JP2611429B2 - Conductivity modulation type MOSFET - Google Patents

Conductivity modulation type MOSFET

Info

Publication number
JP2611429B2
JP2611429B2 JP1134409A JP13440989A JP2611429B2 JP 2611429 B2 JP2611429 B2 JP 2611429B2 JP 1134409 A JP1134409 A JP 1134409A JP 13440989 A JP13440989 A JP 13440989A JP 2611429 B2 JP2611429 B2 JP 2611429B2
Authority
JP
Japan
Prior art keywords
region
layer
conductivity modulation
mosfet
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1134409A
Other languages
Japanese (ja)
Other versions
JPH02312281A (en
Inventor
康和 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1134409A priority Critical patent/JP2611429B2/en
Publication of JPH02312281A publication Critical patent/JPH02312281A/en
Application granted granted Critical
Publication of JP2611429B2 publication Critical patent/JP2611429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOSFETのソース領域とドレイン領域の間のベ
ース領域に伝導度変調を起こさせる伝導度変調型MOSFET
に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a conductivity-modulated MOSFET that causes conductivity modulation in a base region between a source region and a drain region of a MOSFET.
About.

〔従来の技術〕[Conventional technology]

伝導度変調型MOSFETは、通常の電力用縦型MOSFETのド
レインイン領域をソース領域とは逆の導電型にしたもの
である。第2図は従来の伝導度変調型MOSFETの断面構造
を示す。ドレイン層となるP+層1の上にN+バッファ層2
を介して積層されたN-ベース層3には、表面の酸化膜5
の上に設けられた多結晶シリコンゲート6をマスクとし
て不純物を導入する、いわゆるセルフアラインメント方
式によりチャネルとなるべきP層4が形成されている。
P層4ゲート6の下方の外側にはN+ソース層7が形成さ
れている。この素子のゲート6に電圧印加することによ
りチャネル層4の、ゲート酸化膜5の直下の表面層は反
転層となり、Nチャネルが形成される。このため、ソー
ス層7から電子がチャネルを通りベース層3に注入され
る。これにより伝導度変調が生じ、ベース層3の内部で
は電子と正孔が過剰に存在することとなり、低抵抗素子
となる。
In the conductivity modulation type MOSFET, the drain-in region of a normal power vertical MOSFET has a conductivity type opposite to that of the source region. FIG. 2 shows a sectional structure of a conventional conductivity modulation type MOSFET. N + buffer layer 2 on P + layer 1 serving as a drain layer
The oxide film 5 on the surface of the N base layer 3 laminated via
P layer 4 to be a channel is formed by a so-called self-alignment method in which impurities are introduced using polycrystalline silicon gate 6 provided as a mask as a mask.
An N + source layer 7 is formed outside the P layer 4 below the gate 6. By applying a voltage to the gate 6 of this element, the surface layer of the channel layer 4 immediately below the gate oxide film 5 becomes an inversion layer, and an N channel is formed. Therefore, electrons are injected from the source layer 7 into the base layer 3 through the channel. As a result, conductivity modulation occurs, and electrons and holes are excessively present inside the base layer 3, and a low-resistance element is obtained.

このように、伝導度変調型MOSFETは、絶縁ゲート型の
バイポーラ素子として最近注目を集めている素子であ
る。
As described above, the conductivity modulation type MOSFET is an element that has recently attracted attention as an insulated gate bipolar element.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第2図に示すような構造をもつ伝導度変調型MOSFETで
は接合型FET(JFET)効果を免れない。このFFET効果と
は、N-ベース層とP層4との接合により形成されるピル
トインポテンシアルにより図に点線で領界を示した空乏
層81が生ずることである。JFET効果により電子eの通り
道82は大幅に狭められる。このため電子eの注入は制限
され、これはまた正孔の注入の制限ともなる。ひとたび
大きな伝導度変調が生じてしまえば、空乏層81には多量
の正孔が落ち込むため、その空乏層は電圧を維持するこ
とができず消滅してしまい、JFET効果はなくなってしま
う。このように伝導度変調型MOSFETでは、ひとたび伝導
度変調が生じてしまえばJFET効果は問題ないため、オン
・オフのみを問題とするスイッチング素子ではほとんど
問題とはならない。しかしながら、電流・電圧(I−
V)特性が第3図のようになり、立ち上がりに遅れが生
ずるため、I−V特性における立ち上がりに左右される
場合、極めて重要な問題になってくる。例えば、伝導度
変調型MOSFETをテレビの水平偏向に用いる場合、このI
−V特性における上ち上がり特性は画面そのものにノイ
ズが生ずるため問題である。
In the conductivity modulation type MOSFET having the structure as shown in FIG. 2, the junction type FET (JFET) effect cannot be avoided. The FFET effect means that a depletion layer 81 indicated by a dotted line in the figure is generated by a pyrt impotential formed by a junction between the N base layer and the P layer 4. The passage 82 of the electron e is greatly narrowed by the JFET effect. This limits the injection of electrons e, which also limits the injection of holes. Once a large conductivity modulation occurs, a large amount of holes fall into the depletion layer 81, so that the depletion layer cannot maintain the voltage and disappears, and the JFET effect disappears. As described above, in the conductivity modulation type MOSFET, once the conductivity modulation occurs, the JFET effect is not a problem, and therefore, there is almost no problem in a switching element that only involves ON / OFF. However, the current / voltage (I−
V) The characteristics are as shown in FIG. 3 and the rise is delayed, which is a very important problem when the characteristics are influenced by the rise in the IV characteristics. For example, when a conductivity modulation type MOSFET is used for horizontal deflection of a television,
The rising characteristic in the -V characteristic is a problem because noise occurs on the screen itself.

