JPH0218699Y2 - - Google Patents

Info

Publication number
JPH0218699Y2
JPH0218699Y2 JP4016984U JP4016984U JPH0218699Y2 JP H0218699 Y2 JPH0218699 Y2 JP H0218699Y2 JP 4016984 U JP4016984 U JP 4016984U JP 4016984 U JP4016984 U JP 4016984U JP H0218699 Y2 JPH0218699 Y2 JP H0218699Y2
Authority
JP
Japan
Prior art keywords
refrigerant
duct
superconducting
rotor
electrical insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4016984U
Other languages
Japanese (ja)
Other versions
JPS60153685U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4016984U priority Critical patent/JPS60153685U/en
Publication of JPS60153685U publication Critical patent/JPS60153685U/en
Application granted granted Critical
Publication of JPH0218699Y2 publication Critical patent/JPH0218699Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Description

【考案の詳細な説明】 「考案の属する技術分野」 この考案は、超電導コイルに電流を供給する電
流リードをトルクチユーブに設けるらせん状の熱
交換器のらせん状冷媒ダクト内に通す構造の超電
導回転電機の回転子に関する。
[Detailed description of the invention] "Technical field to which the invention pertains" This invention is a superconducting rotating structure in which a current lead for supplying current to a superconducting coil is passed through a spiral refrigerant duct of a spiral heat exchanger provided in a torque tube. Regarding rotors of electric machines.

「従来技術とその問題点」 第1図は従来の回転子を示す。"Prior art and its problems" FIG. 1 shows a conventional rotor.

超電導コイル1とこれを冷却する冷媒である液
体ヘリウム2を内蔵するコイル容器3は、トルク
チユーブ4を介して回転真空容器5の両端部に取
付けられる。
A coil container 3 containing a superconducting coil 1 and liquid helium 2, which is a refrigerant for cooling the superconducting coil 1, is attached to both ends of a rotating vacuum container 5 via a torque tube 4.

トルクチユーブ4の中間部にはコイル容器3へ
の侵入熱を減らすために熱交換器6が設けられ、
この熱交換器6には超電導コイル1を冷却した冷
媒ガスが流通される。
A heat exchanger 6 is provided in the middle of the torque tube 4 to reduce heat entering the coil container 3.
A refrigerant gas that has cooled the superconducting coil 1 is passed through the heat exchanger 6 .

超電導コイル1に電流を供給するための電流リ
ード7は後に詳述するように熱交換器6のダクト
内を通して反駆動側軸端部8側に配線される。
A current lead 7 for supplying current to the superconducting coil 1 is wired to the non-drive side shaft end 8 side through the inside of the duct of the heat exchanger 6, as will be described in detail later.

冷媒であるヘリウムの流通経路は、反駆動側軸
端部8から回転軸中心に沿つた配管の液体ヘリウ
ム供給管9を通つて反駆動側真空室10に達し、
ここで二つに分岐した後コイル容器3に供給され
る。
The flow path of helium, which is a refrigerant, is from the shaft end 8 on the non-drive side to the vacuum chamber 10 on the non-drive side through a liquid helium supply pipe 9 that is a piping along the center of the rotating shaft.
Here, it is branched into two and then supplied to the coil container 3.

そして、コイル容器3と超電導コイル1を冷却
したヘリウムの一部は熱交配管入口側11により
熱交換器6に導かれ、熱交換器6に設けられたら
せん状ダクト12を通つて熱交換配管出口側13
から反駆動側軸部8に戻される。
Then, a part of the helium that has cooled the coil container 3 and the superconducting coil 1 is guided to the heat exchanger 6 by the heat exchanger tube inlet side 11, and passes through the heat exchanger pipe 12 through the spiral duct 12 provided in the heat exchanger 6. Exit side 13
and then returned to the non-drive side shaft portion 8.

