JPH10215561A - Rotor for superconducting rotary electric machine - Google Patents

Rotor for superconducting rotary electric machine

Info

Publication number
JPH10215561A
JPH10215561A JP9016829A JP1682997A JPH10215561A JP H10215561 A JPH10215561 A JP H10215561A JP 9016829 A JP9016829 A JP 9016829A JP 1682997 A JP1682997 A JP 1682997A JP H10215561 A JPH10215561 A JP H10215561A
Authority
JP
Japan
Prior art keywords
refrigerant
radiation shield
shaft
mounting shaft
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9016829A
Other languages
Japanese (ja)
Inventor
Mayumi Yamamoto
真由美 山本
Yasuhisa Konda
靖久 根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP9016829A priority Critical patent/JPH10215561A/en
Publication of JPH10215561A publication Critical patent/JPH10215561A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To reduce radiation input heat to a low-temperature part by splitting gas refrigerant for cooling a radiation shield in a rotating axis direction of the shield, and further splitting it. SOLUTION: A plurality of axial refrigerant channels 18a are provided at one end connected to a vent tube 15, and a plurality of axial refrigerant channels 18e are provided at the other end connected with an exhaust tube 17. These channels 18a, 18e are provided to communicate with split axial cooling channels 18b, 18d via circumferential cooling channels 19a, 19d. Further split axial cooling channels 18b, 18d are split via circumferential cooling channels 19b, 19d to provide an axial cooling channels 18c communicating between both ends. Thus, it is branched to many stages to necessary number to circumferentially uniformly cool a radiation shield 6, without increasing number of the tubes 15 and 17.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、巻線取付軸内部で
気化した冷却媒体(以下単に冷媒と呼ぶ)を流通させる
ことにより冷却する輻射シールドの温度分布を、輻射シ
ールドから巻線取付軸への輻射入熱が低減するように調
整した超電導回転電機の回転子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature distribution of a radiation shield, which is cooled by flowing a cooling medium (hereinafter simply referred to as a refrigerant) inside a winding attachment shaft, from the radiation shield to the winding attachment shaft. The present invention relates to a rotor of a superconducting rotary electric machine adjusted so as to reduce the radiant heat input to the rotor.

【0002】[0002]

【従来の技術】従来の超電導回転電機の回転子として
は、図9に示すような概略構造のものがある。図9にお
いて、1は超電導コイル1が収納された巻線取付軸2
で、この巻線取付軸2は内部に液体冷媒を貯蔵する中心
孔3を有している。また、巻線取付軸2の外周にはベッ
セル4が設けられ、液体冷媒の容器を形成している。
2. Description of the Related Art As a rotor of a conventional superconducting rotating electric machine, there is one having a schematic structure as shown in FIG. In FIG. 9, reference numeral 1 denotes a winding mounting shaft 2 in which a superconducting coil 1 is housed.
The winding mounting shaft 2 has a central hole 3 for storing the liquid refrigerant therein. A vessel 4 is provided on the outer periphery of the winding attachment shaft 2 to form a liquid refrigerant container.

【0003】このベッセル4の外径側には真空容器を形
成し、且つダンパ機能を有する外筒5が巻線取付軸2の
回転軸と同軸的に設けられている。ベッセル4と外筒5
との間の空間には、巻線取付軸2の回転軸と同軸的に薄
肉円筒状の輻射シールド6が設けられ、外部からの輻射
入熱を低減している。
A vacuum vessel is formed on the outer diameter side of the vessel 4 and an outer cylinder 5 having a damper function is provided coaxially with the rotation axis of the winding mounting shaft 2. Vessel 4 and outer cylinder 5
A thin cylindrical radiation shield 6 is provided coaxially with the rotation axis of the winding attachment shaft 2 in the space between them to reduce external radiant heat input.

【0004】巻線取付軸2と輻射シールド6は、トルク
チューブ7a,7bを介して外筒と共に端部軸8,9に
結合され、軸受10により支持されている。一方、11
は端部軸9の中心孔を通して巻線取付軸2の中心孔3内
に挿入された液体冷媒供給管、14はトルクチューブ7
a,7bの内周側に設けられ、巻線取付軸2内で気化し
た冷媒を通す冷却筒、15はこの冷却筒14内を通る気
化した冷媒を一方のトルクチューブ7a側より輻射シー
ルド内の冷媒流路16に導く通気管、17はこの通気管
15を通して流れる冷媒を他方のトルクチューブ7b側
に導いて外部に排気する排気管である。
The winding mounting shaft 2 and the radiation shield 6 are coupled to end shafts 8 and 9 together with an outer cylinder via torque tubes 7a and 7b, and are supported by bearings 10. On the other hand, 11
Is a liquid refrigerant supply pipe inserted into the center hole 3 of the winding attachment shaft 2 through the center hole of the end shaft 9;
a cooling cylinder, which is provided on the inner peripheral side of a and 7b and allows the refrigerant vaporized in the winding attachment shaft 2 to pass through; A ventilation pipe 17 leading to the refrigerant flow path 16 is an exhaust pipe for guiding the refrigerant flowing through the ventilation pipe 15 to the other torque tube 7b side and exhausting it to the outside.

【0005】このような概略構造の超電導回転電機の回
転子において、液体冷媒は回転子の回転軸中心に設けら
れた冷媒供給管11内を図示矢印12のように流れて中
心孔3に供給される。この中心孔3に供給された液体冷
媒は超電導コイル1を冷却し、巻線取付軸2内で気化し
た冷媒は図示矢印13のように巻線取付軸2の端部から
トルクチューブ7aを冷却し、その後通気管15を経由
して輻射シールド6内の冷媒流路16を通って輻射シー
ルド6を冷却し、その後排気管17を経由して外部に排
出される。
In the rotor of the superconducting rotary electric machine having such a schematic structure, the liquid refrigerant flows through a refrigerant supply pipe 11 provided at the center of the rotation shaft of the rotor as shown by an arrow 12 in FIG. You. The liquid refrigerant supplied to the center hole 3 cools the superconducting coil 1, and the refrigerant vaporized in the winding attachment shaft 2 cools the torque tube 7a from the end of the winding attachment shaft 2 as shown by an arrow 13 in the drawing. After that, the radiation shield 6 is cooled through the refrigerant flow path 16 in the radiation shield 6 via the ventilation pipe 15, and then discharged to the outside via the exhaust pipe 17.

【0006】ここで、輻射シールド6の詳細について述
べる。図10は図9のA−A線に沿って断面した輻射シ
ールド6の一部を示し、図11は同輻射シールドの展開
図を示すものである。
Here, details of the radiation shield 6 will be described. FIG. 10 shows a part of the radiation shield 6 taken along the line AA in FIG. 9, and FIG. 11 shows a development view of the radiation shield.

【0007】輻射シールド6は、図10及び図11に示
すように薄肉で円筒状の2層に構成され、内層と外層の
間に複数の軸方向の冷媒流路16が周方向に等間隔を存
してそれぞれ設けられている。また、輻射シールド6の
両端側に軸方向の複数の冷媒流路16と連通する周方向
の流路が設けられ、この周方向の流路に連通させて設け
られた端板の孔部に通気管15及び排気管17がそれぞ
れ接続されている。
As shown in FIGS. 10 and 11, the radiation shield 6 is formed of two thin and cylindrical layers, and a plurality of axial refrigerant flow paths 16 are arranged at equal intervals in the circumferential direction between the inner layer and the outer layer. And each is provided. Further, a circumferential passage communicating with the plurality of refrigerant passages 16 in the axial direction is provided at both end sides of the radiation shield 6, and a passage in an end plate provided in communication with the circumferential passage is provided. The trachea 15 and the exhaust pipe 17 are respectively connected.

【0008】このようにすれば、輻射シールド6全体を
冷却するために必要な軸方向の冷媒流路16の数に対し
て通気管15及び排気管17の数を少なくできる。上記
のような構成の超電導回転電機の回転子によれば、超電
導界磁コイルを極低温に冷却し、超電導界磁コイル1を
電気抵抗ゼロの超電導状態として強力な磁界が発生させ
ることにより、図示しない固定子に交流電力を発生させ
ることができる。
In this way, the number of the ventilation pipes 15 and the number of the exhaust pipes 17 can be reduced with respect to the number of the axial refrigerant flow paths 16 required for cooling the entire radiation shield 6. According to the rotor of the superconducting rotating electric machine having the above-described configuration, the superconducting field coil is cooled to a very low temperature, and the superconducting field coil 1 is brought into a superconducting state with zero electric resistance to generate a strong magnetic field. AC power can be generated in the stator that does not.

