JPH11233764A - Insulated gate type bipolar transistor - Google Patents

Insulated gate type bipolar transistor

Info

Publication number
JPH11233764A
JPH11233764A JP2949898A JP2949898A JPH11233764A JP H11233764 A JPH11233764 A JP H11233764A JP 2949898 A JP2949898 A JP 2949898A JP 2949898 A JP2949898 A JP 2949898A JP H11233764 A JPH11233764 A JP H11233764A
Authority
JP
Japan
Prior art keywords
region
conductivity type
cell
impurity concentration
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2949898A
Other languages
Japanese (ja)
Other versions
JP4048586B2 (en
Inventor
Hiroaki Hanaoka
宏明 花岡
Naoki Sakurai
直樹 桜井
Mutsuhiro Mori
森  睦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02949898A priority Critical patent/JP4048586B2/en
Publication of JPH11233764A publication Critical patent/JPH11233764A/en
Application granted granted Critical
Publication of JP4048586B2 publication Critical patent/JP4048586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To raise a dielectric strength with a difference compensation of a gate voltage transfer time by a method wherein a CR time constant, that is, the product of a capacitance value per unit area of an insulation film of each cell multiplied by a resistance value of each gate electrode, of a cell far from a gate pad is set equal to or smaller than that of a cell near the gate pad. SOLUTION: For example, an a-dimension of an insulation film of a cell 13 near a gate pad 11 is larger than that of a cell 14 far from the gate pad 11 (A<B). Here, when a voltage is applied to the gate pad 11, the voltage is conducted to each cell through a gate wiring 12. At this time, the gate voltage of the cell 13 near the gate pad is conducted quicker than that of the cell 14 far from the gate pad. However, the cell 13 needs longer time for charging the insulation film, because capacitance of the insulation film of the cell 13 is larger than that of the cell 14. Meanwhile the cell 14 has small capacitance and so the short charging time for the insulation film, a time from an application of the gate voltage till a starting of current can be compensated between the cell 13 and the cell 14, and current unbalance can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁ゲート型トラン
ジスタ(以下IGBTと記す)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate transistor (hereinafter referred to as IGBT).

【0002】[0002]

【従来の技術】IGBTは近年スイッチング用のデバイ
スとしてその高速性と高出力特性から急速に普及してい
る。その構造は図1に示すようにp+ 基板上にn+ 層を
形成し、さらにその上にn- 層を形成し、n- 層の表面
部にp+ 層を選択的に形成し、さらにこのp層領域中の
表面部にn層を選択的に形成する。そしてn- 層とn層
により挟まれたp層表面部をチャネル領域としてこの上
部に絶縁膜、さらにその上部にゲート電極を配置し、p
層とn層に共通に接続するエミッタ電極,p+ シリコン
基板に接続するコレクタ電極を有する構造となってい
る。
2. Description of the Related Art In recent years, IGBTs have rapidly spread as switching devices due to their high speed and high output characteristics. As shown in FIG. 1, the structure is such that an n + layer is formed on a p + substrate, an n layer is further formed thereon, and ap + layer is selectively formed on the surface of the n layer. An n-layer is selectively formed on the surface in the p-layer region. An insulating film is formed on the surface of the p-layer sandwiched between the n layer and the n-layer as a channel region, and a gate electrode is further formed on the insulating film.
The structure has an emitter electrode commonly connected to the layer and the n-layer, and a collector electrode connected to the p + silicon substrate.

