a ring.

「作用」 上記構成により、内側、外側の両冷却通路を往
路用、復路用の流通路として利用することおよび
冷媒通路と素線との接触面積の増加を図り、しか
も、簡単な構造で送電容量を増大させたCVケー
ブルを提供することができる。
"Function" With the above configuration, both the inner and outer cooling passages can be used as circulation passages for the outward and return passages, and the contact area between the refrigerant passage and the strands can be increased, and the power transmission capacity can be increased with a simple structure. We can provide CV cables with increased .

「実施例」 以下、本考案の実施例について説明する。第1
図は本考案の実施例で、従来例を示す第2図と同
一部分は同一符号を付してあるので説明を簡略化
する。
"Example" Hereinafter, an example of the present invention will be described. 1st
The figure shows an embodiment of the present invention, and the same parts as in FIG. 2 showing the conventional example are given the same reference numerals, so the explanation will be simplified.

図示の如き本考案のCVケーブルは、導体の内
部に前記の従来例の冷媒通路と同様の銅パイプ等
からなるパイプ状の内側冷媒通路6を埋設すると
ともに、導体2の周囲の円周上に、銅パイプ等に
よつて、断面中空扇形管に成形された外側冷媒通
路7A〜7Lの複数条を密接組み合わせて円環状
に配設し、導体2上に固定するとともに、これら
の外側冷媒通路7A〜7Lの外側に架橋ポリエチ
レンからなる絶縁層を設け、さらにポリ塩化ビニ
ル等からなる外部シース4で被覆してなるもの
で、前記外側冷媒通路7A〜7Lは1本置きに逆
方向に冷媒を流しているものである。
The CV cable of the present invention as shown in the figure has a pipe-shaped inner refrigerant passage 6 made of a copper pipe or the like similar to the refrigerant passage of the conventional example described above buried inside the conductor, and a pipe-shaped inner refrigerant passage 6 made of a copper pipe etc. is buried inside the conductor. , a plurality of outer refrigerant passages 7A to 7L formed into hollow fan-shaped cross-sections using copper pipes or the like are closely combined and arranged in an annular shape, fixed on the conductor 2, and these outer refrigerant passages 7A ~7L is provided with an insulating layer made of cross-linked polyethylene on the outside, and is further covered with an external sheath 4 made of polyvinyl chloride, etc., and the refrigerant flows in the opposite direction every other outer refrigerant passage 7A~7L. It is something that

このようなCVケーブルでは、 (a) ケーブル構造に無駄がなく、外側冷媒通路に
押さえ巻きを必要としない。
Such CV cables: (a) have a streamlined cable structure and do not require wraps in the outer refrigerant passage;

(b) 内側冷媒通路6および外側冷媒通路7A〜7
Lを冷媒の往復通路として効果的に冷却するも
のであり、特に外側冷媒通路7A〜7Lは多数
条からなり、その冷媒通路は1本置に逆方向と
して、冷却効率を高めている。
(b) Inner refrigerant passage 6 and outer refrigerant passage 7A to 7
L is effectively cooled as a reciprocating path for refrigerant, and in particular, the outer refrigerant paths 7A to 7L are made up of a large number of lines, and every other refrigerant path is directed in the opposite direction to improve cooling efficiency.

(c) 内側冷媒通路6を往路用もしくは復路用の通
路とし、その一端から他端へ冷媒を流通させ、
かつ外側冷媒通路7A〜7Lは全て1本置きに
往路用、復路用としているので、最小の外径を
保持しながら、冷却を効率的に行い、ケーブル
の送電容量を増大することができる。
(c) The inner refrigerant passage 6 is used as an outbound passageway or a return passageway, and the refrigerant is circulated from one end to the other end;
In addition, since every other outer refrigerant passage 7A to 7L is used for an outgoing passage and an incoming passage, cooling can be performed efficiently while maintaining a minimum outer diameter, and the power transmission capacity of the cable can be increased.