【0009】[0009]

【発明が解決しようとする課題】しかし、このような超
電導回転電機の回転子において、輻射シールド6の冷媒
流路の構造は図11のように輻射シールド全体を冷却す
るために必要な軸方向の冷媒流路16の数に対して通気
管15の数が少ないため、気体冷媒は通気管15近傍の
冷媒流路に多く流れ、輻射シールド全体に均等に行き渡
らず、冷媒が不均一になり、超電導コイルへの輻射入熱
が増加するという懸念があった。
However, in such a rotor of a superconducting rotary electric machine, the structure of the coolant flow path of the radiation shield 6 is such that the structure of the coolant passage in the axial direction necessary for cooling the entire radiation shield as shown in FIG. Since the number of the ventilation pipes 15 is smaller than the number of the refrigerant flow paths 16, the gas refrigerant flows more in the refrigerant flow path near the ventilation pipe 15, does not evenly cover the entire radiation shield, and the refrigerant becomes non-uniform. There was a concern that radiant heat input to the coil would increase.

【0010】また、上記のような構成の超電導回転電機
の回転子においては、輻射シールドの冷却は低温の気体
冷媒を駆動側から反駆動側への一方向に流すことによっ
て行われる。この輻射シールドの冷媒流路内を流れる気
体冷媒は、輻射シールドの熱を奪うにつれて温度が上昇
し、次第に輻射シールドとの温度差が小さくなるため、
熱交換量も小さくなる。このため、輻射シールド及び気
体冷媒の回転軸方向の温度分布は図12のようになる。
また高温の物体から低温の物体への輻射熱は一般に以下
の式で表される。
Further, in the rotor of the superconducting rotary electric machine having the above configuration, the radiation shield is cooled by flowing a low-temperature gaseous refrigerant in one direction from the driving side to the non-driving side. The gas refrigerant flowing in the coolant flow path of the radiation shield rises in temperature as it deprives the radiation shield of heat, so that the temperature difference with the radiation shield gradually decreases,
The amount of heat exchange also decreases. Therefore, the temperature distribution of the radiation shield and the gas refrigerant in the rotation axis direction is as shown in FIG.
The radiant heat from a high-temperature object to a low-temperature object is generally represented by the following equation.

【0011】Q=σ(T1 4 −T2 4 )×A221 Q:輻射熱 σ:ステファン・ボルツマン定数 T1 :高温側絶対温度 T2 :低温側絶対温度 F21:高温面A1 の低温面A2 に対する形態係数 A2 :低温面の面積 これにより、温度が4Kである巻線取付軸への輻射シー
ルドからの輻射熱は、輻射シールドの温度が低いほど小
さくなるが、輻射シールドの温度分布が例えば図13
(a)に示すように高低がある場合と(b)のように平
均温度で均一な場合とを比較すると、巻線取付軸への輻
射熱は(b)の方が小さい。また、輻射熱が大きいと、
冷媒の消費量が多くなるため、輻射シールドの温度分布
は(b)に近いことが望ましい。また、巻線取付軸のク
ールダウン時においても、輻射熱が大きいと冷媒消費量
が多くなるだけでなく、冷却に要する時間も長くなる。
このような傾向は超電導回転電機の軸長が長いほど顕著
になる。本発明は上記のような問題点に鑑みてなされた
もので、その目的は低温部への輻射入熱を低減できる超
電導回転電機の回転子を提供するにある。
[0011] Q = σ (T 1 4 -T 2 4) × A 2 F 21 Q: radiant sigma: Stefan-Boltzmann constant T 1: temperature side absolute temperature T 2: the low temperature side absolute temperature F 21: hot surfaces A 1 form factor a 2 to cold surfaces a 2: This area of the cold face, radiant heat from the radiation shield to the winding mounting shaft is temperature and 4K, the temperature of the radiation shield becomes smaller as the lower, the radiation shield FIG. 13 shows the temperature distribution
When comparing the case where there is a height as shown in (a) and the case where the average temperature is uniform as in (b), the radiant heat to the winding attachment shaft is smaller in (b). Also, if the radiant heat is large,
Since the consumption of the refrigerant increases, it is desirable that the temperature distribution of the radiation shield is close to (b). In addition, even when the winding shaft is cooled down, if the radiant heat is large, not only the refrigerant consumption increases but also the time required for cooling becomes long.
Such a tendency becomes more remarkable as the axial length of the superconducting rotating electric machine is longer. The present invention has been made in view of the above problems, and an object of the present invention is to provide a rotor of a superconducting rotary electric machine that can reduce radiant heat input to a low-temperature portion.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段により超電導回転電機の回
転子を構成するものである。請求項1に対応する発明
は、超電導コイルが収納され、内部に液体冷媒を貯蔵す
る中心孔を有する巻線取付軸と、この巻線取付軸の外周
に設けられ液体冷媒の容器を形成するベッセルと、この
ベッセルの外周に所定の空間を存して前記巻線取付軸と
同軸的に設けられると共に、両端が端部軸に取付けられ
た真空容器を形成するダンパ機能を有する外筒と、前記
ベッセルと外筒との間の空間に前記巻線取付軸と同軸的
に設けられ、且つ内部に軸方に多段に分岐する冷媒流路
を設けた円筒状の輻射シールドと、前記巻線取付軸と前
記輻射シールドを前記端部軸に結合するトルクチューブ
と、一方の前記端部軸の中心孔を通して前記巻線取付軸
の中心孔に挿入され、この中心孔に液体冷媒を供給する
液体冷媒供給管と、前記輻射シールド内に設けられた冷
媒流路の入口部へ前記巻線取付軸内で気化した気体冷媒
を導く通気管と、前記輻射シールド内の冷媒流路の出口
部から本体外部へ気体冷媒を導く通気管とを備える。
According to the present invention, a rotor of a superconducting rotary electric machine is constituted by the following means in order to achieve the above object. According to a first aspect of the present invention, there is provided a vessel in which a superconducting coil is housed and which has a central hole for storing a liquid refrigerant therein, and a vessel which is provided on an outer periphery of the coil mounting shaft and forms a liquid refrigerant container. An outer cylinder provided coaxially with the winding mounting shaft with a predetermined space on the outer periphery of the vessel and having a damper function of forming a vacuum vessel having both ends mounted on an end shaft; A cylindrical radiation shield provided coaxially with the winding mounting shaft in a space between the vessel and the outer cylinder, and having therein a refrigerant flow path branched in multiple stages in the axial direction; and the winding mounting shaft. And a torque tube that couples the radiation shield to the end shaft, and a liquid refrigerant supply that is inserted into the center hole of the winding attachment shaft through the center hole of one of the end shafts and supplies liquid refrigerant to the center hole. A tube, provided in the radiation shield Comprising the a vent tube for guiding the gaseous refrigerant vaporized into the inlet portion in the winding mounting shaft of the coolant channel, and a vent pipe for guiding gas refrigerant from the outlet of the refrigerant passage in the radiation shield to the body outside.

【0013】請求項1に対応する発明によれば、輻射シ
ールドを冷却する気体冷媒を輻射シールドの回転軸方向
にまず2分割し、さらに2分割することにより、周方向
全体に均一に冷媒が分流するので均一に冷却される。
According to the first aspect of the present invention, the gas refrigerant for cooling the radiation shield is first divided into two parts in the direction of the rotation axis of the radiation shield, and further divided into two parts, whereby the refrigerant is uniformly distributed throughout the circumferential direction. So it is cooled uniformly.

【0014】請求項2に対応する発明は、超電導コイル
が収納され、内部に液体冷媒を貯蔵する中心孔を有する
巻線取付軸と、この巻線取付軸の外周に設けられ液体冷
媒の容器を形成するベッセルと、このベッセルの外周に
所定の空間を存して前記巻線取付軸と同軸的に設けられ
ると共に、両端が端部軸に取付けられた真空容器を形成
するダンパ機能を有する外筒と、前記ベッセルと外筒と
の間の空間に前記巻線取付軸と同軸的に設けられ、且つ
内部に断面形状が軸方向にて変化する冷媒流路を設けた
円筒状の輻射シールドと、前記巻線取付軸と前記輻射シ
ールドを前記端部軸に結合するトルクチューブと、一方
の前記端部軸の中心孔を通して前記巻線取付軸の中心孔
に挿入され、この中心孔に液体冷媒を供給する液体冷媒
供給管と、前記輻射シールド内に設けられた冷媒流路の
入口部へ前記巻線取付軸内で気化した気体冷媒を導く通
気管と、前記輻射シールド内の冷媒流路の出口部から本
体外部へ気体冷媒を導く通気管とを備える。
According to a second aspect of the present invention, there is provided a winding mounting shaft in which a superconducting coil is housed and which has a central hole for storing a liquid refrigerant therein, and a liquid refrigerant container provided on the outer periphery of the winding mounting shaft. A vessel to be formed, and an outer cylinder having a damper function for forming a vacuum vessel coaxially provided with the winding mounting shaft at a predetermined space around the outer periphery of the vessel and having both ends mounted on an end shaft. A cylindrical radiation shield provided coaxially with the winding mounting shaft in a space between the vessel and the outer cylinder, and having a refrigerant flow path having a cross-sectional shape that changes in the axial direction therein, A torque tube that couples the winding attachment shaft and the radiation shield to the end shaft, and is inserted into a center hole of the winding attachment shaft through a center hole of one of the end shafts, and a liquid refrigerant is supplied to the center hole. A liquid refrigerant supply pipe for supplying, A vent pipe for introducing gaseous refrigerant vaporized in the winding mounting shaft to an inlet of a refrigerant flow path provided in the shield; and a flow pipe for introducing gas refrigerant to the outside of the main body from an outlet of the refrigerant flow path in the radiation shield. With trachea.