【0003】IGBTチップは図2に示すように導通領
域とゲートパッドとゲート配線からなる。導通領域は図
1で示したIGBTの単位セルが集積して形成されてい
る。IGBTのコレクタ電極に正の電圧,エミッタ電極
を接地した状態でゲートパッドに正の電圧を加えるとゲ
ート電極に電圧が加わり、ゲート電圧がしきい値電圧以
上になるとp層とn層で挟まれた領域にチャネルが形成
され、チャネルを介してn- 層に電子が流れ込む。する
とこの電子電流によりp+ シリコン基板からn- 層に電
子電流に比例した正孔が注入し、n- 層は伝導度変調を
起こし、抵抗が下がり、IGBTの低オン電圧が実現す
る。
[0003] As shown in FIG. 2, the IGBT chip includes a conduction region, a gate pad, and a gate wiring. The conduction region is formed by integrating the IGBT unit cells shown in FIG. When a positive voltage is applied to the gate pad with a positive voltage applied to the collector electrode of the IGBT and an emitter electrode grounded, a voltage is applied to the gate electrode. When the gate voltage exceeds the threshold voltage, the voltage is sandwiched between the p layer and the n layer. A channel is formed in the region, and electrons flow into the n layer through the channel. Then, holes proportional to the electron current are injected from the p + silicon substrate into the n layer by the electron current, the conductivity of the n layer is modulated, the resistance is reduced, and a low on-voltage of the IGBT is realized.

【0004】近年IGBTはその高性能化のためセルサ
イズの微細化,ゲート酸化膜の薄膜化等により高出力化
が図られてきている。
In recent years, the output of IGBTs has been increased by miniaturizing the cell size and reducing the thickness of the gate oxide film to improve the performance.

【0005】[0005]

【発明が解決しようとする課題】上記した従来のIGB
Tは図1に示した基本セルを順に並べており、ゲートパ
ッドの角部あるいはチップの最外周のセルで寸法合わせ
のために絶縁膜の最も厚い部分の横方向の長さが変わっ
ているだけで、その他の所で寸法は一定であった。
The above-mentioned conventional IGB
In T, the basic cells shown in FIG. 1 are arranged in order, and at the corner of the gate pad or the outermost cell of the chip, the horizontal length of the thickest portion of the insulating film is changed only for the purpose of size adjustment. The dimensions were constant elsewhere.

【0006】ゲートパッドに加えられた電圧はゲート配
線を通して各セルのゲート電極に伝わる。ここでゲート
パッドに近いセルと遠いセル、あるいは同じセルでゲー
トパッドに近い方と遠い方を比較してみると、ゲートパ
ッドに近いセルほど、また同じセルではゲートパッドに
近い方ほどゲート電圧の伝わり方が早く、オンの際には
早く電流が流れ、逆にオフの際には早く電流を遮断する
ことになる。
The voltage applied to the gate pad is transmitted to the gate electrode of each cell through the gate wiring. Here, comparing the cells closer to the gate pad and the cells farther from the gate pad or the same cell closer to the gate pad and farther from the gate pad, the cell closer to the gate pad and closer to the gate pad in the same cell have a higher gate voltage. The current is transmitted quickly, and the current flows quickly when the switch is on, and the current is interrupted quickly when the switch is off.

【0007】このゲート電圧伝達時間の差により、電流
のアンバランスが起こりIGBTは電流集中で破壊して
しまう場合がある。
[0007] Due to the difference in the gate voltage transmission time, current imbalance may occur and the IGBT may be destroyed by current concentration.

【0008】本発明の目的はIGBTにおいてこの問題
点を解決するために、ゲート電圧伝達時間の差を補正し
て破壊耐量の高いIGBTを提供することにある。
An object of the present invention is to provide an IGBT having a high breakdown strength by correcting a difference in gate voltage transmission time in order to solve this problem in the IGBT.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、高不純物濃度で第1導電型の第1領
域、その第1領域上に形成された高不純物濃度で第2導
電型の第2領域、その第2領域上に形成された第2領域
より低不純物濃度で第2導電型の第3領域、その第3領
域表面部に選択的に形成された第1導電型の第4領域、
その第4領域表面部に選択的に形成された第2導電型の
第5領域,第3領域上に第3領域と第5領域で挟まれた
部分をチャネルとなるように設けられた絶縁膜、その絶
縁膜上に設けられたゲート電極を有する絶縁ゲート型バ
イポーラトランジスタにおいて、各セルの絶縁膜の単位
面積当たりの容量とゲート電極の抵抗をかけたCR時定
数をゲートパッドに遠いセルはゲートパッドに近いセル
と同等又はそれよりも小さくするものである。
To achieve the above object, the present invention provides a first region of a first conductivity type having a high impurity concentration, and a second region having a high impurity concentration formed on the first region. A second region of the conductivity type, a third region of the second conductivity type having a lower impurity concentration than the second region formed on the second region, and a first conductivity type selectively formed on the surface of the third region. The fourth area of
A fifth region of the second conductivity type selectively formed on the surface of the fourth region, and an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel. In an insulated gate bipolar transistor having a gate electrode provided on the insulating film, the cell per unit area of the insulating film of each cell and the CR time constant obtained by multiplying the resistance of the gate electrode by a cell far from the gate pad are gated. This is equivalent to or smaller than the cell close to the pad.