なお、超電導回転子の駆動側にもトルクチユー
ブの熱交換器が設けられ、コイル容器3内のヘリ
ウムの一部がこの駆動側熱交換器にも導かれ、熱
交戻り配管14を通して反駆動側軸部8に戻され
る。
A torque tube heat exchanger is also provided on the drive side of the superconducting rotor, and a part of the helium in the coil container 3 is also guided to this drive side heat exchanger, and is sent to the non-drive side through the heat exchange return pipe 14. It is returned to the shaft portion 8.

ここで、電流リード7の配線経路は、コイル容
器3からリード配管を兼ねる入口側熱交配管11
を通り、熱交換器6のらせん状ダクト12に入
る。
Here, the wiring route of the current lead 7 is from the coil container 3 to the inlet side heat exchanger tube 11 which also serves as lead piping.
and enters the helical duct 12 of the heat exchanger 6.

そして、らせん状ダクト12内を通つて熱交換
器6の高温端に至り、ここから出口側熱交配管1
3内を通つて反駆動側軸部8に至る。
Then, it passes through the spiral duct 12 to reach the high temperature end of the heat exchanger 6, and from there the outlet side heat exchanger pipe 1
3 and reaches the non-drive side shaft portion 8.

ダクト12の構成は第2図に示す断面になる。 The configuration of the duct 12 has a cross section shown in FIG.

熱交換器6の外周部は断面櫛歯状の突起6Aを
らせん状に有し、該突起6Aの先端面に接して熱
交換器6の外周面を蓋する円筒蓋部材20とによ
つてらせん状冷媒ダクト12が構成される。
The outer periphery of the heat exchanger 6 has a protrusion 6A having a comb-like cross section in a spiral shape, and the cylindrical lid member 20 that contacts the tip end surface of the protrusion 6A and covers the outer circumferential surface of the heat exchanger 6 spirally. A shaped refrigerant duct 12 is configured.

該ダクト12内には電気絶縁体100と101
がらせんに沿つて埋設される。
Inside the duct 12 are electrical insulators 100 and 101.
Buried along a spiral.

絶縁体100,101は、テフロン、ゴムなど
の可撓性絶縁材で形成され、絶縁体100の内周
側にダクト壁面との間で熱交換用第1の冷媒流路
スペース102が形成され、その外周側に、絶縁
体101で蓋されて電流リード7の支持とその冷
却溝を兼ねた第2の冷媒流路スペース103が形
成される。
The insulators 100 and 101 are made of a flexible insulating material such as Teflon or rubber, and a first refrigerant flow path space 102 for heat exchange is formed between the inner peripheral side of the insulator 100 and the duct wall surface. A second coolant flow path space 103 is formed on the outer circumferential side thereof, which is covered with an insulator 101 and serves both to support the current lead 7 and as a cooling groove thereof.

電流リード7はコイル1への往路用リード7A
と復路用リード7Bとが絶縁体100で回転子半
径方向の突起で分離してスペース103にらせん
巻回される。
Current lead 7 is lead 7A for going out to coil 1.
and the return path lead 7B are separated by an insulator 100 by a protrusion in the radial direction of the rotor and are spirally wound in a space 103.

この構成により、熱交換器6が第1の冷媒流路
スペース102を流れる冷媒によつて冷却され、
また電流リード7A,7Bが冷媒流路スペース1
03を流れる冷媒によつて冷却される。
With this configuration, the heat exchanger 6 is cooled by the refrigerant flowing through the first refrigerant flow path space 102,
In addition, the current leads 7A and 7B are connected to the refrigerant flow path space 1.
It is cooled by the refrigerant flowing through 03.

ところが、このような構成は、電気絶縁体10
0,101の熱伝導が悪いため熱交換器6から見
て冷媒接触面が流路スペース102を構成する面
のみとなり、熱交換率が悪くなる問題があつた。
However, in such a configuration, the electrical insulator 10
Since the heat conduction of 0.0,101 is poor, the refrigerant contact surface is only the surface constituting the flow path space 102 when viewed from the heat exchanger 6, resulting in a problem of poor heat exchange efficiency.