【0015】請求項2に対応する発明によれば、輻射シ
ールド内冷媒流路の断面積とぬれぶち面積を軸方向にて
変化させることにより、断面積を変化させれば気体冷媒
の流速、即ち熱伝達率を変化させることができる。ま
た、気体冷媒と輻射シールドとの熱交換面積を変化させ
ることができる。したがって、冷却熱量Qを変化させる
ことができる。
According to the invention corresponding to claim 2, by changing the cross-sectional area and the wetting area of the refrigerant flow path in the radiation shield in the axial direction, if the cross-sectional area is changed, the flow rate of the gas refrigerant, The heat transfer coefficient can be changed. Further, the heat exchange area between the gas refrigerant and the radiation shield can be changed. Therefore, the amount of cooling heat Q can be changed.

【0016】請求項3に対応する発明は、超電導コイル
が収納され、内部に液体冷媒を貯蔵する中心孔を有する
巻線取付軸と、この巻線取付軸の外周に設けられ液体冷
媒の容器を形成するベッセルと、このベッセルの外周に
所定の空間を存して前記巻線取付軸と同軸的に設けられ
ると共に、両端が端部軸に取付けられた真空容器を形成
するダンパ機能を有する外筒と、前記ベッセルと外筒と
の間の空間に前記巻線取付軸と同軸的に設けられ、且つ
内部に内面が部分的に熱伝導率の小さい物質で覆われた
冷媒流路を設けた円筒状の輻射シールドと、前記巻線取
付軸と前記輻射シールドを前記端部軸に結合するトルク
チューブと、一方の前記端部軸の中心孔を通して前記巻
線取付軸の中心孔に挿入され、この中心孔に液体冷媒を
供給する液体冷媒供給管と、前記輻射シールド内に設け
られた冷媒流路の入口部へ前記巻線取付軸内で気化した
気体冷媒を導く通気管と、前記輻射シールド内の冷媒流
路の出口部から本体外部へ気体冷媒を導く通気管とを備
える。
According to a third aspect of the present invention, there is provided a winding mounting shaft accommodating a superconducting coil and having a central hole for storing a liquid refrigerant therein, and a liquid refrigerant container provided on the outer periphery of the winding mounting shaft. A vessel to be formed, and an outer cylinder having a damper function for forming a vacuum vessel coaxially provided with the winding mounting shaft at a predetermined space around the outer periphery of the vessel and having both ends mounted on an end shaft. And a cylinder provided coaxially with the winding mounting shaft in a space between the vessel and the outer cylinder, and provided with a refrigerant flow path in which an inner surface is partially covered with a substance having a small thermal conductivity. Shaped radiation shield, a torque tube that couples the winding attachment shaft and the radiation shield to the end shaft, and inserted into the center hole of the winding attachment shaft through the center hole of one of the end shafts. Liquid refrigerant that supplies liquid refrigerant to the center hole A supply pipe, a ventilation pipe for guiding a gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and an external part of the main body from an outlet of the refrigerant flow path in the radiation shield. And a vent pipe for guiding the gaseous refrigerant to

【0017】請求項3に対応する発明によれば、輻射シ
ールド内に設けられた冷媒流路の内面を部分的に熱伝導
率の小さい物質で覆っているので、気体冷媒と輻射シー
ルドとの熱交換を部分的に抑制することができる。
According to the third aspect of the present invention, since the inner surface of the refrigerant flow path provided in the radiation shield is partially covered with a substance having a low thermal conductivity, the heat between the gas refrigerant and the radiation shield is reduced. Exchange can be partially suppressed.

【0018】請求項4に対応する発明は、超電導コイル
が収納され、内部に液体冷媒を貯蔵する中心孔を有する
巻線取付軸と、この巻線取付軸の外周に設けられ液体冷
媒の容器を形成するベッセルと、このベッセルの外周に
所定の空間を存して前記巻線取付軸と同軸的に設けられ
ると共に、両端が端部軸に取付けられた真空容器を形成
するダンパ機能を有する外筒と、前記ベッセルと外筒と
の間の空間に前記巻線取付軸と同軸的に設けられ、且つ
内部に冷媒供給側と反対側の端部の手前で折返して気体
冷媒の流れ方向を反転させる形状とすると共に、入口と
出口を近付けた冷媒流路を設けた円筒状の輻射シールド
と、前記巻線取付軸と前記輻射シールドを前記端部軸に
結合するトルクチューブと、一方の前記端部軸の中心孔
を通して前記巻線取付軸の中心孔に挿入され、この中心
孔に液体冷媒を供給する液体冷媒供給管と、前記輻射シ
ールド内に設けられた冷媒流路の入口部へ前記巻線取付
軸内で気化した気体冷媒を導く通気管と、前記輻射シー
ルド内の冷媒流路の出口部から本体外部へ気体冷媒を導
く通気管とを備える。
According to a fourth aspect of the present invention, there is provided a winding mounting shaft accommodating a superconducting coil and having a central hole for storing a liquid refrigerant therein, and a liquid refrigerant container provided on the outer periphery of the winding mounting shaft. A vessel to be formed, and an outer cylinder having a damper function for forming a vacuum vessel coaxially provided with the winding mounting shaft at a predetermined space around the outer periphery of the vessel and having both ends mounted on an end shaft. And provided in the space between the vessel and the outer cylinder coaxially with the winding mounting shaft, and internally turned back just before the end opposite to the refrigerant supply side to reverse the flow direction of the gas refrigerant. With a shape, a cylindrical radiation shield provided with a refrigerant flow path having an inlet and an outlet close to each other, a torque tube that couples the winding mounting shaft and the radiation shield to the end shaft, and one of the end portions The winding through the center hole of the shaft A liquid refrigerant supply pipe inserted into the center hole of the shaft and supplying liquid refrigerant to the center hole; and a gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield. And a vent pipe for guiding gaseous refrigerant from the outlet of the refrigerant flow path in the radiation shield to the outside of the main body.

【0019】請求項4に対応する発明によれば、輻射シ
ールド内に設けられる冷媒流路を軸方向端で折返す形状
とし、気体冷媒の流れ方向を反転させ、冷媒流路の入口
と出口を近くに設けるようにしたので、輻射シールドの
軸方向の温度分布を均一化することができる。
According to the fourth aspect of the present invention, the refrigerant flow path provided in the radiation shield is formed so as to be bent at the axial end, the flow direction of the gas refrigerant is reversed, and the inlet and the outlet of the refrigerant flow path are formed. Since it is provided near, the temperature distribution in the axial direction of the radiation shield can be made uniform.

【0020】請求項5に対応する発明は、超電導コイル
が収納され、内部に液体冷媒を貯蔵する中心孔を有する
巻線取付軸と、この巻線取付軸の外周に設けられ液体冷
媒の容器を形成するベッセルと、このベッセルの外周に
所定の空間を存して前記巻線取付軸と同軸的に設けられ
ると共に、両端が端部軸に取付けられた真空容器を形成
するダンパ機能を有する外筒と、前記ベッセルと外筒と
の間の空間に前記巻線取付軸と同軸的に設けられ、且つ
内部に気体冷媒の向きを周方向位置で反転する冷媒流路
を設けた円筒状の輻射シールドと、前記巻線取付軸と前
記輻射シールドを前記端部軸に結合するトルクチューブ
と、一方の前記端部軸の中心孔を通して前記巻線取付軸
の中心孔に挿入され、この中心孔に液体冷媒を供給する
液体冷媒供給管と、前記輻射シールド内に設けられた冷
媒流路の入口部へ前記巻線取付軸内で気化した気体冷媒
を導く通気管と、前記輻射シールド内の冷媒流路の出口
部から本体外部へ気体冷媒を導く通気管とを備える。
According to a fifth aspect of the present invention, there is provided a winding mounting shaft which houses a superconducting coil and has a central hole for storing a liquid refrigerant therein, and a liquid refrigerant container provided on the outer periphery of the winding mounting shaft. A vessel to be formed, and an outer cylinder having a damper function for forming a vacuum vessel coaxially provided with the winding mounting shaft at a predetermined space around the outer periphery of the vessel and having both ends mounted on an end shaft. And a cylindrical radiation shield provided coaxially with the winding mounting shaft in a space between the vessel and the outer cylinder, and internally provided with a refrigerant flow path that reverses the direction of the gas refrigerant at a circumferential position. A torque tube that couples the winding mounting shaft and the radiation shield to the end shaft; and a center hole of the one end shaft inserted into the center hole of the winding mounting shaft, and a liquid A liquid refrigerant supply pipe for supplying refrigerant A vent pipe for introducing gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and a gas refrigerant to the outside of the main body from an outlet of the refrigerant flow path in the radiation shield. And a vent pipe for guiding.

