JPH11230948A - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method

Info

Publication number
JPH11230948A
JPH11230948A JP10035243A JP3524398A JPH11230948A JP H11230948 A JPH11230948 A JP H11230948A JP 10035243 A JP10035243 A JP 10035243A JP 3524398 A JP3524398 A JP 3524398A JP H11230948 A JPH11230948 A JP H11230948A
Authority
JP
Japan
Prior art keywords
tube
outer diameter
pipe
inspected
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10035243A
Other languages
Japanese (ja)
Inventor
Hidehiko Suetsugu
秀彦 末次
Hisakazu Mori
久和 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10035243A priority Critical patent/JPH11230948A/en
Publication of JPH11230948A publication Critical patent/JPH11230948A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the defect of a pipe to be inspected by correcting influence due to change in the external diameter of the pipe to be inspected. SOLUTION: For a flaw detection method, in a step S1, a simulated defect is machined to a test piece with the quality of a material and the roughness of the surface of a pipe that are the same as those of a pipe to be inspected, an ultrasonic flaw- detecting device is used, a simulated test corresponding to change in the external diameter of the pipe is made, and a transmission wave sensitivity value and the external diameter of the pipe are measured (S1a, S1b, and S1c). Then, the approximate line of the transmission wave sensitivity value and the external diameter of the pipe/the internal diameter of a tool (the reference of the external diameter of the pipe) is obtained for each of the simulated defect according to the obtained measurement result and is used as a reference line for judging a creep defect. In a step S2, when the flaw detection of an actual furnace pipe is performed, the external diameter of the pipe is measured, and at the same time the ultrasonic flaw-detecting device is used for measuring the transmission wave sensitivity value of an inspection site. In a step S3, the transmission wave sensitivity value and the external diameter of the pipe/the internal diameter of the tool are compared with the reference line for judgment, thus judging the creep defect of the pipe to be inspected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検査管に超音波
を投射し、該被検査管を透過してくる超音波を受波する
ことにより探傷する超音波探傷方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method in which ultrasonic waves are projected onto a tube to be inspected and flaws are detected by receiving ultrasonic waves transmitted through the tube to be inspected.

【0002】[0002]

【従来の技術】従来、エチレン工場のナフサ、ブタン、
LPG分解炉の加熱管、あるいは水素、アンモニア工場
の改質炉の加熱管は、HK40(0.40%C−25%
Cr−20%Ni系)材等の高炭素耐熱遠心鋳造管(以
下、「遠心鋳造管」と呼ぶ。)が複数本溶接接続されて
組み立てられている。
2. Description of the Related Art Conventionally, naphtha, butane,
The heating tube of the LPG cracking furnace or the heating tube of the reforming furnace at the hydrogen or ammonia plant is HK40 (0.40% C-25%
A plurality of high-carbon heat-resistant centrifugally cast pipes (hereinafter, referred to as “centrifugally cast pipes”) made of Cr-20% Ni-based material or the like are assembled by welding.

【0003】この加熱管は、触媒が充填された管内部に
気体や液体が供給されるとともに、炉のバーナーによっ
て管外部から加熱されることにより、管内部が高温高圧
の状態になる。そして、加熱管内部の物質が高温高圧下
で反応、変化する。
[0003] In this heating tube, gas and liquid are supplied to the inside of the tube filled with the catalyst, and the inside of the tube is brought into a high temperature and high pressure state by being heated from the outside of the tube by a burner of a furnace. Then, the substance inside the heating tube reacts and changes under high temperature and high pressure.

【0004】このため上記加熱管は使用時間の経過につ
れて、フープ応力によるクリープフィッシャーが管内面
より外面に向かって放射状に進展する傾向がある。ま
た、管内外の温度差(管外高温、管内低温)に起因して
管内面の円周方向に欠陥を発生するおそれがある。した
がって、上記加熱管の経年変化を把握し残存寿命を推定
することは操業安定上不可欠である。なお、以下では、
これらの欠陥をクリープ損傷と称する。
[0004] For this reason, in the above-mentioned heating tube, the creep fisher due to the hoop stress tends to spread radially from the inner surface to the outer surface of the tube as the use time elapses. In addition, a defect may occur in the circumferential direction of the inner surface of the pipe due to a temperature difference between the inside and the outside of the pipe (high temperature outside the pipe, low temperature inside the pipe). Therefore, it is indispensable for operation stability to grasp the secular change of the heating tube and estimate the remaining life. In the following,
These defects are called creep damage.

【0005】そこで、水浸法により被検査管の外周面に
沿って発信探触子と受信探触子とを組み合わせて走査
し、被検査管の肉厚内を該被検査管の外周上の2点を結
ぶ直線に超音波が浸透するよう前記発信探触子から斜角
法により被検査管に超音波を入射するとともに、前記受
信探触子により該超音波の透過エコーを受波することに
より被検査管の肉厚内の欠陥を探知する方法が、特開昭
54−128789号公報に記載されている。
Therefore, the transmitting probe and the receiving probe are combined and scanned along the outer peripheral surface of the inspected tube by the water immersion method, and the inside of the thickness of the inspected tube is measured on the outer periphery of the inspected tube. An ultrasonic wave is incident on the tube to be inspected from the transmission probe by the oblique method so that the ultrasonic wave penetrates into a straight line connecting the two points, and a transmission echo of the ultrasonic wave is received by the reception probe. JP-A-54-128789 discloses a method for detecting a defect in the thickness of a tube to be inspected.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、加熱管
に使用される遠心鋳造管は、砂型に鋼合金の溶液を入
れ、遠心力で外に張り付かせて形成される。そのため、
使用前の遠心鋳造管には、砂型の砂の形がついた粗い鋳
肌が残っている。そして、加熱管として、炉内において
高温下で使用されることにより、鋳肌の粗い層が酸化減
肉を起こして、管表面が滑らかになりながら、管外径が
小さくなり、さらに長時間使用されると、管の肉厚内に
生じたクリープ損傷により、管外径が大きくなるという
現象が生じる。
However, a centrifugal casting tube used as a heating tube is formed by putting a solution of a steel alloy in a sand mold and sticking the solution to the outside by centrifugal force. for that reason,
Before use, the centrifugally cast tube has a rough casting surface in the form of sand of a sand mold. When used as a heating tube at a high temperature in a furnace, the layer having a rough casting surface causes oxidation thinning, and the tube outer diameter becomes smaller while the tube surface becomes smoother. Then, a phenomenon occurs in which the outer diameter of the pipe increases due to creep damage generated within the thickness of the pipe.

【0007】したがって、上記従来の超音波の減衰(透
過量)のみを測定し、超音波減衰量の経年的な変化か
ら、クリープ損傷の有無を判断する方法では、遠心鋳造
管の管外径の変化にともない、超音波の入射角および出
射角に所定の角度からのずれが生じることが考慮されて
いなかった。つまり、クリープ損傷による超音波の減衰
を測定するためには、同一条件で測定することが前提で
あるにもかかわらず、測定条件、特に超音波の入射角す
なわち超音波の入射量が変化してしまうため、正確な判
断が不可能であった。
Therefore, in the conventional method of measuring only the attenuation (transmission amount) of ultrasonic waves and judging the presence or absence of creep damage from the secular change of the ultrasonic attenuation amount, the conventional method of measuring the outer diameter of the centrifugally cast pipe is not used. It has not been considered that the change in the incident angle and the output angle of the ultrasonic wave from a predetermined angle due to the change. In other words, in order to measure the attenuation of ultrasonic waves due to creep damage, it is assumed that measurement is performed under the same conditions, but the measurement conditions, especially the incident angle of ultrasonic waves, that is, the incident amount of ultrasonic waves changes. Therefore, accurate judgment was impossible.

【0008】ここで、遠心鋳造管の管外径と透過波の減
衰量との関係を、本発明の説明図である図2、図5およ
び図6を用いて、具体的に説明する。
Here, the relationship between the outer diameter of the centrifugally cast pipe and the attenuation of the transmitted wave will be specifically described with reference to FIGS. 2, 5, and 6, which are explanatory views of the present invention.

