JPS6029313Y2 - Expansion joint device for cryogenic cables - Google Patents

Expansion joint device for cryogenic cables

Info

Publication number
JPS6029313Y2
JPS6029313Y2 JP7253181U JP7253181U JPS6029313Y2 JP S6029313 Y2 JPS6029313 Y2 JP S6029313Y2 JP 7253181 U JP7253181 U JP 7253181U JP 7253181 U JP7253181 U JP 7253181U JP S6029313 Y2 JPS6029313 Y2 JP S6029313Y2
Authority
JP
Japan
Prior art keywords
cable
cylinder
conductor
potential
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7253181U
Other languages
Japanese (ja)
Other versions
JPS5846227U (en
Inventor
裕正 深川
調 秋田
Original Assignee
財団法人電力中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人電力中央研究所 filed Critical 財団法人電力中央研究所
Priority to JP7253181U priority Critical patent/JPS6029313Y2/en
Publication of JPS5846227U publication Critical patent/JPS5846227U/en
Application granted granted Critical
Publication of JPS6029313Y2 publication Critical patent/JPS6029313Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本案は温度変化にもとづくケーブルの伸縮を電気的特性
の変化を招くことなく確実に吸収して、ケーブル導体相
互の接続を確実に行えるようにした極低温抵抗性ケーブ
ル超電導ケーブルなどの極低温ケーブル用伸縮ジヨイン
ト装置に関するものである。
[Detailed explanation of the invention] This invention is a superconducting cryogenic resistive cable that reliably absorbs the expansion and contraction of the cable due to temperature changes without causing changes in the electrical characteristics, and ensures the connection between the cable conductors. This invention relates to a telescopic joint device for cryogenic cables such as cables.

電力需用の増大と市街地における地中送電ルートの確保
の困難などは、輸送電力の大きいケーブルを要求してお
り、その方法の一つとして冷却媒体例えば液体窒素によ
りケーブル導体を冷却することにより、導体損、誘電体
損、パイプ損などにもとづく発熱を効果的に奪取して送
電容量の向上を図る、所謂極低温抵抗性ケーブルの研究
が広く行われている。
The increasing demand for electricity and the difficulty of securing underground power transmission routes in urban areas require cables that can transport large amounts of power. One way to do this is to cool the cable conductors with a cooling medium such as liquid nitrogen. Research is being widely conducted on so-called cryogenic resistance cables, which aim to improve power transmission capacity by effectively capturing heat generated by conductor loss, dielectric loss, pipe loss, etc.

この方法によれば輸送電力を従来のOFケーブルなどに
比べて5倍程度に増大することができるが、その実施に
当っての問題点の一つとして、冷却時におけるケーブル
導体の収縮にとづくケーブル相互の接続の困難がある。
According to this method, the transport power can be increased by about five times compared to conventional OF cables, etc., but one of the problems in implementing it is that the cable conductor shrinks during cooling. There are difficulties in connecting cables to each other.

即ち冷却時におけるケーブル導体の収縮量は最大0.3
%程度、即ちケーブル長100m1こおいて0.3m程
度にモ達し、ケーブルの接続部においては0.6yrL
の収縮となって働く。
In other words, the amount of contraction of the cable conductor during cooling is at most 0.3
%, that is, the cable length reaches about 0.3m in 100m1, and the cable connection part reaches 0.6yrL.
It acts as a contraction of.

従って収縮に応じて伸縮するジヨイント部を設けること
が不可欠であって、従来から種々の研究が行われており
、その代表的なものとして例えば第1図a、 bに示す
断面図の如きものが提案されている。
Therefore, it is essential to provide a joint that expands and contracts in response to contraction, and various studies have been carried out in the past.A representative example of this is the cross-sectional view shown in Figures 1a and 1b. Proposed.