【0021】請求項5に対応する発明によれば、輻射シ
ールド内に設けられる冷媒流路に流れる気体冷媒の向き
を周方向位置で交互に反対にすることにより、輻射シー
ルドの軸方向の温度分布を均一にすることができる。
According to the fifth aspect of the present invention, the direction of the gaseous refrigerant flowing in the refrigerant flow path provided in the radiation shield is alternately reversed at the circumferential position, so that the temperature distribution of the radiation shield in the axial direction is obtained. Can be made uniform.

【0022】請求項6に対応する発明は、超電導コイル
が収納され、内部に液体冷媒を貯蔵する中心孔を有する
巻線取付軸と、この巻線取付軸の外周に設けられ液体冷
媒の容器を形成するベッセルと、このベッセルの外周に
所定の空間を存して前記巻線取付軸と同軸的に設けられ
ると共に、両端が端部軸に取付けられた真空容器を形成
するダンパ機能を有する外筒と、前記ベッセルと外筒と
の間の空間に前記巻線取付軸と同軸的に設けられ、且つ
内部に周方向位置で交互に反対側から気体冷媒を供給
し、この気体冷媒が軸方向途中で折返す形状の冷媒流路
を設けた円筒状の輻射シールドと、前記巻線取付軸と前
記輻射シールドを前記端部軸に結合するトルクチューブ
と、一方の前記端部軸の中心孔を通して前記巻線取付軸
の中心孔に挿入され、この中心孔に液体冷媒を供給する
液体冷媒供給管と、前記輻射シールド内に設けられた冷
媒流路の入口部へ前記巻線取付軸内で気化した気体冷媒
を導く通気管と、前記輻射シールド内の冷媒流路の出口
部から本体外部へ気体冷媒を導く通気管とを備える。
According to a sixth aspect of the present invention, there is provided a winding mounting shaft which houses a superconducting coil and has a central hole for storing a liquid refrigerant therein, and a liquid refrigerant container provided on the outer periphery of the winding mounting shaft. A vessel to be formed, and an outer cylinder having a damper function for forming a vacuum vessel coaxially provided with the winding mounting shaft at a predetermined space around the outer periphery of the vessel and having both ends mounted on an end shaft. And a gas refrigerant is provided coaxially with the winding mounting shaft in a space between the vessel and the outer cylinder, and alternately supplies a gas refrigerant from an opposite side at a circumferential position therein, and the gas refrigerant flows in the axial direction. A cylindrical radiation shield provided with a refrigerant flow path having a shape folded back in, a torque tube coupling the winding mounting shaft and the radiation shield to the end shaft, and a center hole of one of the end shafts. Inserted into the center hole of the winding mounting shaft A liquid refrigerant supply pipe for supplying a liquid refrigerant to the center hole, a ventilation pipe for guiding gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and the radiation shield. A vent pipe for guiding gaseous refrigerant from the outlet of the internal refrigerant flow path to the outside of the main body.

【0023】請求項6に対応する発明によれば、輻射シ
ールド内に設けられる冷媒流路に周方向位置で交互に反
対側から気体冷媒を供給した場合に、反対側から供給し
た気体冷媒の流路を軸方向途中で折返す形状とし、冷媒
流路の入口と出口とを近くにしたので、配管の構成を簡
略化することができる。
According to the invention, when the gas refrigerant is alternately supplied from the opposite side to the refrigerant flow path provided in the radiation shield at the circumferential position, the flow of the gas refrigerant supplied from the opposite side is changed. Since the path is formed so as to be folded in the axial direction and the inlet and the outlet of the refrigerant flow path are close to each other, the configuration of the pipe can be simplified.

【0024】請求項7に対応する発明は、超電導コイル
が収納され、内部に液体冷媒を貯蔵する中心孔を有する
巻線取付軸と、この巻線取付軸の外周に設けられ液体冷
媒の容器を形成するベッセルと、このベッセルの外周に
所定の空間を存して前記巻線取付軸と同軸的に設けられ
ると共に、両端が端部軸に取付けられた真空容器を形成
するダンパ機能を有する外筒と、前記ベッセルと外筒と
の間の空間に前記巻線取付軸と同軸的に設けられ、且つ
内部に両端から気体冷媒を供給し、各々の気体冷媒が軸
方向中央で折返す形状の冷媒流路を設けた円筒状の輻射
シールドと、前記巻線取付軸と前記輻射シールドを前記
端部軸に結合するトルクチューブと、一方の前記端部軸
の中心孔を通して前記巻線取付軸の中心孔に挿入され、
この中心孔に液体冷媒を供給する液体冷媒供給管と、前
記輻射シールド内に設けられた冷媒流路の入口部へ前記
巻線取付軸内で気化した気体冷媒を導く通気管と、前記
輻射シールド内の冷媒流路の出口部から本体外部へ気体
冷媒を導く通気管とを備える。
According to a seventh aspect of the present invention, there is provided a winding mounting shaft in which a superconducting coil is housed and which has a central hole for storing a liquid refrigerant therein, and a liquid refrigerant container provided on the outer periphery of the winding mounting shaft. A vessel to be formed, and an outer cylinder having a damper function for forming a vacuum vessel coaxially provided with the winding mounting shaft at a predetermined space around the outer periphery of the vessel and having both ends mounted on an end shaft. And a refrigerant having a shape provided coaxially with the winding mounting shaft in a space between the vessel and the outer cylinder, and supplying gas refrigerant from both ends to the inside, and each gas refrigerant is folded back at the center in the axial direction. A cylindrical radiation shield provided with a flow path, a torque tube that couples the winding mounting shaft and the radiation shield to the end shaft, and a center of the winding mounting shaft through a center hole of one of the end shafts; Inserted into the hole,
A liquid refrigerant supply pipe for supplying a liquid refrigerant to the center hole, a ventilation pipe for guiding gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and the radiation shield. A vent pipe for guiding gaseous refrigerant from the outlet of the internal refrigerant flow path to the outside of the main body.

【0025】請求項7に対応する発明によれば、輻射シ
ールドに設けられる冷媒流路を軸方向中央手前で折返す
形状とし、両端から気体冷媒を供給、排出することによ
り、軸方向長さの半分ずつをそれぞれ均一に冷却できる
ので、軸方向の温度差はさらに小さくなる。
According to the seventh aspect of the present invention, the refrigerant flow path provided in the radiation shield is formed to have a shape folded back near the center in the axial direction, and the gas refrigerant is supplied and discharged from both ends to thereby reduce the axial length. Since each half can be cooled uniformly, the temperature difference in the axial direction is further reduced.

【0026】[0026]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。なお、図9乃至図11と同一部分に
は同一符号を付してその説明を省略し、ここでは異なる
点について述べる。
Embodiments of the present invention will be described below with reference to the drawings. 9 to 11 are denoted by the same reference numerals, description thereof will be omitted, and different points will be described here.

【0027】図1は本発明による超電導回転電機の回転
子の第1の実施の形態における輻射シールドの展開図を
示すものである。第1の実施の形態における輻射シール
ド6においては、図1に示すように通気管15が接続さ
れる一端部に複数の軸方向の冷媒流路18aをそれぞれ
設けると共に、排気管17が接続される他端部にも複数
の軸方向の冷媒流路18eをそれぞれ設け、これら軸方
向の冷却流路18a,18eを周方向の冷却流路19
a,19dを介してそれぞれ2分岐した軸方向の冷却流
路18b,18dに連通させて設け、さらに2分岐した
各軸方向の冷却流路18b,18dを周方向の冷却流路
19b,19cを介してそれぞれ2分岐して両端部間が
連通する軸方向の冷媒流路18cを設ける構成としたも
のである。
FIG. 1 is a development view of a radiation shield in a first embodiment of a rotor of a superconducting rotary electric machine according to the present invention. In the radiation shield 6 according to the first embodiment, as shown in FIG. 1, a plurality of axial refrigerant flow paths 18a are provided at one end to which the ventilation pipe 15 is connected, and an exhaust pipe 17 is connected. A plurality of axial refrigerant passages 18e are also provided at the other end, and these axial cooling passages 18a, 18e are connected to the circumferential cooling passages 19e.
a and 19d are provided so as to be in communication with the axially branched cooling passages 18b and 18d, respectively, and the two branched axially cooled cooling passages 18b and 18d are connected to the circumferential cooling passages 19b and 19c. An axial refrigerant flow channel 18c is provided, which branches into two via each other and communicates between both ends.