また冷媒流路スペース102と103が絶縁体
100で分離されているため、冷媒流量のかたよ
りが発生し、電流リード7,7A,7Bの冷却が
十分に行なわれなくなる虞れがあつた。
Further, since the refrigerant flow path spaces 102 and 103 are separated by the insulator 100, there is a risk that the refrigerant flow rate will be uneven, and the current leads 7, 7A, and 7B may not be sufficiently cooled.

「考案の目的」 この考案は、上述までの事情に鑑みてなされた
もので、従来の問題点を解消して熱交換器及び電
流リードの冷却を確実なものにした超電導回転電
機の回転子を提供することを目的とする。
``Purpose of the invention'' This invention was made in view of the above-mentioned circumstances, and it is a rotor for a superconducting rotating electric machine that solves the problems of the conventional technology and ensures reliable cooling of the heat exchanger and current leads. The purpose is to provide.

「考案の要点」 この考案の超電導回転電機の回転子は、超電導
コイルとこの超電導コイルを冷却する冷媒を収納
するコイル容器をトルクチユーブを介して回転真
空容器の内部に設け、前記トルクチユーブ周面
に、らせん状で断面櫛歯状の突起とこの突起の外
周面に接してこの突起の蓋をする円筒蓋部材とに
より形成されるらせん状の冷媒ダクトを備える熱
交換器を設け、前記コイル容器で蒸発した冷媒ガ
スの一部を前記冷媒ダクトを通して反駆動側軸端
部の冷媒給排装置側に戻す配管を設け、前記超電
導コイルの電流リードを前記配管及び前記冷媒ダ
クト内を通して前記反駆動側軸端部に引出す超電
導回転電機の回転子において、前記冷媒ダクト内
に、内周側及び前記突起で形成される冷媒ダクト
壁に面した左右両側面に第1の冷媒通路スペース
及び第3の冷媒通路スペースが設けられ外周側に
前記電流リードを支持し、かつ前記冷媒の流路と
なる二つの溝である第2の冷媒通路スペースが設
けられた第1の電気絶縁体と、この第1の電気絶
縁体の外周に蓋をする第2の電気絶縁体とを設
け、前記第1の電気絶縁体には、前記第1の冷媒
スペースと前記第2の冷媒通路スペースの二つの
溝とを連通する冷媒連通孔を少なくとも1個設け
ることにより、熱交換器の冷媒接触面積を増大さ
せ、熱交換効率を高めるとともに、冷媒流量のか
たよりをなくして、電流リードの冷却をも確実な
ものとしている。
``Key Points of the Invention'' The rotor of the superconducting rotating electric machine of this invention has a superconducting coil and a coil container for storing a refrigerant for cooling the superconducting coil provided inside a rotating vacuum container via a torque tube, and the circumferential surface of the torque tube A heat exchanger is provided with a spiral refrigerant duct formed by a spiral protrusion having a comb-like cross section and a cylindrical lid member that contacts the outer peripheral surface of the protrusion and covers the protrusion. A pipe is provided to return a part of the refrigerant gas evaporated in the refrigerant duct to the refrigerant supply/discharge device at the end of the shaft on the non-drive side, and a current lead of the superconducting coil is passed through the pipe and the refrigerant duct to the non-drive side. In the rotor of a superconducting rotating electric machine that is drawn out to the shaft end, a first refrigerant passage space and a third refrigerant are provided in the refrigerant duct on both left and right sides facing the refrigerant duct wall formed by the inner peripheral side and the projections. a first electrical insulator provided with a passage space and supporting the current lead on the outer circumferential side and provided with a second refrigerant passage space which is two grooves serving as a flow path for the refrigerant; A second electrical insulator is provided to cover the outer periphery of the electrical insulator, and the first electrical insulator communicates two grooves of the first refrigerant space and the second refrigerant passage space. By providing at least one refrigerant communication hole, the contact area of the refrigerant in the heat exchanger is increased, heat exchange efficiency is increased, and the deviation in the refrigerant flow rate is eliminated to ensure cooling of the current leads.