この伸縮ジヨイントハ接続すべきケーブル導体a、bの
中空冷媒通路a/。
This telescopic joint is connected to the hollow refrigerant passage a/b of the cable conductors a and b.

b′内に、摺動しうるように両端が挿しこまれた冷媒通
路形成用の中空接続パイプCと、その中間に設けられた
スペーサd1その静電遮蔽円筒e1およびケーブル導体
a、bと、スペーサ6間にそれぞれ電流通路を作るよう
に接続された、伸縮吸収用導体L gとよりなるもので
あって、次のようにして作動してケーブル相互の電気的
接続を損うことなくケーブルの収縮を吸収するものであ
る。
A hollow connecting pipe C for forming a refrigerant passage whose both ends are slidably inserted into b', a spacer d1 provided in the middle thereof, an electrostatic shielding cylinder e1, and cable conductors a and b; It consists of expansion and contraction absorbing conductors Lg connected to create current paths between the spacers 6, and operates as follows to connect the cables without damaging the electrical connection between the cables. It absorbs shrinkage.

即ち常温においてはケーブル導体a、bにより導体L
gが第1図aのように折曲げられるようにし、また冷却
後においてはケーブル導体の収縮により第1図すのよう
に導体L gが伸びるように構成して、ケーブル導体の
伸縮にも拘らず良好な接続状態を維持できるようにした
ものである。
That is, at room temperature, conductor L is connected to cable conductors a and b.
The structure is such that the conductor L g is bent as shown in Figure 1 a, and after cooling, the conductor L g is stretched as shown in Figure 1 due to contraction of the cable conductor, so that the cable conductor L g is bent as shown in Figure 1 a. This makes it possible to maintain a good connection state.

しかしこのような伸縮吸収用導体を用いたものでは、保
守点検などのための送電の停止などにより生ずる常温と
低温の温度サイクルにより屈曲力が繰返し与えられると
、収縮吸収用導体L gが折損して電気的接続が阻害さ
れるおそれがある。
However, in a device using such a conductor for absorbing expansion and contraction, when bending force is repeatedly applied due to temperature cycles between room temperature and low temperature that occur when power transmission is stopped for maintenance inspections, etc., the conductor Lg for contraction and contraction will break. Otherwise, the electrical connection may be disrupted.

またこれを防ごうとして導体L gの断面積を小とする
と、電流容量も小さくなるので、ケーブルの冷却により
送電容量を増大しようとしても、収縮吸収用導体L g
の発熱に制限されて送電容量の向上の度合は低くなる。
In addition, if the cross-sectional area of the conductor Lg is made small in an attempt to prevent this, the current capacity will also be reduced, so even if an attempt is made to increase the power transmission capacity by cooling the cable, the shrinkage-absorbing conductor Lg
The degree of improvement in power transmission capacity will be low due to the heat generation of

またこのような折曲げ式の導体L gによるケーブル導
体の収縮の吸収長は伸縮吸収用導体長の172程度であ
り、しかも導体f9gの折曲り動作を安定とするためそ
の長さを長くできにくいことから、長い吸収長を得るこ
とができない。
In addition, the absorption length of the contraction of the cable conductor by such a bending type conductor Lg is about 172 times the length of the conductor for absorbing expansion and contraction, and it is difficult to increase the length in order to stabilize the bending operation of the conductor f9g. Therefore, a long absorption length cannot be obtained.

その結果短さいケーブル間隔、例えば100m、間隔毎
に伸縮ジヨイントを設けることが必要となり、設備費や
保守費が高くなる欠点がある。
As a result, short cable intervals, for example 100 m, require expansion and contraction joints to be provided at each interval, which has the disadvantage of increasing equipment and maintenance costs.

本案はケーブルの伸縮の吸収長が長く、しかも電気的に
も機械的にも安定した動作を行いうる極低温抵抗性ケー
ブル用伸縮ジヨイントの提供を目的とするもので、次に
図面を用いてその詳細を説明する。
The purpose of this project is to provide an expansion joint for cryogenic resistant cables that has a long absorption length for expansion and contraction of the cable and can operate electrically and mechanically stable. Explain details.