【0028】このような構成の輻射シールド6におい
て、気体冷媒13が通気管15から輻射シールド6内に
供給されると、この気体冷媒13は軸方向の冷媒流路1
8aから周方向の冷媒流路19aを介して2つに分岐さ
れた軸方向の冷媒流路18bに流入するので、気体冷媒
13はそれぞれに均等に分流する。さらに、冷媒流路1
8bに分流した気体冷媒13は周方向の冷媒流路19b
を介して2つに分岐された軸方向の冷媒流路18cに流
入するので、気体冷媒13はさらにそれぞれ均等に分流
する。
In the radiation shield 6 having such a configuration, when the gas refrigerant 13 is supplied into the radiation shield 6 from the ventilation pipe 15, the gas refrigerant 13 is supplied to the axial refrigerant flow path 1.
Since the refrigerant flows into the axial refrigerant flow path 18b branched into two from the refrigerant flow path 8a through the circumferential refrigerant flow path 19a, the gaseous refrigerant 13 is equally divided. Further, the refrigerant channel 1
8b is divided into a refrigerant flow path 19b in the circumferential direction.
Flows into the axial refrigerant flow path 18c which is branched into two, and the gas refrigerant 13 is further equally divided.

【0029】そして、冷媒流路18cに流入した気体冷
媒13は、輻射シールド全体を冷却しながら軸端に向か
って流れ、流入側とは逆に周方向の冷媒流路19c、軸
方向の冷媒流路18d、周方向の冷媒流路19d及び軸
方向の冷媒流路18eの順で均等に合流し、排気管17
を通して輻射シールド外部へ排気される。
The gaseous refrigerant 13 flowing into the refrigerant flow path 18c flows toward the axial end while cooling the entire radiation shield, and is opposite to the inflow side in the circumferential refrigerant flow path 19c and the axial refrigerant flow. Path 18d, a circumferential refrigerant flow path 19d, and an axial refrigerant flow path 18e.
Through the radiation shield to the outside.

【0030】従って、このようにして必要な数にまで多
段に分流することにより、通気管15及び排気管17の
数を増やさずに輻射シールド6を周方向に均一に冷却す
ることができる。
Accordingly, by dividing the flow into the required number in multiple stages, the radiation shield 6 can be uniformly cooled in the circumferential direction without increasing the number of the ventilation pipes 15 and the exhaust pipes 17.

【0031】図2は上記第1の実施の形態における輻射
シールド6の変形例を示す展開図である。図2に示す例
では、周方向の冷媒流路19a,19dから2分岐して
周方向冷媒流路19b,19cに連通する流路18f,
18gをY字形にしたものである。このような構成とす
れば、分岐による損失が減少する。
FIG. 2 is a developed view showing a modification of the radiation shield 6 in the first embodiment. In the example shown in FIG. 2, the flow path 18f, which branches off from the circumferential refrigerant flow paths 19a and 19d and communicates with the circumferential refrigerant flow paths 19b and 19c,
18 g is Y-shaped. With such a configuration, the loss due to branching is reduced.

【0032】図3は本発明による超電導回転電機の回転
子の第2の実施の形態における輻射シールドの一つの冷
媒流路部分の斜視図を示すものである。第2の実施の形
態における輻射シールド6においては、図3に示すよう
にシールド内に周方向に等間隔を存して設けられる複数
の軸方向の冷媒流路20として気体冷媒21の流入側か
ら流出側に向かうにつれて径方向幅が小さくなるように
したものである。
FIG. 3 is a perspective view of one refrigerant flow path portion of a radiation shield in a rotor of a superconducting rotary electric machine according to a second embodiment of the present invention. In the radiation shield 6 according to the second embodiment, as shown in FIG. 3, a plurality of axial refrigerant flow paths 20 provided at equal intervals in the circumferential direction in the shield from the inflow side of the gas refrigerant 21. The radial width becomes smaller toward the outflow side.

【0033】このように流路断面形状を変化させること
により、気体冷媒の流速を早め、熱伝達率を高めること
により、冷却を促進させることができる。また、気体冷
媒の温度上昇による冷却量の低下を補うことができ、輻
射シールドの温度を均一化することができる。この他に
も、流路断面積を変化させずに分岐によって熱交換面積
を増加させ、冷却量を増加させてもよい。
By changing the cross-sectional shape of the flow path as described above, the flow rate of the gaseous refrigerant can be increased, and the heat transfer rate can be increased, thereby promoting cooling. Further, it is possible to compensate for a decrease in the cooling amount due to a rise in the temperature of the gas refrigerant, and to make the temperature of the radiation shield uniform. Alternatively, the heat exchange area may be increased by branching without changing the flow path cross-sectional area, and the cooling amount may be increased.

【0034】図4は本発明による超電導回転電機の回転
子の第3の実施の形態における輻射シールドの冷媒流路
部分を破断して示す斜視図である。第3の実施の形態に
おける輻射シールド6においては、図4に示すようにシ
ールド内に周方向に等間隔を存して設けられる複数の軸
方向の冷媒流路22a,22bに対して、冷媒流路22
aの内面を軸方向中央まで熱伝導率の小さい物質、例え
ば絶縁物23で覆い、冷媒流路22bの内面は絶縁物で
覆わない構成とするものである。
FIG. 4 is a perspective view of a rotor of a superconducting rotary electric machine according to a third embodiment of the present invention, in which a coolant passage portion of a radiation shield is cut away. In the radiation shield 6 according to the third embodiment, as shown in FIG. 4, the coolant flows through a plurality of axial coolant channels 22 a and 22 b provided at equal intervals in the circumferential direction in the shield. Road 22
The inner surface of a is covered with a substance having a low thermal conductivity, for example, an insulator 23, up to the center in the axial direction, and the inner surface of the coolant channel 22b is not covered with the insulator.

【0035】このような構成の輻射シールド6とすれ
ば、冷媒流路22a内を流れる気体冷媒は低温を保った
まま輻射シールド中央に達し、輻射シールドの出口側半
分を冷却する。また、冷媒流路22bを流れる気体冷媒
は主として輻射シールドの冷媒入口側半分を冷却する。
With the radiation shield 6 having such a configuration, the gaseous refrigerant flowing in the refrigerant passage 22a reaches the center of the radiation shield while maintaining a low temperature, and cools the outlet half of the radiation shield. The gaseous refrigerant flowing through the refrigerant passage 22b mainly cools a half of the radiation shield on the refrigerant inlet side.

【0036】従って、気体冷媒による冷却量を調整し、
輻射シールドの温度を均一化することができる。絶縁物
で覆う範囲は気体冷媒の流量等によっては輻射シールド
中央までに限られれない。また、冷媒流路22a,22
bは周方向に交互に配置してもよいし、2:1等の割合
で配置してもよい。
Therefore, the amount of cooling by the gas refrigerant is adjusted,
The temperature of the radiation shield can be made uniform. The range covered by the insulator is not limited to the center of the radiation shield depending on the flow rate of the gaseous refrigerant. Also, the refrigerant flow paths 22a, 22
b may be alternately arranged in the circumferential direction, or may be arranged at a ratio such as 2: 1.

【0037】図5は本発明による超電導回転電機の回転
子の第4の実施の形態における輻射シールドの展開図を
示すものである。第4の実施の形態における輻射シール
ド6においては、図5に示すように一端部から軸方向の
冷媒流路24aとこの冷媒流路24aを他端部の手前で
折返して一端部へ戻る冷媒流路24bとを対とする複数
の冷媒流路を周方向に等間隔で設けるものである。
FIG. 5 is a developed view of a radiation shield of a rotor of a superconducting rotary electric machine according to a fourth embodiment of the present invention. In the radiation shield 6 according to the fourth embodiment, as shown in FIG. 5, the refrigerant flow path 24a extends in the axial direction from one end and the refrigerant flow returns to the one end by folding the refrigerant flow path 24a short of the other end. A plurality of refrigerant passages paired with the passage 24b are provided at equal intervals in the circumferential direction.