「本考案の実施例」 第3図はこの考案の一実施例を示す要部断面図
である。
"Embodiment of the Present Invention" FIG. 3 is a sectional view of a main part showing an embodiment of the present invention.

第3図の実施例において、前記第2図の従来の
実施例と異なる部分は、電気絶縁体100に代え
て電気絶縁体110を設けた点にある。
The embodiment shown in FIG. 3 differs from the conventional embodiment shown in FIG. 2 in that an electrical insulator 110 is provided in place of the electrical insulator 100.

この電気絶縁体110は、従来と同様に外周に
電流リード7,7A,7Bの支持と冷却のための
冷媒流路スペース103が絶縁体101との間で
形成され、熱交換器6のダクト周面との間で冷媒
流路スペース102が形成されている。
This electrical insulator 110 has a refrigerant passage space 103 formed between it and the insulator 101 on its outer periphery for supporting and cooling the current leads 7, 7A, 7B, and the duct surrounding the heat exchanger 6. A refrigerant flow path space 102 is formed between the surfaces.

これに加えて、電気絶縁体110は突起6Aで
形成するダクト壁に面した両側面に第3の冷媒流
路スペース104が形成され、さらに冷媒流路ス
ペース102と103を連通する連通孔105が
らせんダクト面に沿つて適当な間隔を持つて形成
されている。
In addition, the electrical insulator 110 has a third refrigerant passage space 104 formed on both sides facing the duct wall formed by the projections 6A, and a communication hole 105 that communicates the refrigerant passage spaces 102 and 103. They are formed at appropriate intervals along the spiral duct surface.

この冷媒流路スペース104及び連通孔105
を持つ電気絶縁体110は、第4図に示す斜視図
からも明らかなように、突起6Aに面して冷媒流
路が形成されて熱交換器6と冷媒との接触面積が
大幅に向上し、熱交換器の熱交換効率を著しく高
める。
This refrigerant flow path space 104 and communication hole 105
As is clear from the perspective view shown in FIG. 4, the electrical insulator 110 has a refrigerant flow path facing the protrusion 6A, and the contact area between the heat exchanger 6 and the refrigerant is greatly improved. , significantly increases the heat exchange efficiency of the heat exchanger.

また、電流リード側を流れる冷媒と熱交換用冷
媒との間で連通孔105を通して冷媒の交流が生
じ、冷媒流量のかたよりをなくして電流リードの
冷却を確実なものにする。
Further, an exchange of refrigerant occurs through the communication hole 105 between the refrigerant flowing on the current lead side and the heat exchange refrigerant, thereby eliminating deviations in the refrigerant flow rate and ensuring cooling of the current lead.

第4図の実施例においては、連通孔105が電
気絶縁体110の二つの溝の仕切り部の頂上まで
達する構成を示している。
The embodiment shown in FIG. 4 shows a configuration in which the communication hole 105 reaches the top of the partition between the two grooves of the electrical insulator 110.

この構成によれば、電流リード7A,7Bが巻
回された二つの溝間における冷媒流量のかたより
をも一層なくすことができるが、この連通孔10
5は、第1のスペース102を流れる熱交換用冷
媒と第2のスペース103を流れる電流リード冷
却用冷媒との交流を十分なものとし冷媒流量のか
たよりをなくし電流リードの冷却を確実なものと
するためには、電気絶縁体110の二つの溝の底
面にさえ達していればよい。
According to this configuration, it is possible to further eliminate unevenness in the refrigerant flow rate between the two grooves around which the current leads 7A and 7B are wound.
5 ensures sufficient alternating current between the heat exchange refrigerant flowing in the first space 102 and the current lead cooling refrigerant flowing in the second space 103 to eliminate deviations in the refrigerant flow rate and ensure cooling of the current leads. In order to do this, it is only necessary to reach the bottom surfaces of the two grooves in the electrical insulator 110.