【0009】図2に示す超音波探傷装置2は、本発明に
かかるものであり詳細については後述するが、基本的な
構造は従来のものと同じである。超音波探傷装置2は、
被検査管1の外周の同一円周上に発信探触子3と受信探
触子4とが所定の指向角度および間隔で配置され、発信
探触子3から被検査管1の肉厚内を透過する超音波7の
透過エコーを受信探触子4が受波できるようにしたもの
である。もちろん、水浸法によるため発信探触子3およ
び受信探触子4と被検査管1との間の超音波経路にあた
る部分には水6が充填されている。なお、被検査管1の
外径は、基準となる基準外径Dであり、発信探触子3お
よび受信探触子4の指向角度は被検査管の管表面に対し
て、指向角度i0 となるように配設されており、この状
態において、正確な測定ができるように設定されてい
る。
The ultrasonic flaw detector 2 shown in FIG. 2 relates to the present invention and will be described later in detail, but its basic structure is the same as that of the conventional one. The ultrasonic flaw detector 2
The transmitting probe 3 and the receiving probe 4 are arranged on the same circumference on the outer circumference of the inspected tube 1 at a predetermined directional angle and interval. The transmitting probe 4 can receive the transmitted echo of the transmitted ultrasonic wave 7. Needless to say, water 6 is filled in a portion corresponding to an ultrasonic path between the transmission probe 3 and the reception probe 4 and the inspection tube 1 because of the water immersion method. The outer diameter of the inspected tube 1 is a reference outer diameter D as a reference, and the directional angles of the transmitting probe 3 and the receiving probe 4 are directional angles i 0 with respect to the tube surface of the inspected tube. It is set so that accurate measurement can be performed in this state.

【0010】図中矢線で示す超音波7は、発信探触子3
より発信され、水浸法および斜角法によるため反射屈折
の法則に従って、入射点Aにおいて屈折して被検査管1
の肉厚内に入射され、被検査管1の肉厚内を最大深度2
T/3(T:管の肉厚)で接線方向に透過し、出射点B
において屈折して被検査管1の肉厚外に出射され、受信
探触子4により受波される。このとき、被検査管1の肉
厚内の超音波7の経路上に欠陥(放射状フィッシャー)
が存在すれば、該欠陥により超音波が散乱され、受信探
触子4には減衰された透過エコーとして検出され、欠陥
の存在が探知できる。
An ultrasonic wave 7 indicated by an arrow in FIG.
The tube 1 is refracted at the incident point A according to the law of reflection and refraction because of the water immersion method and the oblique angle method.
And the maximum depth 2 within the thickness of the tube 1 to be inspected.
Transmit at tangential direction at T / 3 (T: wall thickness of tube) and exit point B
Is refracted and emitted out of the thickness of the test tube 1 and received by the receiving probe 4. At this time, a defect (radial fisher) is present on the path of the ultrasonic wave 7 within the thickness of the tube 1 to be inspected.
Is present, the ultrasonic wave is scattered by the defect, detected as an attenuated transmission echo by the receiving probe 4, and the existence of the defect can be detected.

【0011】ここで、図5に示すように、上記超音波探
傷装置2は、使用にともない管の肉厚がΔDだけ小さく
なって管外径がD−ΔDとなった被検査管11に装着さ
れる。このとき、発信探触子3および受信探触子4の指
向角度はi1 (<i0 )となり、正確な測定結果が得ら
れない。
Here, as shown in FIG. 5, the ultrasonic flaw detector 2 is mounted on the pipe 11 to be inspected whose outer wall diameter has become D-.DELTA.D due to a decrease in the wall thickness of the pipe due to use. Is done. At this time, the directivity angles of the transmitting probe 3 and the receiving probe 4 are i 1 (<i 0 ), and an accurate measurement result cannot be obtained.

【0012】また、図6に示すように、上記超音波探傷
装置2は、使用にともない管外径がΔDだけ大きくなっ
て管外径がD+ΔDとなった被検査管12に装着され
る。このとき、発信探触子3および受信探触子4の指向
角度はi2 (>i0 )となり、正確な測定結果が得られ
ない。
As shown in FIG. 6, the ultrasonic flaw detector 2 is mounted on the inspection pipe 12 whose outer diameter becomes D + ΔD by increasing the outer diameter by ΔD with use. At this time, the directivity angles of the transmitting probe 3 and the receiving probe 4 are i 2 (> i 0 ), and an accurate measurement result cannot be obtained.

【0013】以上のことから、被検査管の管外径の変化
によって、超音波の入射角および出射角が変化し、測定
条件が変化する。よって、従来の方法では、非常に誤差
が大きく、欠陥の正確な探知ができなかった。なお、同
一炉内の同一管であっても温度分布により、酸化減肉の
速度に差があり、管外径は検査部位ごとに異なっている
ため、被検査管の外径変化の影響を補正することは重要
である。
From the above, the incident angle and the emission angle of the ultrasonic wave change due to the change in the outer diameter of the tube to be inspected, and the measurement conditions change. Therefore, the conventional method has a very large error and cannot detect a defect accurately. In addition, even in the same tube in the same furnace, there is a difference in the rate of oxidation thinning due to the temperature distribution, and the outer diameter of the tube differs for each inspection part. It is important to do.

【0014】本発明は、上記の問題点を解決するために
なされたもので、その目的は、被検査管の欠陥を被検査
管の外径変化の影響を補正して調べることができる超音
波探傷方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an ultrasonic probe capable of examining a defect of a test tube by correcting the influence of a change in the outer diameter of the test tube. It is to provide a flaw detection method.

【0015】[0015]

【課題を解決するための手段】請求項1の超音波探傷方
法は、上記の課題を解決するために、管外径が基準外径
である管表面に対して所定の指向角度で配設された発信
探触子および受信探触子を備えた超音波探傷装置を被検
査管に装着し、超音波水浸透過法により該被検査管の透
過エコーを測定して、該被検査管内の欠陥を判定する超
音波探傷方法において、上記被検査管の透過エコーを、
上記管外径の基準外径からの変化量ごとの判定基準値と
比較することにより、該被検査管内の欠陥を判定するこ
とを特徴としている。
According to a first aspect of the present invention, there is provided an ultrasonic flaw detection method in which a tube is disposed at a predetermined directional angle with respect to a tube surface whose outside diameter is a reference outside diameter. An ultrasonic flaw detector equipped with a transmitting probe and a receiving probe is mounted on a tube to be inspected, and a transmission echo of the tube to be inspected is measured by an ultrasonic water penetration method, and a defect in the tube to be inspected is detected. In the ultrasonic flaw detection method for determining, the transmitted echo of the test tube,
The defect in the inspected pipe is determined by comparing the outer diameter of the pipe with a determination reference value for each variation from the reference outer diameter.

【0016】上記の構成により、超音波探傷装置を用い
て被検査管の透過エコーを測定するとともに、管外径を
測定し、該被検査管の透過エコーを、上記管外径の基準
外径からの変化量ごとの判定基準値と比較することによ
って、発信探触子および受信探触子の指向角度のずれを
補正して、該被検査管内の欠陥を判定する。
With the above configuration, the transmitted echo of the inspected tube is measured using an ultrasonic flaw detector, the outer diameter of the tube is measured, and the transmitted echo of the inspected tube is measured as the reference outer diameter of the outer diameter of the tube. By comparing with the criterion value for each change amount from, the deviation of the directivity angles of the transmitting probe and the receiving probe is corrected, and the defect in the inspection tube is determined.

【0017】具体的には、まず、被検査管と同一の材
質、管表面粗さの試験片に模擬欠陥を加工し、上記超音
波探傷装置を用いて、管外径の変化に対応した模擬試験
を行う。そして、得られた測定結果より透過エコーと管
外径の基準外径からの変化量との近似線を模擬欠陥ごと
に求めて、判定基準値とする。実際の被検査管の探傷を
行う際には、管外径を測定するとともに、上記超音波探
傷装置を用いて検査部位の透過エコーを測定し、管外径
の基準外径からの変化量ごとの判定基準値と比較するこ
とにより、被検査管のクリープ損傷を判定する。
Specifically, first, a simulated defect is processed on a test piece having the same material and the same tube surface roughness as the tube to be inspected, and a simulated defect corresponding to a change in the outer diameter of the tube is obtained by using the ultrasonic flaw detector. Perform the test. Then, an approximation line between the transmitted echo and the amount of change in the tube outer diameter from the reference outer diameter is obtained for each simulated defect from the obtained measurement results, and is used as a determination reference value. When actually inspecting a tube to be inspected, measure the outer diameter of the tube, measure the transmitted echo of the inspection site using the ultrasonic inspection device described above, and measure the change in the outer diameter of the tube from the reference outer diameter. The creep damage of the pipe to be inspected is determined by comparing with the reference value.

【0018】このように、検査部位の透過エコーを測定
するとともに、管外径を測定することにより、管外径の
変化による発信探触子および受信探触子の指向角度のず
れを補正して探傷を行うことができる。また、この補正
に要する管外径の基準外径からの変化量は、管外径を測
定するだけで得られるため、作業量の増加も軽微であ
る。
As described above, by measuring the transmitted echo of the inspection site and measuring the outer diameter of the tube, the deviation of the directivity angles of the transmitting probe and the receiving probe due to the change in the outer diameter of the tube is corrected. Inspection can be performed. Further, since the amount of change in the pipe outer diameter required for this correction from the reference outer diameter can be obtained only by measuring the pipe outer diameter, the increase in the amount of work is also slight.