【0010】ゲート電圧の伝達時間は単位面積当たりの
絶縁膜の容量とゲート電極の抵抗をかけたCR時定数で
決まる。絶縁膜において絶縁膜の最も厚い部分の横方向
の長さを大きくすると絶縁膜全体の容量は大きくなる。
逆に絶縁膜の最も厚い部分の横方向の長さを小さくする
と絶縁膜全体の容量は小さくなる。ここでゲートパッド
に遠いセルの絶縁膜の最も厚い部分の横方向の長さをそ
のセルよりもゲートパッドに近いセルの絶縁膜の最も厚
い部分の横方向の長さと同等又はそれよりも小さくする
と、この絶縁膜を充電する時間は短くなり、ゲート電圧
が加わってから電流が流れ始めるまでの時間は短くな
り、ゲート電圧の伝達時間を補正することができる。さ
らに同じセルにおいて絶縁膜の最も厚い部分の横方向の
長さがゲートパッドに遠いほど小さくしても、さらにゲ
ートパッドに遠いセルの絶縁膜の最も厚い部分の縦方向
の長さをそのセルよりも近いセルの絶縁膜の最も厚い部
分の縦方向の長さと同等又はそれよりも大きくする、さ
らに同じセルにおいて絶縁膜の最も厚い部分の縦方向の
長さがゲートパッドに遠いほど大きくしても同様の効果
が得られる。
The transmission time of the gate voltage is determined by the CR time constant multiplied by the capacitance of the insulating film per unit area and the resistance of the gate electrode. Increasing the lateral length of the thickest portion of the insulating film in the insulating film increases the capacitance of the entire insulating film.
Conversely, when the lateral length of the thickest portion of the insulating film is reduced, the capacitance of the entire insulating film is reduced. Here, when the lateral length of the thickest portion of the insulating film of the cell far from the gate pad is equal to or smaller than the lateral length of the thickest portion of the insulating film of the cell closer to the gate pad than that cell. The time for charging the insulating film is shortened, and the time from when the gate voltage is applied to when the current starts to flow is shortened, and the transmission time of the gate voltage can be corrected. Further, even if the horizontal length of the thickest portion of the insulating film in the same cell becomes smaller as it is farther from the gate pad, the vertical length of the thickest portion of the insulating film in the cell further farther from the gate pad is made longer than that cell. Even if the vertical length of the thickest portion of the insulating film in the same cell is equal to or greater than the vertical length of the thickest portion of the insulating film of the closer cell, even if the vertical length of the thickest portion of the insulating film in the same cell is farther from the gate pad, Similar effects can be obtained.

【0011】抵抗についても同じように、ゲート電極の
横方向の距離を大きくすると抵抗は大きくなり、縦方向
の厚さを薄くしても抵抗を大きくすることができる。
Similarly, the resistance increases as the horizontal distance of the gate electrode increases, and the resistance can be increased even if the thickness in the vertical direction is reduced.

【0012】[0012]

【発明の実施の形態】以下本発明を実施例として示した
図面を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing embodiments.