なお、実施例において、第1のスペース102
と第3のスペース104との間に連通孔105と
同様の連通孔を設けることで、両スペースを流れ
る冷媒の交流路を形成して、両スペース間の冷媒
流量のかたよりもなくすことができる。
Note that in the embodiment, the first space 102
By providing a communication hole similar to the communication hole 105 between the third space 104 and the third space 104, an alternating current path for the refrigerant flowing through both spaces can be formed, and unevenness in the refrigerant flow rate between the two spaces can be eliminated.

「本考案の効果」 以上のとおり、この考案によれば、熱交換器を
冷却する冷却流路を電気絶縁体の内周のほかに両
側面にも設け、第1の冷媒流路と第2の冷媒流路
とを連通する冷媒連通孔を設ける構造にしたた
め、熱交換器の熱交換効率が向上し、しかも各冷
媒流路間での冷媒流量のかたよりをなくして確実
な冷却になる効果がある。
"Effects of the present invention" As described above, according to this invention, cooling channels for cooling the heat exchanger are provided not only on the inner periphery of the electrical insulator but also on both sides, and the first refrigerant channel and the second The structure has a refrigerant communication hole that communicates with the refrigerant flow path, which improves the heat exchange efficiency of the heat exchanger and eliminates unevenness in the refrigerant flow rate between each refrigerant flow path, resulting in reliable cooling. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導回転電機の回転子を示す
断面図、第2図は第1図における熱交換部の断面
構成図、第3図はこの考案の一実施例を示す断面
構成図、第4図は第3図における電気絶縁体11
0の斜視図である。 6:熱交換器、7,7A,7B:電流リード、
20:蓋部材、100,101:電気絶縁体、1
02,103,104:冷媒流路スペース、10
5:冷媒連通孔、110:電気絶縁体。
FIG. 1 is a cross-sectional view showing the rotor of a conventional superconducting rotating electric machine, FIG. 2 is a cross-sectional view of the heat exchange section in FIG. 1, and FIG. Figure 4 shows the electrical insulator 11 in Figure 3.
FIG. 6: Heat exchanger, 7, 7A, 7B: Current lead,
20: Lid member, 100, 101: Electrical insulator, 1
02, 103, 104: Refrigerant flow path space, 10
5: Refrigerant communication hole, 110: Electrical insulator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超電導コイル1と該超電導コイル1を冷却する
冷媒2を収納するコイル容器3をトルクチユーブ
4を介して回転真空容器5の内部に設け、前記ト
ルクチユーブ4の周面に、らせん状で断面櫛歯状
の突起6Aと該突起6Aの外周面に接して該突起
6Aの蓋をする円筒蓋部材20とにより形成され
るらせん状の冷媒ダクト12を備える熱交換器6
を設け、前記コイル容器3で蒸発した冷媒ガスの
一部を前記冷媒ダクト12を通して反駆動側軸端
部8の冷媒給排装置側に戻す配管11,13を設
け、前記超電導コイル1の電流リード7を前記配
管11,13及び前記冷媒ダクト12内を通して
前記反駆動側軸端部8に引出す超電導回転電機の
回転子において、前記冷媒ダクト12内に、内周
側及び前記突起6Aで形成される冷媒ダクト壁に
面した左右両側面に第1の冷媒通路スペース10
2および第3の冷媒通路スペース104が設けら
れ外周側に前記電流リード7を支持し、かつ前記
冷媒2の流路となる二つの溝である第2の冷媒通
路スペース103が設けられた第1の電気絶縁体
110と、該第1の電気絶縁体110の外周に蓋
をする第2の電気絶縁体101とを設け、前記第
1の電気絶縁体110には、前記第1の冷媒通路
スペース102と前記第2の冷媒通路スペース1
03の二つの溝とを連通する冷媒連通孔105を
少なくとも1個設けたことを特徴とする超電導回
転電機の回転子。
A coil container 3 for storing a superconducting coil 1 and a refrigerant 2 for cooling the superconducting coil 1 is provided inside a rotating vacuum container 5 via a torque tube 4, and a spiral comb-shaped cross section is provided on the circumferential surface of the torque tube 4. A heat exchanger 6 including a spiral refrigerant duct 12 formed by a shaped projection 6A and a cylindrical lid member 20 that contacts the outer peripheral surface of the projection 6A and covers the projection 6A.
pipes 11 and 13 for returning a part of the refrigerant gas evaporated in the coil container 3 to the refrigerant supply and discharge device side of the non-drive side shaft end 8 through the refrigerant duct 12 are provided, and current leads of the superconducting coil 1 are provided. In a rotor of a superconducting rotating electrical machine in which a superconducting rotor 7 is drawn out through the pipes 11, 13 and the refrigerant duct 12 to the non-drive side shaft end 8, a rotor is formed in the refrigerant duct 12 on the inner peripheral side and on the protrusion 6A. A first refrigerant passage space 10 is provided on both left and right sides facing the refrigerant duct wall.
The first refrigerant passage space 104 is provided with second and third refrigerant passage spaces 104 to support the current lead 7 on the outer peripheral side, and is provided with a second refrigerant passage space 103 which is two grooves that serve as flow paths for the refrigerant 2. an electrical insulator 110 and a second electrical insulator 101 covering the outer periphery of the first electrical insulator 110; 102 and the second refrigerant passage space 1
A rotor for a superconducting rotating electric machine, characterized in that at least one refrigerant communication hole 105 is provided that communicates with the two grooves of 03.
JP4016984U 1984-03-21 1984-03-21 Rotor of superconducting rotating electric machine Granted JPS60153685U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016984U JPS60153685U (en) 1984-03-21 1984-03-21 Rotor of superconducting rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016984U JPS60153685U (en) 1984-03-21 1984-03-21 Rotor of superconducting rotating electric machine