【0019】したがって、加熱管の経年変化を的確に把
握し、残存寿命を高精度に推定することができるため、
加熱管の無駄な交換を防止することができ、安全かつ経
済的に操業することができる。
Therefore, the secular change of the heating tube can be accurately grasped, and the remaining life can be estimated with high accuracy.
Useless replacement of the heating tube can be prevented, and operation can be performed safely and economically.

【0020】請求項2の超音波探傷方法は、上記の課題
を解決するために、請求項1の構成に加えて、上記基準
外径より大きな管外径の被検査管に対して適用する上記
判定基準値は、外径が該基準外径である被検査管を管外
径の変化量に相当する距離だけ、上記超音波探傷装置か
ら離した状態で、模擬試験を行うことにより作成するこ
とを特徴としている。
According to a second aspect of the present invention, in order to solve the above-described problem, in addition to the configuration of the first aspect, the ultrasonic flaw detection method is applied to a test pipe having a tube outer diameter larger than the reference outer diameter. The judgment reference value is created by performing a simulation test in a state in which the inspected tube whose outer diameter is the reference outer diameter is separated from the ultrasonic inspection apparatus by a distance corresponding to a change amount of the outer diameter of the tube. It is characterized by.

【0021】上記の構成により、請求項1の構成による
作用に加えて、外径が上記基準外径である被検査管を管
外径の変化量に相当する距離だけ、上記超音波探傷装置
から離した状態で、模擬試験を行うことにより、基準外
径より大きな管外径の被検査管に対して適用する上記判
定基準値を作成する。
According to the above configuration, in addition to the operation of the configuration of the first aspect, the inspection tube having an outer diameter equal to the reference outer diameter is separated from the ultrasonic flaw detector by a distance corresponding to a change amount of the outer diameter of the tube. By performing a simulation test in the separated state, the above-described determination reference value to be applied to a test pipe having a pipe outer diameter larger than the reference outer diameter is created.

【0022】これにより、被検査管の管外径が増大した
状態という試験片の作成が困難な状態についての模擬試
験を行うことができる。そして、被検査管と超音波探傷
装置との距離を段階的に変えて、模擬試験を行うことに
より、任意の変化量の範囲の判定基準値を作成すること
ができる。さらに、上記模擬試験は、作業も簡単なもの
であり、得られる測定結果の精度も高い。
Thus, it is possible to perform a simulation test in a state where it is difficult to prepare a test piece in a state where the outer diameter of the tube to be inspected is increased. Then, by performing a simulation test while gradually changing the distance between the tube to be inspected and the ultrasonic flaw detector, it is possible to create a determination reference value in a range of an arbitrary change amount. Further, the simulation test is simple in operation, and the accuracy of the obtained measurement result is high.

【0023】請求項3の超音波探傷方法は、上記の課題
を解決するために、請求項1または2の構成に加えて、
上記基準外径より小さな管外径の被検査管に対して適用
する上記判定基準値は、外径が該基準外径である被検査
管を管外径の変化量に相当する厚さだけ、管表面を削り
込んだ被検査管に対して、模擬試験を行うことにより作
成することを特徴としている。
According to a third aspect of the present invention, in order to solve the above-described problem, in addition to the configuration of the first or second aspect,
The determination reference value to be applied to the inspected tube having a tube outer diameter smaller than the reference outer diameter is the inspected tube whose outer diameter is the reference outer diameter by a thickness corresponding to a change amount of the tube outer diameter, It is characterized in that it is created by performing a simulation test on the inspected tube whose surface has been cut down.

【0024】上記の構成により、請求項1または2の構
成による作用に加えて、外径が上記基準外径である被検
査管を管外径の変化量に相当する厚さだけ、管表面を削
り込んだ被検査管に対して、模擬試験を行うことにより
作成する。
According to the above configuration, in addition to the operation of the first or second aspect, the pipe to be inspected whose outer diameter is the reference outer diameter is formed by a thickness corresponding to a change amount of the outer diameter of the pipe. It is created by performing a mock test on the cut test tube.

【0025】これにより、被検査管を削り込む厚さを段
階的に変えて、模擬試験を行うことにより、任意の変化
量の範囲の判定基準値を作成することができる。さら
に、上記模擬試験は、作業も簡単なものであり、得られ
る測定結果の精度も高い。
Thus, by performing a simulation test while gradually changing the thickness of the pipe to be inspected, a judgment reference value in an arbitrary range of change can be created. Further, the simulation test is simple in operation, and the accuracy of the obtained measurement result is high.

【0026】請求項4の超音波探傷方法は、上記の課題
を解決するために、請求項1から3の何れかの構成に加
えて、上記被検査管は、高炭素耐熱遠心鋳造管であるこ
とを特徴としている。
According to a fourth aspect of the present invention, in order to solve the above-described problems, in addition to the configuration of any one of the first to third aspects, the tube to be inspected is a high carbon heat resistant centrifugally cast tube. It is characterized by:

【0027】上記の構成により、請求項1から3の何れ
かの構成による作用に加えて、超音波水浸透過法により
上記超音波探傷装置を用いて計測された高炭素耐熱遠心
鋳造管の透過エコーを、該高炭素耐熱遠心鋳造管の管外
径の基準外径からの変化量ごとの判定基準値と比較する
ことにより、該高炭素耐熱遠心鋳造管内の欠陥を判定す
る。
According to the above configuration, in addition to the operation according to any one of the first to third aspects, the transmission of the high carbon heat resistant centrifugally cast tube measured by the ultrasonic flaw detector by the ultrasonic water penetration method is used. A defect in the high-carbon heat resistant centrifugally cast tube is determined by comparing the echo with a judgment reference value for each change in the outer diameter of the high carbon heat-resistant centrifugally cast tube from the reference outer diameter.

【0028】そして、高炭素耐熱遠心鋳造管に適用する
判定基準値は、上記基準外径より大きな管外径に対して
は、外径が該基準外径である高炭素耐熱遠心鋳造管を管
外径の変化量に相当する距離だけ、上記超音波探傷装置
から離した状態で、模擬試験を行うことにより作成す
る。また、上記基準外径より小さな管外径に対しては、
外径が該基準外径である高炭素耐熱遠心鋳造管を管外径
の変化量に相当する厚さだけ、管表面を削り込んで模擬
試験を行うことにより作成する。
Further, the criterion value applied to the high-carbon heat-resistant centrifugally cast tube is such that a high-carbon heat-resistant centrifugally cast tube having an outer diameter equal to the reference outer diameter is used for a tube outer diameter larger than the above-mentioned reference outer diameter. It is created by performing a simulation test in a state where it is separated from the ultrasonic flaw detector by a distance corresponding to the change amount of the outer diameter. Also, for a tube outer diameter smaller than the reference outer diameter,
A high-carbon heat-resistant centrifugally cast pipe having an outer diameter equal to the reference outer diameter is prepared by performing a simulation test by cutting the pipe surface by a thickness corresponding to the change in the outer diameter of the pipe.

【0029】請求項1から3の何れかに記載の超音波探
傷方法は、管外径が変化する被検査管に対して適用でき
るものであるが、高炭素耐熱遠心鋳造管は、管外径の経
年変化が大きく、補正の効果が顕著である。
The ultrasonic flaw detection method according to any one of claims 1 to 3 can be applied to a tube to be inspected whose tube outer diameter changes. Is large, and the effect of the correction is remarkable.

【0030】[0030]

【発明の実施の形態】本発明の一実施の形態について図
1から図9に基づいて説明すれば、以下のとおりであ
る。なお、以下では、被検査管を高炭素耐熱遠心鋳造管
(以下、「遠心鋳造管」と記す。)として説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. In the following, the tube to be inspected will be described as a high carbon heat resistant centrifugally cast tube (hereinafter, referred to as “centrifugally cast tube”).

【0031】図2および図3に示すように、本実施の形
態にかかる超音波探傷方法に用いる超音波探傷装置2
は、治具5に発信探触子3および受信探触子4が取り付
けられて構成されている。
As shown in FIGS. 2 and 3, the ultrasonic flaw detector 2 used in the ultrasonic flaw detection method according to the present embodiment.
The transmission probe 3 and the reception probe 4 are attached to a jig 5.

【0032】上記の発信探触子3および受信探触子4
は、超音波探傷装置2が外径が基準外径Dである被検査
管1に装着された際、被検査管1の外周の同一円周上に
所定の指向角度および間隔で配置されるように、治具5
に取り付けられている。そして、発信探触子3から発信
された超音波7の被検査管1の肉厚内を透過する透過エ
コーを受信探触子4が受波できるようになっている。
The above-mentioned transmission probe 3 and reception probe 4
When the ultrasonic test equipment 2 is mounted on the test pipe 1 whose outer diameter is the reference outer diameter D, the ultrasonic test equipment 2 is arranged at a predetermined directivity angle and a predetermined interval on the same circumference of the test pipe 1. And jig 5
Attached to. The receiving probe 4 can receive a transmitted echo of the ultrasonic wave 7 transmitted from the transmitting probe 3 and transmitted through the thickness of the inspection tube 1.