【0013】図3から図10はIGBTチップのゲート
パッドと各セルの形状及び断面構造を示したものであ
る。図3でゲートパッド11に近いセル13は遠いセル
14よりも絶縁膜のa寸法が大きくなっている(A<
B)。ここでゲートパッド11に電圧が加わった時、電
圧はゲート配線12を通って各セルに伝わる。このとき
ゲートパッドに近いセル13はゲートパッドに遠いセル
14よりもゲート電圧は早く伝わる。しかしセル13は
絶縁膜の容量がセル14よりも大きいため絶縁膜を充電
するのに時間がかかる、一方セル13は容量が小さいの
で絶縁膜を充電する時間は短いので、ゲート電圧が加わ
ってから電流が流れ始めるまでの時間をセル13とセル
14の間で補正することが可能となり、電流のアンバラ
ンスを解消できる。同様に図4では同じセル15におい
てゲートパッドに近い方が絶縁膜のa寸法が大きくなっ
ている(A<B)。この構造でも上記と同様な効果が得
られるのは明らかである。
FIGS. 3 to 10 show the shape and cross-sectional structure of the gate pad and each cell of the IGBT chip. In FIG. 3, the cell 13 closer to the gate pad 11 has a larger a-size of the insulating film than the cell 14 farther (A <
B). Here, when a voltage is applied to the gate pad 11, the voltage is transmitted to each cell through the gate wiring 12. At this time, the gate voltage is transmitted earlier in the cell 13 closer to the gate pad than in the cell 14 farther from the gate pad. However, since the capacity of the insulating film of the cell 13 is larger than that of the cell 14, it takes time to charge the insulating film. On the other hand, since the capacity of the cell 13 is small, the charging time of the insulating film is short, and thus the gate voltage is applied. The time until the current starts to flow can be corrected between the cell 13 and the cell 14, and the current imbalance can be eliminated. Similarly, in FIG. 4, in the same cell 15, the dimension a of the insulating film is larger near the gate pad (A <B). It is clear that the same effect can be obtained with this structure.

【0014】さらに図5ではゲートパッド11に近いセ
ル13は遠いセル14よりも絶縁膜のd寸法が小さくな
っている(A>B)。セル13とセル14の容量を比較
すると、d寸法の小さいセル13の方が大きく、この構
造でも上記の電流アンバランスを解消できることが分か
る。
Further, in FIG. 5, the cell 13 near the gate pad 11 has a smaller d-size of the insulating film than the cell 14 far from it (A> B). Comparing the capacities of the cell 13 and the cell 14, it can be seen that the cell 13 having a smaller d dimension is larger, and this structure can also eliminate the current imbalance.

【0015】同様に図6では同じセル15においてゲー
トパッドに近い方が絶縁膜のd寸法が大きくなっている
(A>B)。この構造でも上記と同様な効果が得られる
のは明らかである。
Similarly, in FIG. 6, in the same cell 15, the d dimension of the insulating film is larger near the gate pad (A> B). It is clear that the same effect can be obtained with this structure.

【0016】図7はゲートパッド11に近いセル13は
遠いセル14よりもゲート電極の横方向全体の長さが長
くなっている(A+B<C)。ここでゲートパッド11
に電圧が加わった時、電圧はゲート配線12を通って各
セルに伝わる。このときゲートパッドに近いセル13は
ゲートパッドに遠いセル14よりもゲート電圧は早く伝
わる。しかしセル13はゲート電極の抵抗がセル14よ
りも大きいため電圧を伝えるのに時間がかかる、一方セ
ル13はゲート電極の抵抗が小さいので電圧を伝える時
間は短く、ゲート電圧が加わってから電流が流れ始める
までの時間をセル13とセル14の間で補正することが
可能となり、電流のアンバランスを解消できる。同様に
図8では同じセル15においてゲートパッドに近い方が
ゲート電極の横方向全体の長さが長くなっている(A+
B<C)。この構造はゲート電極にスリットを入れるこ
とにより得ることができ上記と同様な効果が得られるの
は明らかである。図9はゲートパッド11に近いセル1
3は遠いセル14よりもゲート電極の縦方向の厚さが薄
くなっている(A>B)。ゲート電極が薄いとゲート電
極の抵抗は大きくなり、所望の効果が得られる。同様に
図10では同じセル15においてゲートパッドに近い方
がゲート電極の縦方向の厚さが薄くなっている(A>
B)。この構造でもゲート電極の抵抗が高くなり同様な
効果が得られる。
FIG. 7 shows that the cell 13 near the gate pad 11 has a longer overall length of the gate electrode in the lateral direction than the cell 14 far from it (A + B <C). Here, the gate pad 11
When a voltage is applied to the cell, the voltage is transmitted to each cell through the gate wiring 12. At this time, the gate voltage is transmitted earlier in the cell 13 closer to the gate pad than in the cell 14 farther from the gate pad. However, since the resistance of the gate electrode of the cell 13 is larger than that of the cell 14, it takes time to transmit the voltage. On the other hand, since the resistance of the gate electrode of the cell 13 is small, the time of transmitting the voltage is short. The time until the flow starts can be corrected between the cell 13 and the cell 14, and the imbalance of the current can be eliminated. Similarly, in FIG. 8, the overall length of the gate electrode in the same cell 15 closer to the gate pad is longer in the horizontal direction (A +
B <C). This structure can be obtained by forming a slit in the gate electrode, and it is clear that the same effect as above can be obtained. FIG. 9 shows cell 1 near gate pad 11.
In No. 3, the vertical thickness of the gate electrode is smaller than that of the far cell 14 (A> B). If the gate electrode is thin, the resistance of the gate electrode increases, and a desired effect can be obtained. Similarly, in FIG. 10, the vertical thickness of the gate electrode in the same cell 15 near the gate pad is smaller (A>
B). Also in this structure, the resistance of the gate electrode is increased, and the same effect can be obtained.