第2図a、 bは常温時(ケーブル導体の伸長時)と、
冷却時(ケーブル導体の収縮時)における本案の一実施
例を示す縦断面図および部分縦断面図である。
Figure 2 a and b are at room temperature (when the cable conductor is stretched),
FIG. 2 is a vertical cross-sectional view and a partial vertical cross-sectional view showing an embodiment of the present invention during cooling (when the cable conductor contracts).

図において1,2はケーブル導体、1’、2’はその中
空冷媒路、3,4は絶縁体、3’、4’はケーブルシー
スである。
In the figure, 1 and 2 are cable conductors, 1' and 2' are hollow refrigerant passages, 3 and 4 are insulators, and 3' and 4' are cable sheaths.

5,6は圧着スリーブで、ケーブル導体1,2の両端を
嵌めこんで圧着しうるように形成される。
5 and 6 are crimping sleeves, which are formed so that both ends of the cable conductors 1 and 2 can be fitted and crimped.

7は内部冷却管で、径の異なる第1、第2の管部7a、
7bから形成され、7aの一方の端部内に7bの一方の
端部が隙間少なく挿込まれて摺動部8を形成し、またそ
れぞれの他端部は圧着スリーブ5,6に固着される。
Reference numeral 7 designates an internal cooling pipe, which includes first and second pipe portions 7a having different diameters;
7b, one end of 7b is inserted into one end of 7a with a small gap to form a sliding part 8, and the other end of each is fixed to the crimp sleeves 5, 6.

そしてケーブル導体1,2の冷媒路1’、2’間に冷媒
通路を形成すると同時に、摺動部8によりケーブル導体
1,2の伸縮に対応して長さを変えうるように形成され
る。
A refrigerant passage is formed between the refrigerant passages 1' and 2' of the cable conductors 1 and 2, and at the same time, the length can be changed by the sliding part 8 in response to expansion and contraction of the cable conductors 1 and 2.

9は伸縮主電流通路体で、柔軟な可撓線例えば細線を撚
合せて作られた、ケーブル導体1,2と同一断面積をも
つ太さの軟銅撚線を内部冷却管7の周囲に巻いて形成さ
れ、その両端は圧着スリーブ5,6に固着されて、圧着
スリーブがケーブル導体1,2に圧着されたとき主電流
通路を形成する。
Reference numeral 9 denotes a telescoping main current path body, which is made by twisting together flexible flexible wires, such as thin wires, and winds annealed copper strands of the same thickness as the cable conductors 1 and 2 around the internal cooling pipe 7. The ends thereof are fixed to the crimp sleeves 5, 6 to form the main current path when the crimp sleeves are crimped onto the cable conductors 1, 2.

また軟銅撚線を常温時(ケーブル導体伸長時)例えば第
2図aのように、内部冷却管7の外径より内径が大であ
って線と線の間隔がなく、しかも巻付角θがθ〉45°
となるように所要の長さ及び本数だけ巻く。
Furthermore, when the annealed copper stranded wire is used at room temperature (when the cable conductor is stretched), for example, as shown in Fig. 2a, the inner diameter is larger than the outer diameter of the internal cooling pipe 7, there is no space between the wires, and the winding angle θ is θ〉45°
Wrap the required length and number of wires so that

そして軟銅撚線の両端がケーブル導体1,2の収縮によ
って左右外方に引かれたとき、第2図すに示すように線
と線の間隔を広げながら内径が最初の値から内部冷却管
7の外径まで小となって伸長が行われ、ケーブル導体1
,2の収縮を良好な接続状態を保ったまま吸収できるよ
うにする。
When both ends of the annealed copper stranded wire are pulled outward to the left and right by the contraction of the cable conductors 1 and 2, the inner diameter changes from the initial value to the internal cooling pipe 7 while increasing the distance between the wires, as shown in Figure 2. The cable conductor 1 is elongated by reducing its outer diameter to
, 2 can be absorbed while maintaining a good connection state.