【0033】上記治具5は、例えば、MMA(メチルメ
タアクリレート)で形成される。そして、発信探触子3
および受信探触子4と被検査管1との間の超音波経路に
あたる部分に開口部5aが形成されている。開口部5a
は、超音波探傷装置2が被検査管1に押し当てられて装
着されるため、外径が基準外径Dの被検査管1の外周形
状に適合した形状に形成されている。よって、以下で
は、被検査管1の基準外径Dを「治具内径」と記すこと
がある。
The jig 5 is made of, for example, MMA (methyl methacrylate). And the transmitting probe 3
An opening 5a is formed in a portion corresponding to an ultrasonic path between the receiving probe 4 and the tube 1 to be inspected. Opening 5a
Since the ultrasonic flaw detector 2 is pressed against the tube 1 to be inspected and mounted, the outer diameter is formed in a shape suitable for the outer peripheral shape of the tube 1 having the reference outer diameter D. Therefore, hereinafter, the reference outer diameter D of the pipe 1 to be inspected may be referred to as “jig inner diameter”.

【0034】また、水浸法によるため、治具5の内部に
水6が充填されることにより、発信探触子3および受信
探触子4と被検査管1との間の超音波経路にあたる部分
に水6が保持される。そして、治具5を被検査管1に押
し当てた際、内部に充填された水6を漏らさないよう、
被検査管1に当接する当接部には弾性を有する、例えば
板ゴムなどからなるシール5bが設けられている。さら
に、超音波探傷装置2には、治具5の内部に水6を注水
排水するために、図示しない注水手段および排水手段が
設けられている。したがって、上記超音波探傷装置2に
よる透過エコーの測定は、装着、注水、測定、排水を1
サイクルにして行われる。これにより、炉内の断熱材な
どの周囲の水濡れを防止している。
Also, since the water 6 is filled in the jig 5 due to the water immersion method, the jig 5 corresponds to an ultrasonic path between the transmission probe 3 and the reception probe 4 and the tube 1 to be inspected. Water 6 is retained in the part. Then, when the jig 5 is pressed against the pipe 1 to be inspected, the water 6 filled therein is prevented from leaking.
A seal 5b made of, for example, plate rubber or the like, which has elasticity, is provided at a contact portion that comes into contact with the tube 1 to be inspected. Further, the ultrasonic flaw detector 2 is provided with a water injection means and a water discharge means (not shown) for injecting and discharging the water 6 into the jig 5. Therefore, the measurement of the transmission echo by the ultrasonic flaw detector 2 includes mounting, water injection, measurement, and drainage in one.
This is done in cycles. This prevents the surrounding material such as the heat insulating material in the furnace from getting wet.

【0035】図中矢線で示す超音波7は、後述する探傷
器21(図4)によってパルス状の電源が供給された発
信探触子3より投射され、水6を介して外径が基準外径
Dである被検査管1に入射角i0 で入射し、水浸法かつ
斜角法によるため、反射屈折の法則に従って、被検査管
1の外周面上の入射点Aにおいて、屈折角θ0 で屈折
し、被検査管1の肉厚内を最大深度d0 で接線方向に透
過し、被検査管1の外周面上の出射点Bにおいて入射角
θ0 に対して屈折角i0 で屈折し被検査管1の肉厚外に
出射され、水6を介して受信探触子4により受波され
る。このとき、被検査管1の肉厚内の超音波7の経路上
に欠陥(放射状フィッシャー)が存在すれば、該欠陥に
より超音波が散乱され、受信探触子4には減衰された透
過エコーとして検出され、欠陥の存在が探知できる。
The ultrasonic wave 7 indicated by an arrow in the figure is projected from the transmitting probe 3 to which pulsed power is supplied by a flaw detector 21 (FIG. 4) described later, and the outer diameter of the ultrasonic wave 7 is outside the standard via the water 6. Since the light is incident on the test tube 1 having a diameter D at an incident angle i 0 and is subjected to the water immersion method and the oblique method, the refraction angle θ at the incident point A on the outer peripheral surface of the test tube 1 according to the law of reflection and refraction. 0 , refracts at the maximum depth d 0 tangentially through the thickness of the tube 1 to be inspected, and has a refraction angle i 0 with respect to the incident angle θ 0 at the emission point B on the outer peripheral surface of the tube 1 to be inspected. The beam is refracted and emitted out of the thickness of the test tube 1, and is received by the receiving probe 4 via the water 6. At this time, if a defect (radial fisher) exists on the path of the ultrasonic wave 7 in the thickness of the inspection target tube 1, the ultrasonic wave is scattered by the defect and the attenuated transmission echo is transmitted to the receiving probe 4. And the presence of a defect can be detected.

【0036】また、超音波7の入射角i0 を被検査管1
の内周面による底面反射が起こらない範囲で調整し、同
時に透過エコーを受波するべく発信探触子3と受信探触
子4との間隔を調整すれば被検査管1の肉厚内での超音
波探傷深さd0 が適宜調整できる。
Further, the incident angle i 0 of the ultrasonic wave 7 is
If the distance between the transmitting probe 3 and the receiving probe 4 is adjusted so as to receive the transmitted echo at the same time as the bottom surface reflection by the inner peripheral surface does not occur, the thickness of the tube 1 to be inspected can be reduced. The ultrasonic flaw detection depth d 0 can be appropriately adjusted.

【0037】図4に示すように、発信探触子3および受
信探触子4はパルス状の電源を供給する探傷器21に接
続されており、さらに探傷器21は記録計22に接続さ
れている。また、上記注水手段として、例えば、治具5
に図示しない注水穴が穿孔されており、治具5の内部に
水6を充填できるように注水タンク23と接続されてい
る。同様に、治具5に図示しない排水穴が穿孔されてお
り、治具5の内部に充填された水6を排水できるように
排水タンク24と接続されている。
As shown in FIG. 4, the transmitting probe 3 and the receiving probe 4 are connected to a flaw detector 21 for supplying pulsed power, and the flaw detector 21 is connected to a recorder 22. I have. As the water injection means, for example, a jig 5
The jig 5 is connected to a water injection tank 23 so that the inside of the jig 5 can be filled with water 6. Similarly, a drain hole (not shown) is formed in the jig 5 and is connected to a drain tank 24 so that the water 6 filled in the jig 5 can be drained.

【0038】なお、以下で説明する具体例の測定条件
は、つぎのとおりである。被検査管1として、(株)ク
ボタ製のKHR24C遠心鋳造管(基準外径110m
m、肉厚12mm)の探傷を行った。なお、管表面の粗
さは、中心線表面粗さが10μm程度である。
The measurement conditions of the specific examples described below are as follows. As the tube 1 to be inspected, a KHR24C centrifugally cast tube manufactured by Kubota Corporation (standard outer diameter 110 m)
m, wall thickness 12 mm). The roughness of the tube surface is such that the center line surface roughness is about 10 μm.

【0039】また、超音波探傷装置2は、発信探触子3
としてパナメトリクス社製V382(周波数3.5MH
z、振動子径0.5″、焦点3″LF)、受信探触子4
としてパナメトリクス社製V382(周波数3.5MH
z、振動子径0.5″、焦点FLAT)を使用した。そ
して、発信探触子3および受信探触子4は、管外径が基
準外径Dの被検査管1に対して、最大深度d0 が2T/
3となるように、取り付け角度φが43°に設定されて
いる(図2)。
Further, the ultrasonic flaw detector 2 includes a transmitting probe 3
As V382 made by Panametrics (frequency 3.5 MHz)
z, transducer diameter 0.5 ", focus 3" LF), receiving probe 4
As V382 made by Panametrics (frequency 3.5 MHz)
z, vibrator diameter 0.5 ″, focal point FLAT). The transmitting probe 3 and the receiving probe 4 have a maximum outer diameter with respect to the test tube 1 having the reference outer diameter D. The depth d 0 is 2T /
3, the mounting angle φ is set to 43 ° (FIG. 2).

【0040】さらに、探傷器21は、クラウトクレーマ
ー社製USL−38、およびUSL−48を使用した。
記録計22は、受波される超音波のエコー高さをCRT
画面上で80%になるように補正した時の感度値を記録
する。この記録方法によれば、受波される超音波の量が
少ない程、感度値を高く設定することにより同じエコー
高さに補正する。つまり、クリープ損傷が進展するにつ
れて、受波される超音波の量が減るため、設定される感
度値が高くなる。
Further, as the flaw detector 21, USL-38 and USL-48 manufactured by Kraut Kramer Co., Ltd. were used.
The recorder 22 measures the echo height of the received ultrasonic wave by CRT.
The sensitivity value when corrected so as to be 80% on the screen is recorded. According to this recording method, the smaller the amount of received ultrasonic waves, the higher the sensitivity value is set, and the same echo height is corrected. In other words, as creep damage progresses, the amount of ultrasonic waves received decreases, so that the set sensitivity value increases.