【0017】[0017]

【発明の効果】以上の説明から分かるように本発明によ
れば、単位面積当たりの絶縁膜の容量とゲート抵抗をか
けたCR時定数をゲートパッドから遠いセルを近いセル
と同等又はそれよりも小さくすること、同じセルではゲ
ートパッドから近い方を遠い方より大きくすることで電
流のアンバランスを解消し、破壊耐量の大きなIGBT
を得ることができる。
As can be seen from the above description, according to the present invention, the CR time constant obtained by multiplying the capacitance of the insulating film per unit area and the gate resistance is set so that a cell far from the gate pad is equal to or smaller than a cell close to the gate pad. An IGBT with a large breakdown voltage can be eliminated by reducing the size and increasing the distance from the gate pad closer to the gate pad than the distance farther from the gate pad in the same cell.
Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明IGBTの一般的断面図。FIG. 1 is a general sectional view of an IGBT of the present invention.

【図2】IGBTチップ。FIG. 2 is an IGBT chip.

【図3】IGBTチップとその断面図。FIG. 3 is an IGBT chip and a cross-sectional view thereof.

【図4】IGBTチップとその断面図。FIG. 4 is an IGBT chip and a cross-sectional view thereof.

【図5】IGBTチップとその断面図。FIG. 5 is an IGBT chip and a cross-sectional view thereof.

【図6】IGBTチップとその断面図。FIG. 6 is an IGBT chip and a cross-sectional view thereof.

【図7】IGBTチップとその断面図。FIG. 7 is an IGBT chip and a cross-sectional view thereof.

【図8】IGBTチップとその断面図。FIG. 8 is an IGBT chip and a cross-sectional view thereof.

【図9】IGBTチップとその断面図。FIG. 9 is an IGBT chip and a cross-sectional view thereof.

【図10】IGBTチップとその断面図。FIG. 10 is an IGBT chip and a cross-sectional view thereof.

【符号の説明】[Explanation of symbols]