10は導体電位用円筒であって、一方の端部が他方の端
部内に隙間少なく挿込まれて摺動部11を形成する第1
、第2の管部10a、10bから形成され、それぞれの
テーパをもった端部は圧着スリーブ5,6の周面に同心
的に固着される。
10 is a cylinder for conductor potential, and one end is inserted into the other end with a small gap to form a sliding part 11.
, second tube portions 10a, 10b, each having a tapered end portion concentrically fixed to the circumferential surface of the crimp sleeves 5, 6.

そしてその径は常温時における伸縮主電流通路体9の外
径に対応して選定される。
The diameter is selected in accordance with the outer diameter of the expandable main current path body 9 at room temperature.

12はシース電位用円筒で次の各部から形成される。12 is a cylinder for sheath potential and is formed from the following parts.

即ち一端にケーブルシース3′が隙間少なく入る円筒部
13a′をもちパツキン13a“によりシース3′と気
密を保つロート状の第1円筒13aと第2円筒13b即
ち一端に第1円筒13aとパツキンなどを介して気密に
接続される接続部13b′と、中間部の周面に設けた冷
媒入口13b″と、他端に設けたケーブル支持円筒13
b ”’をもつ第2円筒13bと、第3円筒13c即
ち一端が第2円筒13bの内周面と摺動し、かつ第3図
のように例えばオーリング13C′により気密状態が保
たれるようにした円筒部13C″をもつロート状の第3
円筒13c1および補強用円筒13d即ち上記ケーブル
支持円筒13 b ”’内を隙間少なく摺動しうるよう
に挿込れて、第3円筒13cと接続されるケーブル補強
用円筒13dとからなる。
That is, one end has a cylindrical portion 13a' into which the cable sheath 3' can fit with little clearance, and a funnel-shaped first cylinder 13a and a second cylinder 13b that maintain airtightness with the sheath 3' by a gasket 13a''. A connection part 13b' that is airtightly connected via a refrigerant inlet 13b'' provided on the circumferential surface of the intermediate part, and a cable support cylinder 13 provided at the other end.
b The second cylinder 13b with a ``'' and the third cylinder 13c, that is, one end, slide on the inner peripheral surface of the second cylinder 13b, and as shown in FIG. 3, an airtight state is maintained by, for example, an O-ring 13C'. A funnel-shaped third portion having a cylindrical portion 13C″
It consists of a cylinder 13c1 and a reinforcing cylinder 13d, that is, a cable reinforcing cylinder 13d that is inserted so as to be able to slide inside the cable support cylinder 13b'' with little clearance and connected to the third cylinder 13c.

そしてその径は冷媒例えば液体窒素により導体電位用円
筒10との間を絶縁するに充分な間隔が得られるように
選定される。
Its diameter is selected so as to provide a sufficient distance to insulate it from the conductor potential cylinder 10 using a coolant such as liquid nitrogen.

14.15は絶縁テープ層、16,17はシース電位用
巻線、18は絶縁用冷媒例えば液体窒素で、以上からな
る伸縮ジヨイント装置は次の要領でケーブル相互を接続
する。
14 and 15 are insulating tape layers, 16 and 17 are windings for sheath potential, and 18 is an insulating refrigerant, such as liquid nitrogen. The telescopic joint device consisting of the above connects cables to each other in the following manner.

先づ内部冷却管7と伸縮主電流通路体9および導体電位
用円筒10がそれぞれ固着接続された圧着スリーブ5,
6を絶縁体3,4にテーパをもたせたケーブル導体1,
2の端部に嵌めこんで圧着する。
First, a crimp sleeve 5 to which the internal cooling pipe 7, the telescoping main current passage body 9, and the conductor potential cylinder 10 are fixedly connected, respectively;
6 is a cable conductor 1 with tapered insulators 3 and 4,
Fit it onto the end of 2 and crimp it.