【0041】ここで、本実施の形態にかかる超音波探傷
方法について、図1に示すフローチャートを用いて説明
する。
Here, the ultrasonic flaw detection method according to the present embodiment will be described with reference to the flowchart shown in FIG.

【0042】ステップS1:被検査管の損傷判定基準を
作成する。 まず、実炉内で被検査管の探傷を行う準備として、クリ
ープ損傷の判定の基準値を求める。具体的には、被検査
管と同一の材質、管表面粗さの試験片に模擬欠陥を加工
し、上記超音波探傷装置2を用いて、管外径の変化に対
応した模擬試験を行う、透過波感度値(減衰量に相当す
る)を測定する。そして、得られた測定結果より透過波
感度値と管外径/治具内径(管外径の基準外径からの変
化量)との近似線を模擬欠陥ごとに求める。すでに、同
一の材質および管表面粗さの管についての損傷判定基準
が作成されている場合には、このステップS1を省略で
きることはもちろんである。
Step S1: A damage criterion for the inspected tube is created. First, as a preparation for performing a flaw detection of a pipe to be inspected in an actual furnace, a reference value for judging creep damage is obtained. Specifically, a simulated defect is machined on a test piece having the same material and tube surface roughness as the tube to be inspected, and a simulation test corresponding to a change in the tube outer diameter is performed using the ultrasonic flaw detector 2. The transmitted wave sensitivity value (corresponding to the amount of attenuation) is measured. Then, from the obtained measurement results, an approximate line of the transmitted wave sensitivity value and the tube outer diameter / jig inner diameter (change amount of the tube outer diameter from the reference outer diameter) is obtained for each simulated defect. If a damage criterion has already been created for pipes of the same material and pipe surface roughness, it goes without saying that step S1 can be omitted.

【0043】上記模擬試験は、被検査管の管外径の変化
を模擬するために、管外径が基準外径の状態の模擬試
験、管外径が増大した状態の模擬試験、管外径が減少し
た状態の模擬試験の三種類の模擬試験を行う。
The simulation test includes a simulation test in which the pipe outer diameter is a reference outer diameter, a simulation test in which the pipe outer diameter is increased, and a pipe outer diameter in order to simulate a change in the pipe outer diameter of the inspected pipe. Three types of simulation tests are performed in a state in which is reduced.

【0044】第一に、被検査管の管外径が基準外径の状
態の模擬試験を行う(S1a)。模擬欠陥を加工した試
験片と未加工の試験片とに対して、上記超音波探傷装置
2を用いて、透過波感度値を測定する。このときの試験
片(被検査管1)と超音波探傷装置2の位置関係は、図
2に示すとおりである。なお、管表面の粗さを揃えるた
め、未使用管である試験片の管表面の粗い層を旋盤で削
り込み、その外径を基準外径Dとする。
First, a simulation test is performed in a state where the outer diameter of the inspected pipe is the reference outer diameter (S1a). The transmitted wave sensitivity value is measured for the test piece processed with the simulated defect and the unprocessed test piece by using the ultrasonic flaw detector 2. At this time, the positional relationship between the test piece (tube 1 to be inspected) and the ultrasonic flaw detector 2 is as shown in FIG. In order to equalize the roughness of the pipe surface, a rough layer on the pipe surface of a test piece, which is an unused pipe, is cut with a lathe and the outer diameter is set as a reference outer diameter D.

【0045】第二に、被検査管の管外径が増大した状態
の模擬試験を行う(S1b)。前記ステップS1aの模
擬試験と同様、模擬欠陥を加工した試験片と未加工の試
験片とに対して、透過波感度値を測定する。このとき、
図7に示すように、超音波探傷装置2の開口部5aのシ
ール5b上に弾性を有する、例えば板ゴムなどからなる
一様な厚さの薄いシール5cを貼着し、該超音波探傷装
置2を上記試験片(被検査管1)に装着する。これによ
り、外径Dの被検査管1を用いて、管外径がD+ΔDに
大きくなった被検査管12(図6)を模擬して測定する
ことができる。例えば、厚さ1.5mmのシール5cを
一枚ずつ重ねて貼着しながら測定を繰り返すことによ
り、各種の管外径を模擬することができる。
Secondly, a simulation test is performed for a state where the outer diameter of the inspected tube is increased (S1b). As in the simulation test in step S1a, the transmitted wave sensitivity value is measured for the test piece processed with the simulated defect and the unprocessed test piece. At this time,
As shown in FIG. 7, an elastic thin seal 5c made of, for example, plate rubber or the like having a uniform thickness is stuck on the seal 5b of the opening 5a of the ultrasonic flaw detector 2, and 2 is mounted on the test piece (tube 1 to be inspected). Thus, using the inspected tube 1 having the outer diameter D, it is possible to simulate and measure the inspected tube 12 (FIG. 6) in which the outer diameter of the tube has increased to D + ΔD. For example, it is possible to simulate various tube outer diameters by repeating the measurement while stacking and attaching the 1.5 mm thick seals 5c one by one.

【0046】なお、図7中には貼着するシール5cが1
枚しか描かれていないが、シール5b,5cの材質、厚
さおよび枚数などは、必要とする測定精度などに応じて
適宜選択することができる。
In FIG. 7, one sticker 5c is attached.
Although only sheets are illustrated, the material, thickness, number of sheets, and the like of the seals 5b and 5c can be appropriately selected according to required measurement accuracy and the like.

【0047】第三に、被検査管の管外径が減少した状態
の模擬試験を行う(S1c)。前記のステップS1a,
S1bの模擬試験と同様、模擬欠陥を加工した試験片と
未加工の試験片とに対して、透過波感度値を測定する。
このとき、図5に示すように、被検査管1の管表面を旋
盤でΔDだけ削り込むことにより、肉厚を薄くし、管外
径をD−ΔDに小さくする。例えば、管表面を0.1m
mずつ削り込みながら測定を繰り返すことにより、各種
の管外径を模擬することができる。
Third, a simulation test is performed on a state where the outer diameter of the tube to be inspected is reduced (S1c). The above step S1a,
As in the simulation test of S1b, the transmitted wave sensitivity value is measured for the test piece processed with the simulated defect and the unprocessed test piece.
At this time, as shown in FIG. 5, the pipe surface of the pipe 1 to be inspected is cut by ΔD with a lathe to reduce the wall thickness and the outer diameter of the pipe to D-ΔD. For example, 0.1m
By repeating the measurement while shaving each m, various tube outer diameters can be simulated.

【0048】図8は、肉厚方向にT/2,T/3のスリ
ット(亀裂)の模擬欠陥を加工した試験片と未加工の試
験片とについて、上述した三種類の模擬試験により得ら
れた透過波感度値の測定結果と、それぞれ模擬欠陥ごと
に求めた近似線L2 ,L1 ,L0 とを示している。な
お、本実施の形態の近似線としては、回帰係数が1次の
ものが最も相関関係が高かったため、回帰直線を採用し
た。
FIG. 8 shows the results of the above-described three types of simulation tests on a test piece obtained by processing a simulated defect of a slit (crack) of T / 2 and T / 3 in the thickness direction and an unprocessed test piece. The measured results of the transmitted wave sensitivity values and the approximate lines L2, L1, L0 obtained for each of the simulated defects are shown. As the approximation line in the present embodiment, a regression coefficient of the first order had the highest correlation, so a regression line was adopted.

【0049】よって、試験片の管外径と基準外径Dとの
比である管外径/治具内径(図8)は、透過波感度値と
良好な相関関係(77%以上)を示しており、それぞれ
の近似線が管外径の変化の影響を補正したクリープ損傷
の判定基準として十分に信頼できることがわかる。
Therefore, the ratio of the tube outer diameter to the reference outer diameter D, which is the ratio of the tube outer diameter to the jig inner diameter (FIG. 8), shows a good correlation (77% or more) with the transmitted wave sensitivity value. It can be seen that each of the approximation lines is sufficiently reliable as a criterion for creep damage in which the influence of the change in the pipe outer diameter is corrected.