【0038】このような構成の輻射シールドとすれば、
通気管より流入する気体冷媒は冷媒流路24aを流れ他
端部手前で折返して冷媒流路24bを通って排気管より
排出される流路過程において、輻射シールドを冷却する
ことによって気体冷媒の温度が上昇するが、この場合冷
媒流路24aの図示左から右へ行くほど温度は高くな
り、折返して冷媒流路24bの図示右から左へ行くにつ
れて温度が高くなっているので、輻射シールド全体とし
ては冷媒流路24a,24bによって軸方向の温度分布
を平均すると均一化される。
With a radiation shield having such a configuration,
The gaseous refrigerant flowing from the vent pipe flows through the refrigerant flow path 24a, turns back just before the other end, and is discharged from the exhaust pipe through the refrigerant flow path 24b. However, in this case, the temperature becomes higher as going from the left to the right in the drawing of the refrigerant flow path 24a, and the temperature becomes higher as going from the right to the left as shown in the drawing of the refrigerant flow path 24b. When the temperature distribution in the axial direction is averaged by the refrigerant flow paths 24a and 24b, the temperature distribution is made uniform.

【0039】図6は本発明による超電導回転電機の回転
子の第5の実施の形態における輻射シールドの展開図を
示すものである。第5の実施の形態における輻射シール
ド6においては、図6に示すように一端部から気体冷媒
が供給される軸方向の冷媒流路25aと、他端部から気
体冷媒が供給される軸方向の冷媒流路25bとを交互に
周方向に複数設ける構成とするものである。
FIG. 6 is a development view of a radiation shield of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention. In the radiation shield 6 according to the fifth embodiment, as shown in FIG. 6, an axial refrigerant flow path 25a to which a gas refrigerant is supplied from one end and an axial refrigerant channel 25a to which a gas refrigerant is supplied from the other end. A plurality of refrigerant flow paths 25b are alternately provided in the circumferential direction.

【0040】このような構成の輻射シールドとすれば、
気体冷媒は冷媒流路25aと冷媒流路25bとで逆向き
に交互に流れるので、輻射シールド全体の温度分布が均
一化される。
With a radiation shield having such a configuration,
Since the gas refrigerant flows alternately in the refrigerant flow path 25a and the refrigerant flow path 25b in the opposite direction, the temperature distribution of the entire radiation shield is made uniform.

【0041】図7は上記第5の実施の形態の変形例を示
す輻射シールドの展開図を示すものである。上記第5の
実施の形態では、輻射シールドの一端から他端に抜ける
冷媒流路25a,25bを設けて気体冷媒の流れる方向
が逆になるようにしたが、気体冷媒は輻射シールドの温
度の高い図示右半分を冷却するのが主たる役割なので、
図7に示すように図示右端から流入した気体冷媒が中央
部付近で再び右端側へ折返す冷媒流路25cを設けるよ
うにしてもよい。
FIG. 7 is a development view of a radiation shield showing a modification of the fifth embodiment. In the fifth embodiment, the refrigerant flow paths 25a and 25b are provided to extend from one end to the other end of the radiation shield so that the flow direction of the gas refrigerant is reversed. However, the gas refrigerant has a high radiation shield temperature. The main role is to cool the right half of the illustration,
As shown in FIG. 7, a refrigerant flow path 25c in which the gaseous refrigerant flowing from the right end in the figure turns back to the right end side near the center may be provided.

【0042】このような構成の輻射シールドとすれば、
図6の場合に比べて排気管の引回し構造を簡略にするこ
とができる。図8は本発明による超電導回転電機の回転
子の第6の実施の形態における輻射シールドの展開図を
示すものである。
With a radiation shield having such a configuration,
As compared with the case of FIG. 6, the routing structure of the exhaust pipe can be simplified. FIG. 8 is a development view of a radiation shield in a rotor of a superconducting rotary electric machine according to a sixth embodiment of the present invention.

【0043】第6の実施の形態における輻射シールド6
においては、図8に示すように一端部の気体冷媒流入口
より中央部に至る軸方向の冷媒流路26aとこの冷媒流
路26aを中央部で折返して一端部の気体冷媒排出口に
連通する軸方向の冷媒流路26bを構成し、同様に他端
部側の気体冷媒流入口より中央部に至る軸方向の冷媒流
路26cとこの冷媒流路26cを中央部で折返して一端
部の気体冷媒排出口に連通する軸方向の冷媒流路26d
を構成し、これら冷媒流路26a,26bおよび26
c,26dを周方向に複数それぞれ配設するものであ
る。
Radiation Shield 6 in Sixth Embodiment
In FIG. 8, as shown in FIG. 8, an axial refrigerant flow path 26a extending from the gas refrigerant inflow port at one end to the center and the refrigerant flow path 26a are folded back at the center to communicate with the gas refrigerant discharge port at one end. An axial refrigerant flow path 26b is formed. Similarly, an axial refrigerant flow path 26c extending from the gas refrigerant inlet port on the other end side to the central part, and the refrigerant flow path 26c is folded at the central part to form a gas at one end part. 26 d of axial refrigerant passages communicating with the refrigerant outlet
And these refrigerant flow paths 26a, 26b and 26
c, 26d are arranged in the circumferential direction.

【0044】このような構成の輻射シールドとすれば、
軸方向中央部を境に右半分と左半分ずつをそれぞれ均一
な温度分布に近付けることができので、全体の温度差は
さらに小さくなる。
With a radiation shield having such a configuration,
Since the right half and the left half can each approach a uniform temperature distribution at the center in the axial direction, the overall temperature difference is further reduced.

【0045】[0045]

【発明の効果】以上述べたように本発明によれば、気体
冷媒による輻射シールドの周方向温度分布または回転軸
方向温度分布を均一化することにより、輻射シールドか
ら巻線取付軸への輻射入熱を低減させることができるた
め、液体冷媒消費量が少なく、クールダウン時間の短い
冷却安定性のある信頼性の高い超電導回転電機の回転子
を提供できる。
As described above, according to the present invention, the radiation temperature from the radiation shield to the winding mounting shaft is made uniform by uniformizing the circumferential temperature distribution or the rotational axis temperature distribution of the radiation shield by the gaseous refrigerant. Since the heat can be reduced, it is possible to provide a highly reliable superconducting rotary electric machine rotor that consumes little liquid refrigerant, has a short cool-down time, and has stable cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明による超電導回転電機の回転子の
第1の実施の形態における輻射シールドを示す展開図。
FIG. 1 is a development view showing a radiation shield in a first embodiment of a rotor of a superconducting rotary electric machine according to the present invention.

【図2】第1の実施の形態における輻射シールドの変形
例を示す展開図。
FIG. 2 is a developed view showing a modified example of the radiation shield in the first embodiment.

【図3】本発明による超電導回転電機の回転子の第2の
実施の形態における輻射シールドの一つの冷媒流路部分
を示す斜視図。
FIG. 3 is a perspective view showing one refrigerant flow path portion of a radiation shield in a second embodiment of the rotor of the superconducting rotary electric machine according to the present invention.

【図4】本発明による超電導回転電機の回転子の第3の
実施の形態における輻射シールドの冷媒流路部分を破断
して示す斜視図。
FIG. 4 is a perspective view of a rotor of a superconducting rotary electric machine according to a third embodiment of the present invention, in which a refrigerant flow path portion of a radiation shield is cut away.

【図5】本発明による超電導回転電機の回転子の第4の
実施の形態における輻射シールドを示す展開図。
FIG. 5 is a developed view showing a radiation shield of a rotor of a superconducting rotary electric machine according to a fourth embodiment of the present invention.

【図6】本発明による超電導回転電機の回転子の第5の
実施の形態における輻射シールドを示す展開図。
FIG. 6 is a developed view showing a radiation shield of a rotor of a superconducting rotary electric machine according to a fifth embodiment of the present invention.

【図7】上記第5の実施の形態の変形例を示す輻射シー
ルドを示す展開図。
FIG. 7 is a development view showing a radiation shield showing a modification of the fifth embodiment.

【図8】本発明による超電導回転電機の回転子の第6の
実施の形態における輻射シールドを示す展開図。
FIG. 8 is a developed view showing a radiation shield of a rotor of a superconducting rotary electric machine according to a sixth embodiment of the present invention.

【図9】従来の超電導回転電機の回転子の要部を示す縦
断面図。
FIG. 9 is a longitudinal sectional view showing a main part of a rotor of a conventional superconducting rotating electric machine.

【図10】図9の輻射シールドをA−A線に沿って矢印
方向に見た部分断面図。
FIG. 10 is a partial cross-sectional view of the radiation shield of FIG. 9 as viewed in the direction of the arrows along the line AA.

【図11】図10の輻射シールドをX−X線に沿って矢
印方向に見た展開図。
FIG. 11 is a developed view of the radiation shield of FIG. 10 as viewed in the direction of the arrows along the line XX.

【図12】従来の超電導回転電機の回転子の輻射シール
ドの温度分布図。
FIG. 12 is a temperature distribution diagram of a radiation shield of a rotor of a conventional superconducting rotary electric machine.