JFET効果を低減する方法としては、ゲート6の横幅を
拡げP層4の間隔を大きくすればよいが、このようにす
ると一定面積下では逆に総チャネル長が減ってしまい、
電子の注入が減少するので、総合的に見ては余り良い方
法とは言えない。
As a method of reducing the JFET effect, the lateral width of the gate 6 may be increased and the interval between the P layers 4 may be increased. However, in this case, the total channel length is reduced under a certain area.
Since the injection of electrons is reduced, it is not a very good method overall.

本発明の目的は、上述の問題を解決し、I−V特性の
立ち上がりの遅れのない伝導度変調型MOSFETを提供する
ことにある。
An object of the present invention is to solve the above-mentioned problem and to provide a conductivity modulation type MOSFET having no delay in rising of the IV characteristic.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために、本発明は、第一導電形
の第一層と第二導電形の第二層とが積層され、その第二
層の表面部に選択的に第一導電形の第一領域が、さらに
その第一領域の表面部に選択的に第二導電形の第二領域
が形成され、第二層と第二領域にはさまれた第一領域の
表面上に絶縁膜を介してゲートが設けられ、第二領域表
面および第二領域の第二層より遠い側にある第一領域表
面に一方の主電極が接触する伝導度変調型MOSFETにおい
て、第一領域の表面部に選択的に第二導電形の第三領域
が形成され、第一領域の表面から第三領域に隣接して第
二層に達するU字状の溝が形成され、第二層と第三領域
にはさまれた第一領域の露出するU字状溝内側面上に絶
縁膜を介して補助ゲートが設けられ、第三領域および第
三領域の反U字状溝側にある第一領域表面に前記一方の
主電極が接触するものとする。
In order to achieve the above object, the present invention provides a first conductive type first layer and a second conductive type second layer are laminated, the first conductive type selectively on the surface of the second layer. A second region of the second conductivity type is selectively formed on the surface of the first region, and an insulating layer is formed on the surface of the first region sandwiched between the second layer and the second region. In a conductivity-modulated MOSFET in which a gate is provided via a film and one main electrode is in contact with the surface of the second region and the surface of the first region farther from the second layer of the second region, the surface of the first region A third region of the second conductivity type is selectively formed in the portion, a U-shaped groove extending from the surface of the first region to the second region adjacent to the third region is formed, and the second layer and the third layer are formed. An auxiliary gate is provided on the exposed inner surface of the U-shaped groove of the first region sandwiched between the regions, with an insulating film interposed therebetween, and the third region and the third region on the side opposite to the U-shaped groove. Wherein the one main electrode shall be in contact with a certain first region surface.

〔作用〕[Action]