【0050】ここで、基準線の意味を説明する。例え
ば、ある検査部位の測定値が近似線L2 上にプロットさ
れたとすると、検査部位にはT/2スリットの模擬欠陥
と同じだけの減衰量があるという評価をする。これは、
検査部位にT/2スリットと同じ大きさのクリープ損傷
が存在するという意味ではない。つまり、実際に検出さ
れているのは1個の亀裂の減衰量ではなく、無数に発生
した非常に小さな欠陥の集合体の減衰量であり、それが
T/2スリットの模擬欠陥の減衰量と同程度であるとい
う意味である。そして、欠陥の集合体がフィッシャーの
どのレベルにまで進展しているかを評価している。当
然、模擬欠陥と同じ大きさの欠陥が生じる以前に、検出
される。
Here, the meaning of the reference line will be described. For example, if the measured value of a certain inspection part is plotted on the approximate line L2, it is evaluated that the inspection part has the same attenuation as the simulated defect of the T / 2 slit. this is,
This does not mean that there is creep damage of the same size as the T / 2 slit at the inspection site. In other words, what is actually detected is not the attenuation of one crack, but the attenuation of an aggregate of a very small number of defects that have occurred innumerably, which is the attenuation of the simulated defect of the T / 2 slit. It means that they are comparable. He then assesses the level of Fisher's evolving defect cluster. Naturally, the defect is detected before a defect having the same size as the simulated defect occurs.

【0051】ステップS2:被検査管の管外径および透
過波感度値を測定する。 実炉の被検査管の管外径を測定するとともに、上記超音
波探傷装置2を用いて透過波感度値を測定する。
Step S2: The outer diameter of the tube to be inspected and the transmitted wave sensitivity value are measured. The outer diameter of the pipe to be inspected in the actual furnace is measured, and the transmitted wave sensitivity value is measured using the ultrasonic flaw detector 2.

【0052】ステップS3:被検査管の損傷を判定する
(基準との比較)。 ステップS2において、測定された管外径より管外径/
治具内径を算出し、透過波感度値とともに、判定の基準
線として求めておいた近似線L2 ,L1 ,L0と比較す
る。
Step S3: Damage to the tube to be inspected is determined (comparison with a reference). In step S2, the pipe outer diameter / the pipe outer diameter /
The inner diameter of the jig is calculated, and is compared with the approximated lines L2, L1, and L0 determined as reference lines for determination together with the transmitted wave sensitivity value.

【0053】すなわち、管外径/治具内径と透過波感度
値との座標平面上において、実炉の被検査管の測定値が
基準線に対してどのような位置にプロットされるかによ
って、欠陥の状態を判定することができる。
That is, on the coordinate plane of the tube outer diameter / jig inner diameter and the transmitted wave sensitivity value, the position where the measured value of the tube to be inspected in the actual furnace is plotted with respect to the reference line, The state of the defect can be determined.

【0054】例えば、図9は、実炉から抜き出した損傷
のある管について、管外径および透過波感度値とを測定
して、得られた管外径より管外径/治具内径を算出し、
基準線である近似線L2 ,L1 ,L0 (図8)ととも
にグラフ化したものである。なお、断面マクロ・ミクロ
組織観察によって確認されたフィッシャーの有無につい
て対応させてある。
For example, FIG. 9 shows that, with respect to a damaged pipe extracted from an actual furnace, the pipe outer diameter and the transmitted wave sensitivity value are measured, and the pipe outer diameter / jig inner diameter is calculated from the obtained pipe outer diameter. And
This is graphed together with the approximate lines L2, L1, L0 (FIG. 8), which are reference lines. In addition, the presence or absence of a fisher confirmed by cross-sectional macro / micro structure observation is made to correspond.

【0055】図9では、クリープ損傷の発生により、管
外径が増大しており、管外径/治具内径は1.02近傍
に分布している。管外径/治具内径が大きくなる程、透
過波感度値が上がっており、管外径が増大する程、透過
エコーの量が少なくなることがわかる。また、T/3ス
リットの近似線L1 よりも高い透過波感度値を示した部
位で、フィッシャーが検出されている。そして、精度と
しては、T/2スリットの近似線L2 よりも高い透過波
感度値を示した部位の90%(7/8)以上でフィッシ
ャーが確認されている。
In FIG. 9, the tube outer diameter has increased due to the occurrence of creep damage, and the ratio of tube outer diameter / jig inner diameter is distributed in the vicinity of 1.02. It can be seen that the transmission wave sensitivity value increases as the tube outer diameter / jig inner diameter increases, and the amount of transmitted echo decreases as the tube outer diameter increases. In addition, Fisher is detected at a portion where the transmitted wave sensitivity value is higher than the approximate line L1 of the T / 3 slit. As for the accuracy, Fisher is confirmed in 90% (7/8) or more of the parts exhibiting the transmitted wave sensitivity value higher than the approximate line L2 of the T / 2 slit.

【0056】したがって、模擬欠陥を測定して得られた
基準線に基づいて、被検査管の損傷を判定することがで
きるため、加熱管の交換を行うことができる。例えば、
1本の加熱管について所定の検査部位の管表面の粗さお
よび透過波感度値を測定し、1ヵ所でもT/3スリット
の基準線(近似線L1 )を上回った場合、その加熱管の
交換を行うことができる。
Therefore, the damage to the inspected tube can be determined based on the reference line obtained by measuring the simulated defect, so that the heating tube can be replaced. For example,
The roughness of the tube surface and the transmitted wave sensitivity value of a predetermined inspection site are measured for one heating tube, and if even one of the tubes exceeds the reference line of T / 3 slit (approximate line L1), the heating tube is replaced. It can be performed.

【0057】以上の説明のように、本実施の形態の超音
波探傷方法によれば、まず、被検査管と同一の材質、管
表面粗さの試験片に模擬欠陥を加工し、上記超音波探傷
装置2を用いて、透過波感度値を管外径の変化に対応し
た模擬試験を行う。そして、得られた測定結果より透過
波感度値と管外径の基準外径からの変化量(管外径/治
具内径)との近似線を模擬欠陥ごとに求めて、クリープ
損傷の判定の基準線(管外径の基準外径からの変化量ご
との判定基準値)を求めておく。そして、実際の被検査
管の探傷を行う際には、管外径を測定するとともに、上
記超音波探傷装置2を用いて検査部位の透過波感度値を
測定し、求めておいた基準線と比較することにより、被
検査管1のクリープ損傷を判定することができる。な
お、超音波探傷の結果と、断面ミクロ・マクロ組織観察
による実損傷の状況とが、良好な対応関係にあることが
確認されている。
As described above, according to the ultrasonic flaw detection method of the present embodiment, first, a simulated defect is processed on a test piece having the same material and the same tube surface roughness as the pipe to be inspected. Using the flaw detector 2, a simulation test is performed on the transmitted wave sensitivity value corresponding to the change in the tube outer diameter. Then, an approximate line between the transmitted wave sensitivity value and the variation of the tube outer diameter from the reference outer diameter (tube outer diameter / jig inner diameter) is obtained for each simulated defect from the obtained measurement results, and the creep damage determination is made. A reference line (judgment reference value for each change amount of the pipe outer diameter from the reference outer diameter) is obtained in advance. Then, when actually performing the flaw detection of the inspected tube, the outer diameter of the tube is measured, and the transmitted wave sensitivity value of the inspection site is measured using the ultrasonic flaw detector 2, and the determined reference line is determined. By performing the comparison, the creep damage of the inspected tube 1 can be determined. It has been confirmed that there is a good correspondence between the result of the ultrasonic inspection and the actual damage obtained by observing the cross-sectional micro / macro structure.

【0058】よって、それぞれの近似線をクリープ損傷
の判定基準値として、管外径の変化の影響を補正して被
検査管の損傷の判定を的確に行うことができる。したが
って、加熱管の経年変化を的確に把握し、残存寿命を高
精度に推定することができるため、加熱管の無駄な交換
を防止することができ、安全かつ経済的に操業すること
ができる。
Thus, the damage of the pipe to be inspected can be accurately determined by correcting the influence of the change in the outer diameter of the pipe by using each of the approximation lines as the reference value for determining the creep damage. Therefore, the secular change of the heating tube can be accurately grasped, and the remaining life can be estimated with high accuracy. Therefore, unnecessary replacement of the heating tube can be prevented, and the operation can be performed safely and economically.

【0059】なお、本実施の形態は本発明の範囲を限定
するものではなく、本発明の範囲内で種々の変更が可能
である。例えば、被検査管の管外径が増大した状態の模
擬試験を行う場合、試験片にシールを貼着してもよい。
また、模擬欠陥は肉厚方向にT/2,T/3のスリット
以外でもよく、試験の条件設定により適宜選択すること
ができる。また、求める近似線の回帰係数は1次のもの
に限定するものではなく、管外径/治具内径と透過波感
度値との相関関係により、適宜選択することができる。
The present embodiment does not limit the scope of the present invention, and various changes can be made within the scope of the present invention. For example, when performing a simulation test in a state where the tube outer diameter of the tube to be inspected is increased, a seal may be attached to the test piece.
Further, the simulated defect may be other than the slits of T / 2 and T / 3 in the thickness direction, and can be appropriately selected by setting test conditions. Further, the regression coefficient of the approximate line to be obtained is not limited to the first order, and can be appropriately selected according to the correlation between the tube outer diameter / jig inner diameter and the transmitted wave sensitivity value.