次に絶縁体3,4と導体電位用円筒10に跨って両側に
テーパをもつように絶縁テープを所要の絶縁強度をもつ
ように巻回して絶縁テープ層14.15を形成して、そ
の相手ケーブル側のテーパを残して周面にシース電位用
巻線16.17を巻回す。
Next, insulating tape layers 14 and 15 are formed by winding an insulating tape across the insulators 3 and 4 and the conductor potential cylinder 10 so as to have a taper on both sides so as to have the required insulation strength. Windings 16 and 17 for sheath potential are wound around the circumferential surface, leaving a taper on the cable side.

次いで一方のケーブルシース3′上に嵌めこんでおいた
、シース用円筒12の第1円筒13aを絶縁テープ層1
4上に位置させ、また他方のケーブルシース4′上に嵌
めこんでおいた、ケーブル補強用円筒13dと接続され
た第3円筒13cが、絶縁テープ層15上に位置するよ
うに、第2円筒13bをかぶせて第1円筒13aと接続
して接続部を包囲する。
Next, the first cylinder 13a of the sheath cylinder 12 fitted onto one cable sheath 3' is covered with the insulating tape layer 1.
4 and fitted onto the other cable sheath 4' and connected to the cable reinforcing cylinder 13d, the second cylinder 13c is positioned on the insulating tape layer 15. 13b and connects to the first cylinder 13a to surround the connecting portion.

そして最後に第2円筒13bに設けた冷媒送入口13b
″から、導体電位用円筒10とシース電位用円筒12間
の空間内に絶縁用の液体窒素17を送入して接続を完了
する。
Finally, the refrigerant inlet 13b provided in the second cylinder 13b
'', insulating liquid nitrogen 17 is introduced into the space between the conductor potential cylinder 10 and the sheath potential cylinder 12 to complete the connection.

このように軟銅撚線などの柔軟な可撓性を有するもので
作られたコイル状の伸縮主電流通路体9を、圧着スリー
ブ5,6によりケーブル導体1゜2を接続してケーブル
の収縮を吸収するようにすれば、従来の伸縮吸収用導体
のように伸縮の繰返しによって折損したりするおそれを
なくして長寿命とすることができ、長期間安定した送電
を行うことができる。
In this way, the coiled expandable main current path body 9 made of a flexible material such as stranded annealed copper wire is connected to the cable conductors 1°2 by crimp sleeves 5 and 6 to prevent the cable from shrinking. By absorbing the energy, it is possible to eliminate the risk of breakage due to repeated expansion and contraction, which is the case with conventional expansion and contraction absorbing conductors, resulting in a long lifespan and stable power transmission over a long period of time.

また折曲性をもたせるために断面積を制限されることが
なく、伸縮主電流通路体9に所望の電流容量を得る断面
積をもたせることができるので、冷却によって大容量の
ケーブル系の実現が可能である。
In addition, the cross-sectional area is not limited due to bendability, and the expandable main current path body 9 can have a cross-sectional area that provides the desired current capacity, so it is possible to realize a large-capacity cable system by cooling. It is possible.

また伸縮主電流通路体9の巻回すなわち長さを犬とすれ
ばする程ケーブル収縮時の伸びを大きくでき、従来のよ
うに折曲性などの点から長さが制限されるものに比べて
吸収長を長くできる。
In addition, the more the winding, that is, the length, of the telescopic main current path body 9, the greater the cable elongation when contracted, compared to conventional cables whose length is limited due to bendability. Absorption length can be increased.

従って伸縮吸収用導体を用いる場合に比べて伸縮ジヨイ
ント装置の設置間隔を長くすることができ、例えば従来
の5倍の500m間隔で設置することも可能となるので
、設置費、保守費等を低順とすることができる。
Therefore, compared to the case where a conductor for expansion and contraction is used, the installation interval of expansion and contraction joint devices can be made longer.For example, it is possible to install the expansion joint device at intervals of 500m, which is five times the conventional method, so installation costs, maintenance costs, etc. can be reduced. It can be ordered.