第一領域の表面から第二層に達するU字状の溝の側壁
上に補助ゲートを有するMOS構造を備えた伝導度変調MOS
FETにおいては、JFET効果が存在せず、印加電圧に応じ
て主電極から第三領域を経てチャネルを通じてキャリア
が注入され、第二層に伝導度変調を起こすため、第4図
に示すように一様に立上るI−V特性を示す。この特性
が第3図に示した従来の平面型の伝導濃度長型MOSFETの
特性と組合わせるため、第3図のようなI−V特性の立
上りの遅れば解消される。しかし素子のすべてをU字状
溝内側面上のMOS構造を備えた伝導度変調型MOSFETにし
ないのは、JFET効果は無くても、負荷短絡時などに流れ
る大電流により素子の温度が上昇し、温度が上昇した部
分の少量キャリアの注入が増加しその部分に電流が集中
しさらに温度が上昇するというポジティブフィ−ドバッ
クにより素子破壊が発生し易く耐量の点で劣るためで、
耐量は表面上にMOS構造を備えた平板型の伝導度変調型M
OSFETで負わせるようにする。
A conductivity-modulated MOS having a MOS structure with an auxiliary gate on the side wall of a U-shaped groove reaching the second layer from the surface of the first region
In the FET, since the JFET effect does not exist, carriers are injected from the main electrode through the channel through the third region in accordance with the applied voltage, and conductivity modulation occurs in the second layer. It shows the IV characteristic which rises as follows. Since this characteristic is combined with the characteristic of the conventional planar conduction-concentration long-type MOSFET shown in FIG. 3, it is eliminated if the rise of the IV characteristic as shown in FIG. 3 is delayed. However, the reason that not all of the elements are the conductivity modulation type MOSFETs having the MOS structure on the inner surface of the U-shaped groove is that even if there is no JFET effect, the temperature of the element rises due to a large current flowing when a load is short-circuited. This is because the injection of a small amount of carriers in the portion where the temperature rises increases, current concentrates in that portion, and the temperature is further increased.
The withstand capability is a conductivity type M of a flat plate type with a MOS structure on the surface.
OSFET will be charged.

〔実施例〕〔Example〕

第1図は本発明の一実施例を断面で示し、第2図と共
通の部物には同一の符号が付されている。第2図に示し
たようにP+ドレイン層(第一層)1,N+バッファ層(第二
層)2,N-ベース層(第二層)3が積層され、第二層の表
面部にP形のチャネル(第1領域)4を形成し、チャネ
ル層4の表面部にN+ソース層(第二領域)7を形成した
基板上にMOS構造を有する従来の平面型の伝導度変調型M
OSETの基板の縁部のN+ソース層(第三領域)71に接して
U字状の溝11が形成されている。溝11は基板表面からの
選択的なウエットエッチングあるいはドライエッチング
で形成できる。この溝の内面にゲート酸化膜5を形成し
たのち、減圧CVD法で多結晶シリコンゲート6を堆積さ
せる。このゲートはPチャネル層4およびベース層3の
表面にゲート酸化膜5を介して設ける平板型の伝導度変
調型MOSFETのゲート6と同時に形成できる。A部の平板
型の伝導度変調型MOSFETとB部のU字状溝を有する伝導
度変調型MOSFETのそれぞれのソース層7および71は両ゲ
ート6とPSG層9を介するソース電極12に接触し、ソー
ス電極はソース端子Sに接続され、チャネル層4にも高
不純物濃度のP++層13を介して接触している。P++層はラ
ッチアップの防止とソース電極12のオーム性接触の双方
に役立つ。両多結晶シリコンゲート6には、PSG層9の
開口部でゲート電極14が接触し、ゲート電極14はゲート
端子Gと接続されている。なおドレイン層1には図示し
ないドレイン電極を介してドレイン端子Dが接続されて
いる。
FIG. 1 shows an embodiment of the present invention in cross section, and parts common to FIG. 2 are denoted by the same reference numerals. As shown in FIG. 2, a P + drain layer (first layer) 1, an N + buffer layer (second layer) 2, and an N base layer (second layer) 3 are laminated, and a surface portion of the second layer is formed. A conventional planar conductivity modulation having a MOS structure on a substrate having a P-type channel (first region) 4 formed thereon and an N + source layer (second region) 7 formed on the surface of the channel layer 4. Type M
A U-shaped groove 11 is formed in contact with the N + source layer (third region) 71 at the edge of the OSET substrate. The groove 11 can be formed by selective wet etching or dry etching from the substrate surface. After a gate oxide film 5 is formed on the inner surface of this groove, a polycrystalline silicon gate 6 is deposited by a low pressure CVD method. This gate can be formed simultaneously with the gate 6 of a planar conductivity modulation type MOSFET provided on the surfaces of the P channel layer 4 and the base layer 3 via the gate oxide film 5. The source layers 7 and 71 of the plate-type conductivity modulation MOSFET of part A and the conductivity modulation MOSFET having a U-shaped groove of part B are in contact with the source electrode 12 via both gates 6 and PSG layer 9. The source electrode is connected to the source terminal S, and is also in contact with the channel layer 4 through the P ++ layer 13 having a high impurity concentration. The P ++ layer helps both prevent latch-up and ohmic contact of the source electrode 12. The gate electrode 14 is in contact with both polycrystalline silicon gates 6 at the opening of the PSG layer 9, and the gate electrode 14 is connected to the gate terminal G. The drain terminal D is connected to the drain layer 1 via a drain electrode (not shown).