【0060】また、遠心鋳造管は、未使用の状態でも、
管外径が一定でない。しかし、上述した判定基準は、基
準外径が異なる場合でも、管外径/治具内径を換算する
ことにより適用することができる。
Also, the centrifugally cast tube can be used even when not in use.
Outer diameter of pipe is not constant. However, the above-described criteria can be applied by converting the pipe outer diameter / jig inner diameter even when the reference outer diameter is different.

【0061】さらに、超音波探傷装置2には、水6の漏
れ防止に板ゴムなどからなるシール5bが設けられてい
るが、その厚みによっても、被検査管への超音波の入射
状況が変化する。本実施の形態の超音波探傷方法によれ
ば、使用するシール5bの厚さの影響を補正して被検査
管の損傷の判定を的確に行うことができる。
Further, the ultrasonic flaw detector 2 is provided with a seal 5b made of plate rubber or the like to prevent the leakage of the water 6, and the thickness of the seal 5b changes the incident state of the ultrasonic wave to the tube to be inspected. I do. According to the ultrasonic flaw detection method of the present embodiment, it is possible to correct the influence of the thickness of the seal 5b to be used and accurately determine the damage to the tube to be inspected.

【0062】[0062]

【発明の効果】請求項1の発明の超音波探傷方法は、以
上のように、管外径が基準外径である管表面に対して所
定の指向角度で配設された発信探触子および受信探触子
を備えた超音波探傷装置を被検査管に装着し、超音波水
浸透過法により該被検査管の透過エコーを測定して、該
被検査管内の欠陥を判定する超音波探傷方法において、
上記被検査管の透過エコーを、上記管外径の基準外径か
らの変化量ごとの判定基準値と比較することにより、該
被検査管内の欠陥を判定する構成である。
According to the ultrasonic flaw detection method of the first aspect of the present invention, as described above, the transmitting probe and the transmitting probe disposed at a predetermined directivity angle with respect to the pipe surface having the pipe outer diameter of the reference outer diameter are provided. An ultrasonic flaw detector equipped with a receiving probe is attached to a tube to be inspected, and a transmitted echo of the tube to be inspected is measured by an ultrasonic water penetration method to determine a defect in the tube to be inspected. In the method,
A defect in the inspected tube is determined by comparing the transmitted echo of the inspected tube with a determination reference value for each change amount of the tube outer diameter from the reference outer diameter.

【0063】それゆえ、検査部位の透過エコーを測定す
るとともに、管外径を測定することにより、管外径の変
化による発信探触子および受信探触子の指向角度のずれ
を補正して探傷を行うことができるという効果を奏す
る。また、この補正に要する管外径の基準外径からの変
化量は、管外径を測定するだけで得られるため、作業量
の増加も軽微であるという効果を奏する。
Therefore, by measuring the transmitted echo of the inspection site and measuring the outer diameter of the tube, the deviation of the directivity angles of the transmitting probe and the receiving probe due to the change in the outer diameter of the tube is corrected to detect the flaw. Is achieved. In addition, since the amount of change in the pipe outer diameter required for this correction from the reference outer diameter can be obtained only by measuring the pipe outer diameter, there is an effect that the increase in the amount of work is small.

【0064】したがって、加熱管の経年変化を的確に把
握し、残存寿命を高精度に推定することができるため、
加熱管の無駄な交換を防止することができ、安全かつ経
済的に操業することができるという効果を奏する。
Therefore, the secular change of the heating tube can be accurately grasped, and the remaining life can be estimated with high accuracy.
It is possible to prevent wasteful replacement of the heating tube and to operate safely and economically.

【0065】請求項2の発明の超音波探傷方法は、以上
のように、請求項1の構成に加えて、上記基準外径より
大きな管外径の被検査管に対して適用する上記判定基準
値は、外径が該基準外径である被検査管を管外径の変化
量に相当する距離だけ、上記超音波探傷装置から離した
状態で、模擬試験を行うことにより作成する構成であ
る。
According to the ultrasonic flaw detection method of the second aspect of the present invention, as described above, in addition to the configuration of the first aspect, the determination criterion applied to a pipe to be inspected having a tube outer diameter larger than the reference outer diameter The value is a configuration created by performing a simulation test in a state in which the inspected tube whose outer diameter is the reference outer diameter is separated from the ultrasonic inspection apparatus by a distance corresponding to the change amount of the outer diameter of the tube. .

【0066】それゆえ、請求項1の構成による効果に加
えて、被検査管の管外径が増大した状態という試験片の
作成が困難な状態についての模擬試験を行うことができ
るという効果を奏する。そして、被検査管と超音波探傷
装置との距離を段階的に変えて、模擬試験を行うことに
より、任意の変化量の範囲の判定基準値を作成すること
ができるという効果を奏する。さらに、上記模擬試験
は、作業も簡単なものであり、得られる測定結果の精度
も高いという効果を奏する。
Therefore, in addition to the effect of the configuration of claim 1, there is an effect that a simulation test can be performed on a state where it is difficult to prepare a test piece in a state where the tube outer diameter of the inspected tube is increased. . Then, by performing a simulation test while changing the distance between the inspection pipe and the ultrasonic flaw detector in a stepwise manner, there is an effect that a determination reference value in an arbitrary variation range can be created. Further, the simulation test has an effect that the operation is simple and the accuracy of the obtained measurement result is high.

【0067】請求項3の発明の超音波探傷方法は、以上
のように、請求項1または2の構成に加えて、上記基準
外径より小さな管外径の被検査管に対して適用する上記
判定基準値は、外径が該基準外径である被検査管を管外
径の変化量に相当する厚さだけ、管表面を削り込んだ被
検査管に対して、模擬試験を行うことにより作成する構
成である。
As described above, the ultrasonic flaw detection method according to the third aspect of the present invention, in addition to the configuration according to the first or second aspect, is applicable to a pipe to be inspected having an outer diameter smaller than the reference outer diameter. The determination reference value is obtained by performing a simulation test on the inspected tube whose outer diameter is the reference outer diameter by a thickness corresponding to the amount of change in the outer diameter of the inspected tube with the tube surface being cut down. This is the configuration to be created.

【0068】それゆえ、請求項1または2の構成による
効果に加えて、被検査管を削り込む厚さを段階的に変え
て、模擬試験を行うことにより、任意の変化量の範囲の
判定基準値を作成することができるという効果を奏す
る。さらに、上記模擬試験は、作業も簡単なものであ
り、得られる測定結果の精度も高いという効果を奏す
る。
Therefore, in addition to the effect of the structure of claim 1 or 2, the simulated test is performed by changing the thickness of the tube to be inspected in a stepwise manner to determine the range of any variation. This produces an effect that a value can be created. Further, the simulation test has an effect that the operation is simple and the accuracy of the obtained measurement result is high.

【0069】請求項4の発明の超音波探傷方法は、以上
のように、請求項1から3の何れかの構成に加えて、上
記被検査管は、高炭素耐熱遠心鋳造管である構成であ
る。
According to the ultrasonic flaw detection method of the fourth aspect of the present invention, as described above, in addition to the configuration of any one of the first to third aspects, the tube to be inspected is a high carbon heat resistant centrifugally cast tube. is there.

【0070】それゆえ、請求項1から3の何れかの構成
による効果に加えて、高炭素耐熱遠心鋳造管は、管外径
の経年変化が大きく、補正の効果が顕著であるという効
果を奏する。
Therefore, in addition to the effect of any one of the first to third aspects, the high carbon heat resistant centrifugally cast tube has an effect that the aging of the tube outer diameter is large and the correction effect is remarkable. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態にかかる超音波探傷方法
の概略を示すフローチャートである。
FIG. 1 is a flowchart schematically showing an ultrasonic flaw detection method according to an embodiment of the present invention.

【図2】図1に示した超音波探傷方法に用いる超音波探
傷装置の構成の概略を示す説明図である。
FIG. 2 is an explanatory view schematically showing a configuration of an ultrasonic flaw detector used in the ultrasonic flaw detection method shown in FIG.

【図3】図2および図5から図7に示した超音波探傷装
置の構成の概略を示す説明図である。
FIG. 3 is an explanatory view schematically showing the configuration of the ultrasonic flaw detector shown in FIG. 2 and FIGS. 5 to 7;

【図4】図2および図3に示した超音波探傷装置の使用
状況の概略を示す説明図である。
FIG. 4 is an explanatory diagram showing an outline of a usage state of the ultrasonic flaw detector shown in FIGS. 2 and 3;

【図5】図2および図3に示した超音波探傷装置を管外
径が減少した被検査管に装着した状態を示す説明図であ
る。
FIG. 5 is an explanatory view showing a state where the ultrasonic flaw detector shown in FIGS. 2 and 3 is mounted on a test tube having a reduced tube outer diameter.