(d) 外側冷媒通路が断面中空扇形管であるため
に、組み合わせにより全体としてほぼ完全な円
形が保たれ、導体、隣接の外側冷媒通路相互間
及び絶縁層との間に隙間の発生がなく、又、断
面中空扇形管の外側の大弧面すなわち絶縁層側
はケーブルの電位傾度が最大になる箇所である
ので半導電層が被覆される部分であるが、導体
の外部に複数条の断面円形の冷媒通路を設けた
場合とは異なり、半導電層が薄くても突起を生
じないので、外径は小さくて済む。
(d) Since the outer refrigerant passage has a hollow fan-shaped cross section, the assembly maintains an almost perfect circular shape as a whole, and there are no gaps between the conductor, adjacent outer refrigerant passages, and the insulating layer; In addition, the large arc surface on the outside of the hollow sector-shaped pipe, that is, the insulating layer side, is the part where the potential gradient of the cable is greatest, so it is covered with a semiconducting layer. Unlike the case where a refrigerant passage is provided, no protrusions are formed even if the semiconductive layer is thin, so the outer diameter can be small.

(e) 又隣接する外側冷媒通路同志の間も面接触で
構成され、かつ冷媒は互いに逆方向に流れて熱
交換されているので、熱交換効果が大きく、冷
媒による冷却効率がよい。
(e) Adjacent outer refrigerant passages are also configured to have surface contact, and the refrigerants flow in opposite directions to exchange heat, so the heat exchange effect is large and the cooling efficiency by the refrigerant is good.

(f) 本考案の効果の具体例は、図3に示すとおり
で、矢印Aに示すようにケーブルの基端から先
端に向かつて往路用の冷媒通路内の冷媒温度が
上昇し、他方、矢印Bに示すようにケーブルの
先端から基端に向かつて復路用の冷媒通路内の
冷媒温度が低下し、そして、このような冷媒通
路の温度分布に対応して、導体2の温度が矢印
Cのように変化する。
(f) A specific example of the effect of the present invention is shown in Fig. 3, in which the refrigerant temperature in the outward refrigerant passage increases from the base end of the cable to the distal end as shown by arrow A; As shown in B, the refrigerant temperature in the return refrigerant passage decreases from the tip to the base end of the cable, and corresponding to the temperature distribution in the refrigerant passage, the temperature of the conductor 2 increases as shown by arrow C. It changes like this.

「考案の効果」 以上の説明で明らかなように、本考案は多数本
の素線からなる導体の心部にパイプ状の内側冷媒
通路を埋設し、前記導体の外周に沿つて複数条の
断面中空扇形管からなる外側冷媒通路を配設し、
その外側に絶縁層を設け、更にその外側に外部シ
ースを設けており、かつ、外側冷媒通路は1本置
きに逆方向に流れる冷媒通路としているので、ケ
ーブル構成が強固で、かつ、導体を内外から効率
良く冷却するとともに、外側の冷媒の通路を往路
と復路と分けているので冷却能率にすぐれてお
り、導体の温度上昇が少なく、絶縁体の温度劣化
も少なく、外側冷媒通路に円管を用いた場合に比
して、CVケーブルの送電容量を効率的に増大す
ることができる。
"Effects of the invention" As is clear from the above explanation, the present invention embeds a pipe-shaped inner refrigerant passage in the core of a conductor consisting of a large number of strands, and has multiple strips of cross-section along the outer periphery of the conductor. An outer refrigerant passage consisting of a hollow fan-shaped tube is provided,
An insulating layer is provided on the outside, and an external sheath is provided on the outside.Alternatively, every other refrigerant path flows in the opposite direction, so the cable structure is strong and the conductor can be connected inside and outside. In addition to efficient cooling, the outer refrigerant path is separated into the outward and return paths, resulting in excellent cooling efficiency, less temperature rise in the conductor, less temperature deterioration of the insulator, and the use of circular tubes in the outer refrigerant path. The power transmission capacity of the CV cable can be efficiently increased compared to the case where the CV cable is used.