このような構造にすることにより、S端子とD端子の
間にA部の平板型の伝導度変調型MOSFETのB部のU型の
伝導度変調型MOSFETの双方が並列に接続されることにな
り、電圧の立上り時にはB部の基板面に垂直なチャネル
を通して電子が注入されていく。ひき続き電子の注入に
より正孔がドレイン側から注入され、伝導度変調が生ず
る。ひとたび大きな伝導度変調が生じてしまえば、前述
のようにJFET効果はなくなり、A部の伝導度変調型MOSF
ETに大きな電流が流れる。この結果、第3図に示されて
いるようなI−V特性の立上りの遅れはなくなる。B部
のU型の伝導度変調型MOSFETの耐量は低いが、素子面積
の大部分を占めるA部の平板状伝導度変調型MOSFETが耐
量を負うため、問題はない。
With such a structure, both the U-type conductivity modulation type MOSFET in the B portion and the U-type conductivity modulation type MOSFET in the B portion are connected in parallel between the S terminal and the D terminal. When the voltage rises, electrons are injected through a channel perpendicular to the substrate surface of the portion B. Subsequently, holes are injected from the drain side by electron injection, and conductivity modulation occurs. Once large conductivity modulation occurs, the JFET effect disappears as described above, and the conductivity modulation type MOSF
A large current flows through ET. As a result, there is no longer a delay in rising of the IV characteristic as shown in FIG. Although the resistance of the U-type conductivity modulation type MOSFET in the part B is low, there is no problem because the flat conductivity modulation type MOSFET in the part A which occupies most of the element area bears the resistance.

以上の説明は、Nチャネル伝導度変調型MOSFETについ
て行ったが、Pチャネル伝導度変調型MOSFETでも同様に
実施できる。
Although the above description has been made with respect to the N-channel conductivity modulation type MOSFET, the same description can be applied to the P-channel conductivity modulation type MOSFET.

〔発明の効果〕 本発明によれば、一つの半導体基板内に平板型の伝導
度変調型MOSFETとU型の伝導度変調型MOSFETを併設する
ことにより、平板型の伝導度変調型MOSFETにおけるLFET
効果に基づくI−V特性の立ち上がりの遅れがU型の伝
導度変調型MOSFETの特性により補なわれるため、最初か
ら一様に立ち上がるI−V特性が得られる。従ってテレ
ビの水平偏向のように立ち上がりが問題になる用途にも
適する伝導度変調型MOSFETを得ることができる。
[Effects of the Invention] According to the present invention, a planar conductivity modulation MOSFET and a U-type conductivity modulation MOSFET are provided side by side in one semiconductor substrate, so that an LFET in a flat conductivity modulation MOSFET is provided.
Since the delay of the rise of the IV characteristic based on the effect is compensated for by the characteristic of the U-type conductivity modulation type MOSFET, the IV characteristic which rises uniformly from the beginning can be obtained. Therefore, it is possible to obtain a conductivity modulation type MOSFET which is suitable for applications in which rising is a problem, such as horizontal deflection of a television.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の伝導度変調型MOSFETの断面
図、第2図は従来の平板型の伝導度変調型MOSFETの断面
図、第3図は平板型の伝導度変調型MOSFETの電流・電圧
特性線図、第4図はU型の伝導度変調型MOSFETの電流・
電圧特性線図である。 1:P+ドレイン層、2:N+バッファ層、3:N-ベース層、4:P
形のチャネル層、5:ゲート酸化膜、6:ゲート、7,71:N+
ソース層、11:U字状溝、12:ソース電極。
FIG. 1 is a sectional view of a conductivity-modulated MOSFET according to an embodiment of the present invention, FIG. 2 is a sectional view of a conventional planar-conductivity-modulated MOSFET, and FIG. FIG. 4 shows the current and voltage characteristics of the U-type conductivity modulation type MOSFET.
FIG. 3 is a voltage characteristic diagram. 1: P + drain layer, 2: N + buffer layer, 3: N - base layer, 4: P
Channel layer, 5: gate oxide film, 6: gate, 7,71: N +
Source layer, 11: U-shaped groove, 12: source electrode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一導電形の第一層と第二導電形の第二層
とが積層され、その第二層の表面部に選択的に第一導電
形の第一領域が、さらにその第一領域の表面部に選択的
に第二導電形の第二領域が形成され、第二層と第二領域
にはさまれた第一領域表面上に絶縁膜を介してゲートが
設けられ、第二領域表面および第二領域の第二層より遠
い側にある第一領域表面に一方の主電極が接触するもの
において、第一領域の表面部に選択的に第二導電形の第
三領域が形成され、第一領域の表面から第三領域に隣接
して第二層に達するU字状の溝が形成され、第二層と第
三領域にはさまれた第一領域の露出するU字状溝内側面
上に絶縁膜を介して補助ゲートが設けられ、第三領域お
よび第三領域の反U字状溝側にある第一領域表面に前記
一方の主電極が接触することを特徴とする伝導度変調型
MOSFET。
A first layer of a first conductivity type and a second layer of a second conductivity type are laminated, and a first region of the first conductivity type is selectively formed on the surface of the second layer. A second region of the second conductivity type is selectively formed on the surface of the first region, and a gate is provided via an insulating film on the surface of the first region sandwiched between the second layer and the second region, In one in which one main electrode is in contact with the surface of the second region and the surface of the first region on the side farther than the second layer of the second region, the third region of the second conductivity type is selectively formed on the surface of the first region. Is formed, a U-shaped groove is formed from the surface of the first region to reach the second layer adjacent to the third region, and the exposed U of the first region sandwiched between the second layer and the third region is formed. An auxiliary gate is provided on the inner surface of the U-shaped groove via an insulating film, and the one main electrode is in contact with the third region and the surface of the first region on the side opposite to the U-shaped groove of the third region. Conductivity modulation type, characterized by
MOSFET.
JP1134409A 1989-05-26 1989-05-26 Conductivity modulation type MOSFET Expired - Lifetime JP2611429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134409A JP2611429B2 (en) 1989-05-26 1989-05-26 Conductivity modulation type MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134409A JP2611429B2 (en) 1989-05-26 1989-05-26 Conductivity modulation type MOSFET