【図6】図2および図3に示した超音波探傷装置を管外
径が増大した被検査管に装着した状態を示す説明図であ
る。
FIG. 6 is an explanatory view showing a state where the ultrasonic flaw detector shown in FIGS. 2 and 3 is mounted on a test tube having an increased tube outer diameter.

【図7】図2および図3に示した超音波探傷装置を管外
径が増大した被検査管に装着した状態を模擬した状態を
示す説明図である。
FIG. 7 is an explanatory diagram showing a state in which the ultrasonic flaw detector shown in FIGS. 2 and 3 is simulated mounted on a tube to be inspected having an increased tube outer diameter.

【図8】模擬欠陥が加工された遠心鋳造管の管外径/治
具内径と透過波感度値との測定結果と、その近似線を示
すグラフである。
FIG. 8 is a graph showing measurement results of a tube outer diameter / jig inner diameter and a transmitted wave sensitivity value of a centrifugally cast tube on which a simulated defect has been processed, and an approximate line thereof.

【図9】模擬欠陥が加工された遠心鋳造管の管外径/治
具内径と透過波感度値との近似線と、実炉損傷管の管外
径/治具内径と透過波感度値との測定結果を示すグラフ
である。
FIG. 9 shows an approximation line between the tube outer diameter / jig inner diameter of the centrifugally cast pipe having a simulated defect processed and the transmitted wave sensitivity value, and the tube outer diameter / jig inner diameter of the actual furnace damaged tube and the transmitted wave sensitivity value. 6 is a graph showing the measurement results of FIG.

【符号の説明】[Explanation of symbols]

1 被検査管(高炭素耐熱遠心鋳造管) 2 超音波探傷装置 3 発信探触子 4 受信探触子 11 被検査管(高炭素耐熱遠心鋳造管) 12 被検査管(高炭素耐熱遠心鋳造管) i0 指向角度 D 基準外径 ΔD 管外径の変化量REFERENCE SIGNS LIST 1 tube to be inspected (high carbon heat resistant centrifugally cast tube) 2 ultrasonic flaw detector 3 transmission probe 4 receive probe 11 tube to be inspected (high carbon heat resistant centrifugal cast tube) 12 tube to be inspected (high carbon heat resistant centrifugal cast tube) ) I 0 Direction angle D Reference outside diameter ΔD Change in tube outside diameter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】管外径が基準外径である管表面に対して所
定の指向角度で配設された発信探触子および受信探触子
を備えた超音波探傷装置を被検査管に装着し、超音波水
浸透過法により該被検査管の透過エコーを測定して、該
被検査管内の欠陥を判定する超音波探傷方法において、 上記被検査管の透過エコーを、上記管外径の基準外径か
らの変化量ごとの判定基準値と比較することにより、該
被検査管内の欠陥を判定することを特徴とする超音波探
傷方法。
1. An ultrasonic flaw detector equipped with a transmitting probe and a receiving probe disposed at a predetermined directivity angle with respect to a tube surface whose tube outer diameter is a reference outer diameter is attached to a tube to be inspected. Then, in the ultrasonic flaw detection method for measuring a transmission echo of the test tube by an ultrasonic water penetration method and determining a defect in the test tube, An ultrasonic flaw detection method, wherein a defect in the inspection tube is determined by comparing with a determination reference value for each variation from a reference outer diameter.
【請求項2】上記基準外径より大きな管外径の被検査管
に対して適用する上記判定基準値は、外径が該基準外径
である被検査管を管外径の変化量に相当する距離だけ、
上記超音波探傷装置から離した状態で、模擬試験を行う
ことにより作成することを特徴とする請求項1記載の超
音波探傷方法。
2. The determination reference value applied to a test pipe having a pipe outer diameter larger than the reference outer diameter, the test pipe having an outer diameter equal to the reference outer diameter corresponds to a change amount of the pipe outer diameter. Only the distance you
The ultrasonic inspection method according to claim 1, wherein the ultrasonic inspection apparatus is created by performing a simulation test in a state where the ultrasonic inspection apparatus is separated from the ultrasonic inspection apparatus.
【請求項3】上記基準外径より小さな管外径の被検査管
に対して適用する上記判定基準値は、外径が該基準外径
である被検査管を管外径の変化量に相当する厚さだけ、
管表面を削り込んだ被検査管に対して、模擬試験を行う
ことにより作成することを特徴とする請求項1または2
記載の超音波探傷方法。
3. The determination reference value to be applied to a test pipe having a pipe outer diameter smaller than the reference outer diameter, the test pipe having an outer diameter equal to the reference outer diameter being equivalent to a change amount of the pipe outer diameter. Just the thickness
3. The method according to claim 1, wherein a simulation test is performed on the inspected tube whose surface is cut off.
The described ultrasonic flaw detection method.
【請求項4】上記被検査管は、高炭素耐熱遠心鋳造管で
あることを特徴とする請求項1から3の何れかに記載の
超音波探傷方法。
4. The ultrasonic flaw detection method according to claim 1, wherein said tube to be inspected is a high carbon heat resistant centrifugally cast tube.
JP10035243A 1998-02-17 1998-02-17 Ultrasonic flaw detection method Pending JPH11230948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10035243A JPH11230948A (en) 1998-02-17 1998-02-17 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10035243A JPH11230948A (en) 1998-02-17 1998-02-17 Ultrasonic flaw detection method

Publications (1)

Publication Number Publication Date
JPH11230948A true JPH11230948A (en) 1999-08-27

Family

ID=12436407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10035243A Pending JPH11230948A (en) 1998-02-17 1998-02-17 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JPH11230948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012366A (en) * 2002-06-10 2004-01-15 Nippon Chutetsukan Kk Pipe thickness measuring device and pipe thickness measuring method
JP2018510352A (en) * 2015-03-31 2018-04-12 ヴァルレック チューブ フランス Tool for calibration of ultrasonic inspection equipment
CN110441403A (en) * 2019-07-23 2019-11-12 合肥通用机械研究院有限公司 A kind of tubing circumferential crack water logging supersonic array detection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012366A (en) * 2002-06-10 2004-01-15 Nippon Chutetsukan Kk Pipe thickness measuring device and pipe thickness measuring method
JP2018510352A (en) * 2015-03-31 2018-04-12 ヴァルレック チューブ フランス Tool for calibration of ultrasonic inspection equipment
CN110441403A (en) * 2019-07-23 2019-11-12 合肥通用机械研究院有限公司 A kind of tubing circumferential crack water logging supersonic array detection device and method

Similar Documents

Publication Publication Date Title
CN108548869B (en) Nuclear power station polyethylene pipe phased array ultrasonic detection method
JP5276497B2 (en) Pipe weld life evaluation method
KR20220004184A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment heat, steel manufacturing method, and steel quality assurance method
CN101551361A (en) Device for detecting lamination defect with ultrasonic wall thickness inspection and detecting method thereof
US10416124B2 (en) Ultrasonic testing apparatus
JPH11230948A (en) Ultrasonic flaw detection method
CN111458415B (en) Method for detecting coupling state of ultrasonic phased array transducer and workpiece to be detected
JPH11211700A (en) Ultrasonic flaw detecting method and ultrasonic flaw detecting device used for same
JP2004212366A (en) Creep damage detecting method
WO2023274089A1 (en) Curved-surface sonolucent wedge design method for circumferential ultrasonic detection of small-diameter tube
CN113466341B (en) Radial crack creeping wave detection method for outer wall of steam-water pipeline tube seat open hole
JP2004205430A (en) Ultrasonic inspection method
JP2008145319A (en) Method for inspecting padding portion of engine valve
JP4546152B2 (en) Inspection method and diagnostic device for porcelain insulator
CN110441405B (en) Thermal fatigue crack detection contrast test block near drain pipe hole of high-temperature steam pipeline
Willems et al. Qualification of a combined ultrasonic inspection tool for detection and sizing of circumferential weld cracks in offshore pipelines
JPH04142456A (en) Ultrasonic flaw detection for metal tube
JPH058778B2 (en)
Willems et al. Recent improvements regarding ultrasonic crack inspection of pipelines
CN113176331B (en) Method for detecting hydrogen damage of material through ultrasonic circumferential guided wave sound velocity
Alleyne et al. An introduction to long-range screening using guided waves
JPH07325069A (en) Method and device for detecting deterioration of high temperature member
CN109060965B (en) Special reference test block for ultrasonic detection of longitudinal wave of fir-type blade root axially assembled by steam turbine
AIZAWA et al. Type IV creep voids detection method for high chromium steel welds using ultrasonic backscattered waves
JP3556826B2 (en) Ultrasonic flaw detection method for tubes