1…p+ 基板、2…n+ 層、3…n- 層、4…p層、5
…n層、6…絶縁膜、7…ゲート電極、8…エミッタ電
極、9…コレクタ電極、10…導通領域、11…ゲート
パッド、12…ゲート配線、13…ゲートパッドに近い
セル、14…ゲートパッドに遠いセル、15…セル。
1 ... p + substrate, 2 ... n + layer, 3 ... n - layer, 4 ... p layer, 5
... N layer, 6 insulating film, 7 gate electrode, 8 emitter electrode, 9 collector electrode, 10 conductive region, 11 gate pad, 12 gate wiring, 13 cell close to gate pad, 14 gate Cells far from the pad, 15 ... cells.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、絶縁膜の単位面積当たりの容
量とゲート電極の抵抗をかけたCR時定数がゲートパッ
ドに遠いセルはゲートパッドに近いセルと同等又はそれ
よりも小さいことを特徴とする絶縁ゲート型バイポーラ
トランジスタ。
A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a first region formed on the second region of the first conductivity type. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. In the insulated gate bipolar transistor having, the CR time constant obtained by multiplying the capacitance per unit area of the insulating film and the resistance of the gate electrode is such that a cell far from the gate pad is equal to or smaller than a cell near the gate pad. Gate type bipolar transistor.
【請求項2】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、各セルで絶縁膜の最も厚い部
分の横方向の長さがゲートパッドに遠いセルはゲートパ
ッドに近いセルと同等又はそれよりも小さいことを特徴
とする絶縁ゲート型バイポーラトランジスタ。
2. A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a second region formed on the second region of a high impurity concentration. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. An insulated gate bipolar transistor, comprising: a cell having a thickest portion of an insulating film in a lateral direction in each cell, wherein a cell far from the gate pad is equal to or smaller than a cell near the gate pad. Bipolar transistor.
【請求項3】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、同じセルで絶縁膜の最も厚い
部分の横方向の長さがゲートパッドに遠いほど小さいこ
とを特徴とする絶縁ゲート型トランジスタ。
3. A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a second region formed on the second region of the first conductivity type. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. 1. An insulated gate bipolar transistor comprising: an insulating gate type bipolar transistor, wherein the lateral length of the thickest portion of the insulating film in the same cell decreases as the distance from the gate pad increases.
【請求項4】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、各セルの絶縁膜の最も厚い部
分の縦方向の長さがゲートパッドに遠いセルはゲートパ
ッドに近いセルと同等又はそれよりも大きいことを特徴
とする絶縁ゲート型バイポーラトランジスタ。
4. A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a first region formed on the second region. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. In the insulated gate bipolar transistor having the thickest portion of the insulating film of each cell, the cell in the vertical direction is far from the gate pad, and the cell is equal to or larger than the cell near the gate pad. Bipolar transistor.
【請求項5】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、同じセルで絶縁膜の最も厚い
部分の縦方向の長さがゲートパッドに遠いほど大きいこ
とを特徴とする絶縁ゲート型トランジスタ。
5. A first region of a first conductivity type with a high impurity concentration, a second region of a second conductivity type with a high impurity concentration formed on the first region, and a second region formed on the second region of a high impurity concentration. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. The insulated gate bipolar transistor having the same cell, wherein the vertical length of the thickest portion of the insulating film in the same cell increases as the distance from the gate pad increases.
【請求項6】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、各セルでゲート電極の横方向
の全体の長さがゲートパッドに遠いセルはゲートパッド
に近いセルと同等又はそれよりも小さいことを特徴とす
る絶縁ゲート型バイポーラトランジスタ。
6. A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a first region formed on the second region. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. An insulated gate bipolar transistor having an insulated gate bipolar transistor, wherein a cell having a total length in the lateral direction of a gate electrode in each cell is equal to or smaller than a cell near the gate pad. .
【請求項7】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、同じセルでゲート電極の横方
向の全体の長さがゲートパッドに遠いほど小さいことを
特徴とする絶縁ゲート型トランジスタ。
7. A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a first region formed on the second region. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. An insulated gate type bipolar transistor comprising: an insulated gate type bipolar transistor, wherein the overall length of a gate electrode in the same cell in the lateral direction is smaller as being farther from the gate pad.
【請求項8】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、各セルでゲート電極の縦方向
の厚さがゲートパッドに遠いセルはゲートパッドに近い
セルと同等又はそれよりも厚いことを特徴とする絶縁ゲ
ート型バイポーラトランジスタ。
8. A first region of a first conductivity type having a high impurity concentration, a second region of a second conductivity type having a high impurity concentration formed on the first region, and a first region formed on the second region. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. An insulated gate bipolar transistor comprising: an insulated gate bipolar transistor, wherein in each cell, a cell in which a gate electrode has a vertical thickness far from a gate pad is equal to or thicker than a cell near a gate pad.
【請求項9】高不純物濃度で第1導電型の第1領域、そ
の第1領域上に形成された高不純物濃度で第2導電型の
第2領域、その第2領域上に形成された第2領域より低
不純物濃度で第2導電型の第3領域、その第3領域表面
部に選択的に形成された第1導電型の第4領域、その第
4領域表面部に選択的に形成された第2導電型の第5領
域,第3領域上に第3領域と第5領域で挟まれた部分が
チャネルとなるように設けられた絶縁膜、その絶縁膜上
に設けられたゲート電極を有する絶縁ゲート型バイポー
ラトランジスタにおいて、同じセルでゲート電極の横方
向の長さの距離がゲートパッドに遠いほど厚いことを特
徴とする絶縁ゲート型トランジスタ。
9. A first region of a first conductivity type with a high impurity concentration, a second region of a second conductivity type with a high impurity concentration formed on the first region, and a second region formed on the second region of a high impurity concentration. A third region of the second conductivity type having a lower impurity concentration than the two regions, a fourth region of the first conductivity type selectively formed on the surface of the third region, and selectively formed on the surface of the fourth region. A fifth region of the second conductivity type, an insulating film provided on the third region such that a portion sandwiched between the third region and the fifth region becomes a channel, and a gate electrode provided on the insulating film. 1. An insulated gate bipolar transistor, comprising: the same cell, wherein the distance in the lateral direction of the gate electrode in the same cell increases as the distance from the gate pad increases.
JP02949898A 1998-02-12 1998-02-12 Insulated gate bipolar transistor Expired - Lifetime JP4048586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02949898A JP4048586B2 (en) 1998-02-12 1998-02-12 Insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02949898A JP4048586B2 (en) 1998-02-12 1998-02-12 Insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JPH11233764A true JPH11233764A (en) 1999-08-27
JP4048586B2 JP4048586B2 (en) 2008-02-20