Publications (2)

Publication Number Publication Date
JPH02312281A JPH02312281A (en) 1990-12-27
JP2611429B2 true JP2611429B2 (en) 1997-05-21

Family

ID=15127710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134409A Expired - Lifetime JP2611429B2 (en) 1989-05-26 1989-05-26 Conductivity modulation type MOSFET

Country Status (1)

Country Link
JP (1) JP2611429B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015679B2 (en) * 1993-09-01 2000-03-06 株式会社東芝 Semiconductor device and manufacturing method thereof
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
ITTO20120742A1 (en) * 2012-08-24 2014-02-25 St Microelectronics Srl SEMICONDUCTOR DEVICE WITH IMPROVED LINEAR AND SWITCHING OPERATING MODES, METHOD OF MANUFACTURING THE SEMICONDUCTOR DEVICE, AND METHOD OF POLARIZATION OF THE SEMICONDUCTOR DEVICE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237965A (en) * 1985-08-13 1987-02-18 Tdk Corp Longitudinal semiconductor device and manufacture thereof
JPS63266882A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Vertical-type insulated-gate field-effect transistor

Also Published As

Publication number Publication date
JPH02312281A (en) 1990-12-27

Similar Documents

Publication Publication Date Title
US6713794B2 (en) Lateral semiconductor device
JP2623850B2 (en) Conductivity modulation type MOSFET
US5621234A (en) Vertical semiconductor device with breakdown voltage improvement region
US5274259A (en) High voltage transistor
US5057884A (en) Semiconductor device having a structure which makes parasitic transistor hard to operate
JPS58116776A (en) Semiconductor device with lateral junction field effect transistor
JP2983110B2 (en) Semiconductor device and manufacturing method thereof
JPS6137796B2 (en)
JP3393149B2 (en) High voltage structure with oxide insulating source and RESURF drift region in bulk silicon
KR920003704B1 (en) Bipolar semiconductor switching device and its manufacturing method
JPH098304A (en) Mos semiconductor element with good continuity characteristic
JPH02143566A (en) Double diffusion type insulated gate field effect transistor
JPH04261065A (en) Semiconductor device
JP3185292B2 (en) Semiconductor device
JP2611429B2 (en) Conductivity modulation type MOSFET
JP2720574B2 (en) Dual-gate insulated gate bipolar transistor
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JPS61281557A (en) Insulated gate semiconductor device
JPH09246545A (en) Semiconductor element for power
JP2650456B2 (en) MOS semiconductor device
JPS60262468A (en) Mos type field-effect transistor
JPH05114737A (en) Conductivity modulated mosfet
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP3755231B2 (en) Insulated gate bipolar transistor
JP2808882B2 (en) Insulated gate bipolar transistor