すなわち、導体の外部の冷媒通路として断面中
空扇形管を設けたことは、何ら押さえ巻きを要せ
ずして、構造的に安定した構成となり導体、絶縁
体との面接触による熱交換とともに、隣接する断
面中空扇形管同志も面接触しているので、結局導
体の冷却効果は大きく、又、扇形の外側冷媒通路
であることにより、その内部空間は大きく、冷媒
の流通量を大きくすることができるので、冷却効
率も良いことは勿論である。
In other words, the provision of a hollow fan-shaped pipe as a refrigerant passage outside the conductor provides a structurally stable structure without the need for any pressure winding, and allows for heat exchange through surface contact with the conductor and insulator. Since the hollow sector-shaped pipes are in surface contact with each other, the cooling effect of the conductor is large, and since the fan-shaped outer refrigerant passage has a large internal space, the flow rate of refrigerant can be increased. Therefore, it goes without saying that the cooling efficiency is also good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のCVケーブルの1実施例を示
す横断面図、第2図は従来のCVケーブルの1実
施例を示す横断面図、第3図は本考案のCVケー
ブルにおける冷媒とケーブルの温度分布を示すグ
ラフである。 1……素線、2……導体、3……絶縁層、4…
…外部シース、6……内側冷媒通路、7……外側
冷媒通路。
Figure 1 is a cross-sectional view showing an embodiment of the CV cable of the present invention, Figure 2 is a cross-sectional view of an embodiment of a conventional CV cable, and Figure 3 is a refrigerant and cable in the CV cable of the present invention. 2 is a graph showing the temperature distribution of . 1... Element wire, 2... Conductor, 3... Insulating layer, 4...
...Outer sheath, 6...Inner refrigerant passage, 7...Outer refrigerant passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 多数本束ねられた素線からなる導体2の中心部
にパイプ状の内側冷媒通路6を埋設し、前記導体
の外側に沿つて断面中空扇形管からなる外側冷媒
通路7A〜7Lの複数条を密接組合わせて円環状
に設け、その周囲に絶縁層3、外部シース4を順
次設け、かつ、前記外側冷媒通路の複数条におい
て1本置きに冷媒を逆方向に流通させたことを特
徴とする内部冷却式CVケーブル。
A pipe-shaped inner refrigerant passage 6 is buried in the center of a conductor 2 made of a large number of bundled wires, and a plurality of outer refrigerant passages 7A to 7L each made of a hollow fan-shaped cross section are closely connected along the outside of the conductor. The interior is characterized in that the combinations are provided in an annular shape, an insulating layer 3 and an external sheath 4 are sequentially provided around the insulating layer 3, and a refrigerant is caused to flow in opposite directions in every other one of the plurality of outer refrigerant passages. Cooled CV cable.
JP10391284U 1984-07-10 1984-07-10 Internally cooled CV cable Granted JPS6119910U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10391284U JPS6119910U (en) 1984-07-10 1984-07-10 Internally cooled CV cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10391284U JPS6119910U (en) 1984-07-10 1984-07-10 Internally cooled CV cable

Publications (2)

Publication Number Publication Date
JPS6119910U JPS6119910U (en) 1986-02-05
JPH0447853Y2 true JPH0447853Y2 (en) 1992-11-11

Family

ID=30663281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10391284U Granted JPS6119910U (en) 1984-07-10 1984-07-10 Internally cooled CV cable

Country Status (1)

Country Link
JP (1) JPS6119910U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130750U (en) * 1989-03-31 1990-10-29

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4319376Y1 (en) * 1965-04-09 1968-08-13
JPS49119168A (en) * 1973-03-19 1974-11-14

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876478U (en) * 1971-12-23 1973-09-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4319376Y1 (en) * 1965-04-09 1968-08-13
JPS49119168A (en) * 1973-03-19 1974-11-14

Also Published As

Publication number Publication date
JPS6119910U (en) 1986-02-05

Similar Documents

Publication Publication Date Title
US3603715A (en) Arrangement for supporting one or several superconductors in the interior of a cryogenic cable
US7498519B2 (en) Joint for superconducting cable
JPH0447853Y2 (en)
US20050079980A1 (en) Superconducting cable
JP2005056770A (en) Connector
AU702118B2 (en) Electric conductors and cables
CA1048117A (en) High-tension overhead lines
JP3678465B2 (en) Superconducting power cable
CN211828249U (en) Cooling cable
CN210136741U (en) High-temperature-resistant cable
JP2003257260A (en) Superconductive cable and its manufacturing method
JP3566835B2 (en) Superconducting cable
JP2784160B2 (en) Superconducting power cable
JP2558690B2 (en) Superconducting cable
JP2003187651A (en) High-temperature superconducting cable
JPH09126389A (en) Extremely low temperature thermal insulation pipe
CN214753055U (en) Data transmission cable for aerospace
JPS6029313Y2 (en) Expansion joint device for cryogenic cables
JPH06103838A (en) Two-phase coaxial-type superconductive cable
JPH10112227A (en) System using oxide superconducting wire
KR102619343B1 (en) Vacuum Insulation Part Dividing Device And Superconducting Cable Having The Same
JPH074729Y2 (en) Internally cooled power cable
JP2000082347A (en) Cooling method of superconductive cable
JPH06302233A (en) Oxide superconductive power cable
JPH0520937A (en) Superconductive conductor