またこれに加えて本案では伸縮重電流通体9などを、圧
着スリーブ5.6によってケーブル導体1,2に圧着接
続でき、また伸縮主電流通路体9は柔軟性を有する材料
で作られているので、強い力で伸縮吸収用導体を折曲げ
て接続しなければならないものに比べて接続が簡単であ
る。
In addition, in this case, the telescopic heavy current conductor 9 and the like can be crimped and connected to the cable conductors 1 and 2 using the crimp sleeve 5.6, and the telescopic main current conductor 9 is made of a flexible material. This method is easier to connect than the one that requires bending the expansion/contraction absorbing conductor with strong force.

また伸縮主電流通路体9、内部冷却管7、導体電位用円
筒10などを、圧着スリーブ5,6に予め接続したもの
を工場内において製作できるので、品質の安定性が高く
、接続を一定の特性の下に行うことができる。
In addition, the telescopic main current passage body 9, internal cooling pipe 7, conductor potential cylinder 10, etc. can be manufactured in the factory with pre-connected parts to the crimp sleeves 5 and 6, resulting in high quality stability and constant connection. Can be done under the characteristics.

またケーブル導体1,2に接続された導体電位用円筒1
0により、伸縮主電流通路体9を被覆して同電位となる
ようにしている。
Also, a cylinder 1 for conductor potential connected to cable conductors 1 and 2.
0 to cover the expandable main current path body 9 so that it has the same potential.

従って伸縮主電流通路体の周面に凹凸があっても、また
伸縮により表面の凹凸状態が変っても、これにより電界
が乱されることがないので、安定した絶縁を確保できる
Therefore, even if there are irregularities on the circumferential surface of the expandable main current path body, or even if the surface irregularities change due to expansion and contraction, the electric field is not disturbed thereby, and stable insulation can be ensured.

また導体電位用円筒10とシース電位用円筒12の間の
絶縁は両端部のみを絶縁テープ14.15により行って
おり、その中間部は液状の冷媒により行っている。
Insulation between the conductor potential cylinder 10 and the sheath potential cylinder 12 is provided only at both ends by insulating tape 14, 15, and at the middle part by a liquid refrigerant.

従ってシース電位用円筒12の安定な伸縮を可能とする
と同時に、伸縮によって電界が乱されることがなく、シ
かも絶縁テープ層14,15から液体窒素層17への移
行にストレスコーン構造を採用できるので、安定な絶縁
を確保できる。
Therefore, stable expansion and contraction of the sheath potential cylinder 12 is possible, and at the same time, the electric field is not disturbed by expansion and contraction, and a stress cone structure can be adopted for the transition from the insulating tape layers 14 and 15 to the liquid nitrogen layer 17. Therefore, stable insulation can be ensured.

また本案では接続部はシース電位用円筒12によって被
覆されており、これを支持することによって接続部を安
定に固定できるので、振動などによる影響を受けること
が少ない。
Furthermore, in the present invention, the connecting portion is covered with the sheath potential cylinder 12, and by supporting this, the connecting portion can be stably fixed, so that it is less affected by vibrations and the like.

以上本案を一実施例を挙げて説明したが、圧着スリーブ
5,6の代りに、これと同じような作用を行う公知の手
段を用いることができる。
Although the present invention has been described above with reference to one embodiment, in place of the crimp sleeves 5 and 6, known means having the same effect as the crimp sleeves 5 and 6 may be used.

また以上の例では内部冷却管7を2本の冷却管を嵌め合
せて摺動部を作って伸縮するようにしたが、例えば1本
の内部冷媒路1’、2’内に摺動しうるように嵌めこむ
方法をとることもできるなど任意公知の伸縮方法を用い
ることができる。
Further, in the above example, the internal cooling pipe 7 is made to expand and contract by fitting two cooling pipes together to create a sliding part, but it is also possible to extend and contract the internal cooling pipe 7 into one internal refrigerant path 1', 2', for example. Any known expansion/contraction method can be used, such as a method of fitting it in as shown.