【図13】異なる温度分布による輻射入熱の違いを説明
するための図。
FIG. 13 is a diagram for explaining a difference in radiant heat input due to different temperature distributions.

【符号の説明】[Explanation of symbols]

1……超電導コイル 2……巻線取付軸 3……中心孔 4……ベッセル 5……外筒 6……輻射シールド 7a,7b……トルクチューブ 8,9……端部軸 10……軸受 11……液体冷媒供給管 12……液体冷媒の流れ 13……気体冷媒の流れ 14……冷却筒 15……通気管 16……冷媒流路 17……排気管 18a〜18e……軸方向冷媒流路 18f,18d……Y字形流路 19a〜19d……周方向冷媒流路 20,22a,22b……冷媒流路 21……気体冷媒流路 23……絶縁物 24a,24b,25a〜25c,26a〜26d……
冷媒流路
DESCRIPTION OF SYMBOLS 1 ... Superconducting coil 2 ... Winding mounting shaft 3 ... Center hole 4 ... Vessel 5 ... Outer cylinder 6 ... Radiation shield 7a, 7b ... Torque tube 8, 9 ... End shaft 10 ... Bearing 11 ... liquid refrigerant supply pipe 12 ... liquid refrigerant flow 13 ... gas refrigerant flow 14 ... cooling cylinder 15 ... vent pipe 16 ... refrigerant flow path 17 ... exhaust pipe 18 a to 18 e ... axial refrigerant Channels 18f, 18d Y-shaped channels 19a to 19d Circumferential refrigerant channels 20, 22a, 22b Refrigerant channels 21 Gas refrigerant channels 23 Insulators 24a, 24b, 25a to 25c , 26a-26d ...
Refrigerant channel

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に軸方向に多段に分岐
する冷媒流路を設けた円筒状の輻射シールドと、前記巻
線取付軸と前記輻射シールドを前記端部軸に結合するト
ルクチューブと、一方の前記端部軸の中心孔を通して前
記巻線取付軸の中心孔に挿入され、この中心孔に液体冷
媒を供給する液体冷媒供給管と、前記輻射シールド内に
設けられた冷媒流路の入口部へ前記巻線取付軸内で気化
した気体冷媒を導く通気管と、前記輻射シールド内の冷
媒流路の出口部から本体外部へ気体冷媒を導く通気管と
を備えたことを特徴とする超電導回転電機の回転子。
1. A winding mounting shaft in which a superconducting coil is housed and having a central hole for storing a liquid refrigerant therein, a vessel provided on an outer periphery of the winding mounting shaft to form a liquid refrigerant container, and a vessel An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder A cylindrical radiation shield provided coaxially with the winding mounting shaft in the space between the winding mounting shaft, and a refrigerant flow path internally branched in multiple stages in the axial direction; and the winding mounting shaft and the radiation shield. A torque tube coupling the end shaft, a liquid refrigerant supply pipe inserted into the center hole of the winding mounting shaft through a center hole of one of the end shafts, and supplying a liquid refrigerant to the center hole; Refrigerant flow path provided in the radiation shield A vent pipe for guiding gaseous refrigerant vaporized in the winding mounting shaft to an inlet of the coil, and a vent pipe for guiding gaseous refrigerant from the outlet part of the refrigerant flow path in the radiation shield to the outside of the main body. Of a superconducting rotating electric machine.
【請求項2】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に断面形状が軸方向に
て変化する冷媒流路を設けた円筒状の輻射シールドと、
前記巻線取付軸と前記輻射シールドを前記端部軸に結合
するトルクチューブと、一方の前記端部軸の中心孔を通
して前記巻線取付軸の中心孔に挿入され、この中心孔に
液体冷媒を供給する液体冷媒供給管と、前記輻射シール
ド内に設けられた冷媒流路の入口部へ前記巻線取付軸内
で気化した気体冷媒を導く通気管と、前記輻射シールド
内の冷媒流路の出口部から本体外部へ気体冷媒を導く通
気管とを備えたことを特徴とする超電導回転電機の回転
子。
2. A vessel for accommodating a superconducting coil and having a central hole for storing a liquid refrigerant therein, a vessel provided on the outer periphery of the coil attachment shaft to form a container for the liquid refrigerant, An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder A cylindrical radiation shield provided coaxially with the winding mounting shaft in the space between the two, and provided with a refrigerant flow path in which the cross-sectional shape changes in the axial direction,
A torque tube that couples the winding attachment shaft and the radiation shield to the end shaft, and is inserted into a center hole of the winding attachment shaft through a center hole of one of the end shafts, and a liquid refrigerant is supplied to the center hole. A liquid refrigerant supply pipe to be supplied, a ventilation pipe for guiding gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and an outlet of the refrigerant flow path in the radiation shield A ventilation pipe for guiding a gaseous refrigerant from a portion to the outside of the main body.
【請求項3】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に内面が部分的に熱伝
導率の小さい物質で覆われた冷媒流路を設けた円筒状の
輻射シールドと、前記巻線取付軸と前記輻射シールドを
前記端部軸に結合するトルクチューブと、一方の前記端
部軸の中心孔を通して前記巻線取付軸の中心孔に挿入さ
れ、この中心孔に液体冷媒を供給する液体冷媒供給管
と、前記輻射シールド内に設けられた冷媒流路の入口部
へ前記巻線取付軸内で気化した気体冷媒を導く通気管
と、前記輻射シールド内の冷媒流路の出口部から本体外
部へ気体冷媒を導く通気管とを備えたことを特徴とする
超電導回転電機の回転子。
3. A winding mounting shaft containing a superconducting coil and having a central hole for storing a liquid refrigerant therein, a vessel provided on the outer periphery of the winding mounting shaft to form a liquid refrigerant container, An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder A cylindrical radiation shield provided coaxially with the winding mounting shaft in a space between the two, and provided with a refrigerant flow passage in which an inner surface is partially covered with a substance having a small thermal conductivity, A torque tube that couples the winding attachment shaft and the radiation shield to the end shaft, and is inserted into the center hole of the winding attachment shaft through the center hole of one of the end shafts, and supplies liquid coolant to the center hole. Liquid refrigerant supply pipe and the radiation shield A vent pipe for guiding gaseous refrigerant vaporized in the winding mounting shaft to an inlet part of a refrigerant flow path provided in the inside, and a vent pipe for guiding gaseous refrigerant from the outlet part of the refrigerant flow path in the radiation shield to the outside of the main body. And a rotor for a superconducting rotary electric machine.
【請求項4】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に冷媒供給側と反対側
の端部の手前で折返して気体冷媒の流れ方向を反転させ
る形状とすると共に、入口と出口を近付けた冷媒流路を
設けた円筒状の輻射シールドと、前記巻線取付軸と前記
輻射シールドを前記端部軸に結合するトルクチューブ
と、一方の前記端部軸の中心孔を通して前記巻線取付軸
の中心孔に挿入され、この中心孔に液体冷媒を供給する
液体冷媒供給管と、前記輻射シールド内に設けられた冷
媒流路の入口部へ前記巻線取付軸内で気化した気体冷媒
を導く通気管と、前記輻射シールド内の冷媒流路の出口
部から本体外部へ気体冷媒を導く通気管とを備えたこと
を特徴とする超電導回転電機の回転子。
4. A winding mounting shaft in which a superconducting coil is housed and has a central hole for storing a liquid refrigerant therein, a vessel provided on the outer periphery of the winding mounting shaft to form a liquid refrigerant container, An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder The space between the winding mounting shaft and the coaxially provided, and the inside is turned back in front of the end on the side opposite to the refrigerant supply side to reverse the flow direction of the gas refrigerant, and the inlet and A cylindrical radiation shield provided with a refrigerant flow path having an outlet close thereto, a torque tube connecting the winding mounting shaft and the radiation shield to the end shaft, and the winding through a center hole of one of the end shafts. Inserted into the center hole of the wire mounting shaft, A liquid refrigerant supply pipe for supplying a liquid refrigerant to the center hole, a ventilation pipe for guiding gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and the radiation shield. A ventilation pipe for guiding gaseous refrigerant from the outlet of the internal refrigerant flow path to the outside of the main body.
【請求項5】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に気体冷媒の向きを周
方向位置で反転する冷媒流路を設けた円筒状の輻射シー
ルドと、前記巻線取付軸と前記輻射シールドを前記端部
軸に結合するトルクチューブと、一方の前記端部軸の中
心孔を通して前記巻線取付軸の中心孔に挿入され、この
中心孔に液体冷媒を供給する液体冷媒供給管と、前記輻
射シールド内に設けられた冷媒流路の入口部へ前記巻線
取付軸内で気化した気体冷媒を導く通気管と、前記輻射
シールド内の冷媒流路の出口部から本体外部へ気体冷媒
を導く通気管とを備えたことを特徴とする超電導回転電
機の回転子。
5. A winding mounting shaft in which a superconducting coil is housed and has a central hole for storing a liquid refrigerant therein, a vessel provided on the outer periphery of the winding mounting shaft to form a liquid refrigerant container, and a vessel An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder A cylindrical radiation shield provided coaxially with the winding mounting shaft in a space between the winding mounting shaft and a refrigerant flow passage therein for reversing the direction of a gas refrigerant at a circumferential position. And a torque tube that couples the radiation shield to the end shaft, and a liquid refrigerant supply that is inserted into the center hole of the winding attachment shaft through the center hole of one of the end shafts and supplies liquid refrigerant to the center hole. Tube and provided in the radiation shield A vent pipe for introducing gaseous refrigerant vaporized in the winding attachment shaft to an inlet of the refrigerant passage provided, and a vent pipe for introducing gaseous refrigerant from the outlet of the refrigerant passage in the radiation shield to the outside of the main body. A rotor for a superconducting rotating electric machine, characterized in that:
【請求項6】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に周方向位置で交互に
反対側から気体冷媒を供給し、この気体冷媒が軸方向途
中で折返す形状の冷媒流路を設けた円筒状の輻射シール
ドと、前記巻線取付軸と前記輻射シールドを前記端部軸
に結合するトルクチューブと、一方の前記端部軸の中心
孔を通して前記巻線取付軸の中心孔に挿入され、この中
心孔に液体冷媒を供給する液体冷媒供給管と、前記輻射
シールド内に設けられた冷媒流路の入口部へ前記巻線取
付軸内で気化した気体冷媒を導く通気管と、前記輻射シ
ールド内の冷媒流路の出口部から本体外部へ気体冷媒を
導く通気管とを備えたことを特徴とする超電導回転電機
の回転子。
6. A winding mounting shaft containing a superconducting coil and having a central hole for storing a liquid refrigerant therein, a vessel provided on the outer periphery of the winding mounting shaft to form a liquid refrigerant container, An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder A refrigerant flow is provided coaxially with the winding mounting shaft in a space between the refrigerant flows, and a gas refrigerant is alternately supplied to the inside from the opposite side at a circumferential position, and the gas refrigerant is folded back in the axial direction. A cylindrical radiation shield provided with a passage, a torque tube connecting the winding mounting shaft and the radiation shield to the end shaft, and a center hole of the winding mounting shaft passing through a center hole of one of the end shafts. Liquid coolant is supplied to the center hole. A liquid refrigerant supply pipe for supplying, a ventilation pipe for guiding a gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and an outlet of the refrigerant flow path in the radiation shield A ventilation pipe for guiding a gaseous refrigerant from a portion to the outside of the main body.
【請求項7】 超電導コイルが収納され、内部に液体冷
媒を貯蔵する中心孔を有する巻線取付軸と、この巻線取
付軸の外周に設けられ液体冷媒の容器を形成するベッセ
ルと、このベッセルの外周に所定の空間を存して前記巻
線取付軸と同軸的に設けられると共に、両端が端部軸に
取付けられた真空容器を形成するダンパ機能を有する外
筒と、前記ベッセルと外筒との間の空間に前記巻線取付
軸と同軸的に設けられ、且つ内部に両端から気体冷媒を
供給し、各々の気体冷媒が軸方向中央で折返す形状の冷
媒流路を設けた円筒状の輻射シールドと、前記巻線取付
軸と前記輻射シールドを前記端部軸に結合するトルクチ
ューブと、一方の前記端部軸の中心孔を通して前記巻線
取付軸の中心孔に挿入され、この中心孔に液体冷媒を供
給する液体冷媒供給管と、前記輻射シールド内に設けら
れた冷媒流路の入口部へ前記巻線取付軸内で気化した気
体冷媒を導く通気管と、前記輻射シールド内の冷媒流路
の出口部から本体外部へ気体冷媒を導く通気管とを備え
たことを特徴とする超電導回転電機の回転子。
7. A winding mounting shaft containing a superconducting coil and having a central hole for storing a liquid refrigerant therein, a vessel provided on an outer periphery of the winding mounting shaft to form a liquid refrigerant container, and a vessel An outer cylinder which is provided coaxially with the winding mounting shaft so as to have a predetermined space on the outer periphery of the outer cylinder and has a damper function of forming a vacuum vessel having both ends mounted on the end shaft, and the vessel and the outer cylinder A cylindrical shape which is provided coaxially with the winding mounting shaft in the space between them, and supplies gas refrigerant from both ends to the inside, and has a refrigerant flow path in a shape in which each gas refrigerant turns back at the center in the axial direction. A radiation tube, a torque tube that couples the winding attachment shaft and the radiation shield to the end shaft, and inserted into the center hole of the winding attachment shaft through the center hole of one of the end shafts. Liquid refrigerant supply to supply liquid refrigerant to holes A pipe, a ventilation pipe for guiding gaseous refrigerant vaporized in the winding attachment shaft to an inlet of a refrigerant flow path provided in the radiation shield, and from the outlet of the refrigerant flow path in the radiation shield to the outside of the main body. A rotor for a superconducting rotary electric machine, comprising: a ventilation pipe for introducing a gas refrigerant.
JP9016829A 1997-01-30 1997-01-30 Rotor for superconducting rotary electric machine Pending JPH10215561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9016829A JPH10215561A (en) 1997-01-30 1997-01-30 Rotor for superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9016829A JPH10215561A (en) 1997-01-30 1997-01-30 Rotor for superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPH10215561A true JPH10215561A (en) 1998-08-11