Family

ID=12277753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02949898A Expired - Lifetime JP4048586B2 (en) 1998-02-12 1998-02-12 Insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP4048586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023234A (en) * 2010-07-15 2012-02-02 Mitsubishi Electric Corp Semiconductor device
JPWO2012056536A1 (en) * 2010-10-27 2014-03-20 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023234A (en) * 2010-07-15 2012-02-02 Mitsubishi Electric Corp Semiconductor device
JPWO2012056536A1 (en) * 2010-10-27 2014-03-20 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US9070737B2 (en) 2010-10-27 2015-06-30 Fuji Electric Co., Ltd. Semiconductor device with low-lifetime region
US9460927B2 (en) 2010-10-27 2016-10-04 Fuji Electric Co., Ltd. Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP4048586B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP3167457B2 (en) Semiconductor device
JP2812093B2 (en) Semiconductor device having planar junction
JP2585331B2 (en) High breakdown voltage planar element
JP3382172B2 (en) Horizontal insulated gate bipolar transistor
US20040056302A1 (en) Buried gate-field termination structure
JPH06268198A (en) High breakdown strength planar semiconductor device
JPH10178176A (en) Trench gate type insulated-gate bipolar transistor having trench gate structure
US20090146177A1 (en) Variable threshold trench igbt with offset emitter contacts
US5977588A (en) Radio frequency power MOSFET device having improved performance characteristics
JPH04274368A (en) Insulated gate type bipolar transistor and manufacture thereof
JPH0661495A (en) Semiconductor device and its manufacture
US6150675A (en) Semiconductor component with a control electrode for modulating the conductivity of a channel area by means of a magnetoresistor structure
JP4048586B2 (en) Insulated gate bipolar transistor
JP3505220B2 (en) Insulated gate type semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP2001332728A (en) Igbt
US6207508B1 (en) Method for fabricating a radio frequency power MOSFET device having improved performance characteristics
WO1998012755A1 (en) Semiconductor device
EP0700094B1 (en) Insulated gate thyristor
JPH06236990A (en) Mos control diode
JPH0758228A (en) Integrated device
JPH0888290A (en) Semiconductor device and using method therefor
US20100001315A1 (en) Semiconductor device
JP2611429B2 (en) Conductivity modulation type MOSFET
JP3106844B2 (en) Lateral insulated gate bipolar transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term