また本案はケーブル導体として常伝導性材と用いた極低
温抵抗性ケーブルについて説明したが、ケーブル導体を
ニオブなどの超伝導体を用いた超伝導ケーブルにも適用
できる。
Further, although this proposal has been described with reference to a cryogenic resistance cable using a normal conductor as a cable conductor, the present invention can also be applied to a superconducting cable using a superconductor such as niobium as a cable conductor.

また以上ではケーブル導体内に冷媒をして冷却するよう
にした形式のケーブルに本案を適用した例を示したが、
外部から冷却するものについても適用できる。
In addition, the above example shows an example in which the present invention is applied to a type of cable in which refrigerant is placed inside the cable conductor for cooling.
It can also be applied to things that are cooled from the outside.

この場合には前記実施例における内部冷却管7は伸縮主
電流通路体の巻回用としてのみ使用される。
In this case, the internal cooling pipe 7 in the embodiment described above is used only for winding the telescopic main current path body.

以上の説明から明らかなように、本案によれば冷却時に
おけるケーブルの収縮を電気的にも機械的にも安定した
状態で吸収しうる極低温抵抗性ケ−プル用伸縮ジヨイン
ト装置を提供しうるもので、ケーブルの大電力輸送の実
現に大きな貢献をなすものである。
As is clear from the above description, according to the present invention, it is possible to provide an expansion joint device for a cryogenic resistant cable that can absorb cable contraction during cooling in an electrically and mechanically stable state. This will make a major contribution to the realization of high-power cable transportation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、 bは従来の伸縮ジヨイント装置の伸縮状態
における断面図、第2図a、 bは伸縮状態における本
案の一実施例を示す縦断面図および部分縦断面図、第3
図は第3円筒と第2円筒の挿込み構造を示す部分縦断面
図である。 1.2・・・・・・ケーブル導体、1’、2’・・・・
・・中空冷媒路、3,4・・・・・・絶縁体、3’、4
’・・・・・・ケーブルシース、5,6・・・・・・圧
着スリーブ、7・・・・・・内部冷却管、訃・・・・・
その摺動部、9・・・・・・伸縮主電流通路体、10・
・・・・・導体電位用円筒、11・・・・・・摺動部、
12・・・・・・シース電位用円筒、13a・・・・・
・第1円筒、13b・・・・・・第2円筒、13c・・
・・・・第3円筒、13d・・・・・・ケーブル保護用
円筒、14,15・・・・・・絶縁テープ、16.17
・・・・・・シース電位用巻線、18・・・・・・液体
窒素絶縁層。
Figures 1a and b are cross-sectional views of a conventional telescopic joint device in an expanded and contracted state; Figures 2a and b are longitudinal and partial vertical cross-sectional views showing an embodiment of the present invention in an expanded and contracted state;
The figure is a partial vertical sectional view showing the insertion structure of the third cylinder and the second cylinder. 1.2...Cable conductor, 1', 2'...
...Hollow refrigerant path, 3, 4...Insulator, 3', 4
'... Cable sheath, 5, 6... Crimp sleeve, 7... Internal cooling pipe, End...
Its sliding part, 9... Expandable main current path body, 10.
...Cylinder for conductor potential, 11...Sliding part,
12... Cylinder for sheath potential, 13a...
・First cylinder, 13b...Second cylinder, 13c...
...Third cylinder, 13d... Cable protection cylinder, 14, 15... Insulating tape, 16.17
... Sheath potential winding, 18 ... Liquid nitrogen insulating layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 伸縮部を有する管の周囲に、コイル状に巻かれた柔軟性
を有する伸縮主電流通路体と、その外周を包囲するよう
に設けられた伸縮部を有する導体電位用円筒の両端のそ
れぞれを第1、第2接続具に接続してなるケーブル導体
の伸縮ジヨイント部、および上記導体電位用円筒の外周
面との間に絶縁用空隙を作るようにケーブル接続部を包
囲する伸縮部を有するシース電位用円筒とを備え、上記
第1、第2被接続ケーブルの両端部に接続したのち、両
端のケーブルシースと導体電位用円筒間にまたがって絶
縁層を設けたのち、上記導体電位用円筒とシース電位用
円筒間の空隙に液体冷媒を充填して接続するようにした
極低温ケーブル用伸縮ジヨイント装置。
A flexible main current path body is coiled around a tube having a stretchable part, and a conductor potential cylinder having a stretchable part is provided so as to surround its outer periphery. 1. A sheath potential having an extendable part surrounding the cable connection part so as to create an insulating gap between the extendable joint part of the cable conductor connected to the second connector and the outer peripheral surface of the conductor potential cylinder. After connecting both ends of the first and second connected cables, an insulating layer is provided across the cable sheaths at both ends and the cylinder for conductor potential, and then the cylinder for conductor potential and the sheath are connected to each other. A telescopic joint device for cryogenic cables in which the gap between potential cylinders is filled with liquid refrigerant for connection.
JP7253181U 1981-05-21 1981-05-21 Expansion joint device for cryogenic cables Expired JPS6029313Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253181U JPS6029313Y2 (en) 1981-05-21 1981-05-21 Expansion joint device for cryogenic cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253181U JPS6029313Y2 (en) 1981-05-21 1981-05-21 Expansion joint device for cryogenic cables