Family

ID=11927090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9016829A Pending JPH10215561A (en) 1997-01-30 1997-01-30 Rotor for superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPH10215561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050985A1 (en) * 2000-12-20 2002-06-27 Siemens Aktiengesellschaft Winding support of a superconductive rotor, comprising a structure allowing the axial expansion of said support
WO2006068040A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Cooling structure of superconducting motor
WO2009060758A1 (en) * 2007-11-09 2009-05-14 Toyota Jidosha Kabushiki Kaisha Dynamo-electric machine
KR101396892B1 (en) * 2012-05-02 2014-06-03 두산중공업 주식회사 Superconductive rotor having double cooling fluid path
WO2016147485A1 (en) * 2015-03-18 2016-09-22 三菱重工業株式会社 Compressor system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050985A1 (en) * 2000-12-20 2002-06-27 Siemens Aktiengesellschaft Winding support of a superconductive rotor, comprising a structure allowing the axial expansion of said support
US7211921B2 (en) 2000-12-20 2007-05-01 Siemens Aktiengesellschaft Winding support of a superconductive rotor, comprising a structure to compensate for axial expansion of the support
WO2006068040A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Cooling structure of superconducting motor
US7667358B2 (en) 2004-12-24 2010-02-23 Sumitomo Electric Industries, Ltd. Cooling structure of superconducting motor
WO2009060758A1 (en) * 2007-11-09 2009-05-14 Toyota Jidosha Kabushiki Kaisha Dynamo-electric machine
KR101396892B1 (en) * 2012-05-02 2014-06-03 두산중공업 주식회사 Superconductive rotor having double cooling fluid path
WO2016147485A1 (en) * 2015-03-18 2016-09-22 三菱重工業株式会社 Compressor system

Similar Documents

Publication Publication Date Title
JP3788190B2 (en) Rotating electric machine
JPH0370153B2 (en)
US4275320A (en) Radiation shield for use in a superconducting generator or the like and method
JPH10215561A (en) Rotor for superconducting rotary electric machine
CN110620478A (en) Cooling device for rotating electric machine and rotating electric machine for driving vehicle
JPH08251872A (en) Cooler of motor
JP2002119018A (en) Electrical machine rotating at high speed
JP2023507778A (en) Hybrid cooling system for enclosed motors
JP2844149B2 (en) Heat exchange roll and heating / cooling roll device using the same
JP2705456B2 (en) Roll device
US5103898A (en) Cooled vacuum pull roll
US3665229A (en) Rotary cryogenic machinery
CN210255395U (en) Shell structure of high-speed air floatation motorized spindle
JPH0851767A (en) Rotor for superconducting electric rotating machine and refrigerant supply/discharge unit
JP3465661B2 (en) Rotating electric machine
JP3289721B2 (en) Rotating electric machine
WO2023149278A1 (en) Cooling medium supply/discharge mechanism for superconducting rotating electrical machine, and superconducting rotating electrical machine
CN209963910U (en) Motor stator and motor with same
CN220172991U (en) Oil cooling motor structure
JP3289722B2 (en) Rotating electric machine
JP3196705B2 (en) Heating roller
JPS60125162A (en) Rotor of superconductive rotary electric machine
JPH07317953A (en) Valve rod cooling structure of valve
JPH0548394Y2 (en)
JPH0218699Y2 (en)