Publications (2)

Publication Number Publication Date
JPS60153685U JPS60153685U (en) 1985-10-14
JPH0218699Y2 true JPH0218699Y2 (en) 1990-05-24

Family

ID=30548809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016984U Granted JPS60153685U (en) 1984-03-21 1984-03-21 Rotor of superconducting rotating electric machine

Country Status (1)

Country Link
JP (1) JPS60153685U (en)

Also Published As

Publication number Publication date
JPS60153685U (en) 1985-10-14

Similar Documents

Publication Publication Date Title
JP3289698B2 (en) Rotating electric machine
US3809933A (en) Supercooled rotor coil type electric machine
KR880001086A (en) Rotor for motor
JP2660018B2 (en) Crucible
JPH09308183A (en) Liquid-cooled motor frame
US20210281143A1 (en) Systems for a cooling jacket in an electric motor
JPH0218699Y2 (en)
JP2016135049A (en) Hermetically sealed rotary electric machine
US4394593A (en) Liquid cooled dynamoelectric machines
US4251745A (en) Method and apparatus for cooling superconductive windings of electric machines
US2819378A (en) Heat blowers
JP2705456B2 (en) Roll device
US3665229A (en) Rotary cryogenic machinery
JP2675030B2 (en) Superconducting rotor
JPH10215561A (en) Rotor for superconducting rotary electric machine
JPH09233768A (en) Cooling device for stator
JPH019128Y2 (en)
JP3289721B2 (en) Rotating electric machine
JPS605768A (en) Stator of rotary field type superconductive electric machine
JP3465661B2 (en) Rotating electric machine
JP3289722B2 (en) Rotating electric machine
SU957359A1 (en) Electric machine rotor
JP2586067B2 (en) Rotor of superconducting rotating electric machine and method of manufacturing the same
JPH02273068A (en) Coolant supply and exhaust apparatus of superconductive electric rotating machine
JPH04117161A (en) Superconducting rotor