Publications (2)

Publication Number Publication Date
JPS5846227U JPS5846227U (en) 1983-03-29
JPS6029313Y2 true JPS6029313Y2 (en) 1985-09-04

Family

ID=29868316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253181U Expired JPS6029313Y2 (en) 1981-05-21 1981-05-21 Expansion joint device for cryogenic cables

Country Status (1)

Country Link
JP (1) JPS6029313Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826797B2 (en) * 2007-02-23 2011-11-30 住友電気工業株式会社 Superconducting cable line design method and superconducting cable line
US8624109B2 (en) * 2007-03-21 2014-01-07 Nkt Cables Ultera A/S Termination unit

Also Published As

Publication number Publication date
JPS5846227U (en) 1983-03-29

Similar Documents

Publication Publication Date Title
US7498519B2 (en) Joint for superconducting cable
US8091207B2 (en) Method of laying a superconductor cable
KR20050030145A (en) Terminal structure of superconducting cable and superconducting cable line therewith
JP2001525609A (en) High voltage induction device
US9570214B2 (en) Superconducting cable line
KR20190016583A (en) How to install electrical energy transmission link
US4394534A (en) Cryogenic cable and method of making same
JP5810925B2 (en) Room-temperature insulated superconducting cable connection structure
KR20150051141A (en) Superconducting power system and installing method of superconducting cable
JPS6029313Y2 (en) Expansion joint device for cryogenic cables
CN201146328Y (en) New type insulated bus connecting pipe
JP4414613B2 (en) Superconducting cable phase separation jig
JP6770459B2 (en) Superconducting cable
JP3877057B2 (en) High temperature superconducting cable
JP2001509961A (en) Electric machine windings with fixed parts
JP2000090998A (en) Superconducting cable joint
WO2016012049A1 (en) High voltage power transmission line
JP3566835B2 (en) Superconducting cable
JP5933861B2 (en) Tubular insulation apparatus, high voltage power equipment, and method for providing an insulated high voltage power cable
JP2003257260A (en) Superconductive cable and its manufacturing method
JPH0864041A (en) Superconducting cable
JP5273572B2 (en) Laying the superconducting cable
JP2005312283A (en) Pulling eye for superconductive cable and method of laying the cable using the pulling eye
Kosaki et al. Development and tests of extruded ethylenepropylene-rubber-insulated superconducting cable
JP6774830B2 (en) Superconducting cable connection structure