JP2004012366A - Pipe thickness measuring device and pipe thickness measuring method - Google Patents

Pipe thickness measuring device and pipe thickness measuring method Download PDF

Info

Publication number
JP2004012366A
JP2004012366A JP2002168413A JP2002168413A JP2004012366A JP 2004012366 A JP2004012366 A JP 2004012366A JP 2002168413 A JP2002168413 A JP 2002168413A JP 2002168413 A JP2002168413 A JP 2002168413A JP 2004012366 A JP2004012366 A JP 2004012366A
Authority
JP
Japan
Prior art keywords
pipe
arm
inner diameter
measured
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002168413A
Other languages
Japanese (ja)
Inventor
Masaru Ishikawa
石川 勝
Kunio Kiyono
清野 邦夫
Hideto Takasugi
高杉 英登
Shinichi Kasahara
笠原 信一
Masakazu Inomata
猪股 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokan Kikai Kogyo KK
Nippon Chutetsukan KK
Original Assignee
Kokan Kikai Kogyo KK
Nippon Chutetsukan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokan Kikai Kogyo KK, Nippon Chutetsukan KK filed Critical Kokan Kikai Kogyo KK
Priority to JP2002168413A priority Critical patent/JP2004012366A/en
Publication of JP2004012366A publication Critical patent/JP2004012366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe thickness measuring device capable of measuring quickly and accurately the pipe thickness in the pipe axial direction without reducing a product yield caused by cutting or the like. <P>SOLUTION: This pipe thickness measuring device is equipped with an inner diameter measuring device 2 formed by installing therein at intervals on one shaft, two contact search units 3 having in the circumferential direction, three or more pairs of contact branch arms 4 formed by connecting two arms 8, 9 angularly toward the outside and providing a wheel 10 in contact with the inner face of a measuring object pipe 22 on the connection part, position detection means 16, 18 for detecting the position in a measuring object pipe of the inner diameter measuring device 2, and an operation means 19 for determining the pipe thickness in the pipe axial direction of the measuring object pipe based on measurement data by the inner diameter measuring device 2 and measurement data by the position detection means 16, 18. The contact branch arm 4 is extensible toward the outside of the contact search unit 3, and the inner diameter of the measuring object pipe is measured based on the extension quantity of the contact branch arm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、遠心鋳造管、鋼管、ポリエチレン管及びレジンコンクリート管等の管軸方向の管厚を測定する装置及び方法に関するものである。
【0002】
【従来の技術】
ダクタイル鋳鉄管等の遠心鋳造管を製造する遠心鋳造設備は、その軸芯を回転軸として回転する金型と、この金型を搭載する鋳造台車と、金型内に溶湯を供給する鋳込み用取鍋と、鋳込み用取鍋から供給される溶湯を金型内に中継注湯する注湯用樋とを備えており、回転している金型内の奥まで挿入された注湯用樋先端から溶湯を注湯しながら金型を鋳造台車と共に鋳込み用取鍋の反対側に移動させることにより、注湯した溶湯を順次凝固させて、溶湯から直接遠心鋳造管を製造している。
【0003】
鋳込み用取鍋は、傾動した時に鋳込み用取鍋内の溶湯表面積が略一定となるべく、その出湯口を通る縦断面形状が扇形となる、所謂「三角取鍋」が用いられており、傾動速度を一定にすることにより鋳込み用取鍋からの溶湯注湯量がほぼ一定に制御されている。そして、金型を、鋳込み開始時期及び鋳込み終了時期を除いて一定速度で移動させることにより、金型内各部位に一定量の溶湯が供給され、製造される遠心鋳造管の管厚が管軸方向で所定値に制御されるようになっている。
【0004】
しかしながら、鋳込み開始の段階と鋳込み終了の段階とでは溶湯温度に差が生じ、この温度差が大きい場合には、注湯用樋上の湯流れに差が生じ、溶湯供給量が一定にならず、鋳造される遠心鋳造管の管軸方向の管厚に差が生ずることがある。管厚のばらつきが規格内であれば問題はないが、規格範囲を越えた場合には屑化して再溶解せざるを得ない。これを防止するためには、鋳造された遠心鋳造管の管軸方向の管厚分布を調査し、調査結果を鋳造条件にフィードバックして管厚を規格内に維持させることが必要になる。
【0005】
従来、遠心鋳造管の管軸方向の管厚分布を測定する方法としては、遠心鋳造管を管軸方向で幾つかに切断し、その断面における管厚をノギス等により測定する方法や、超音波パルスを遠心鋳造管に入射させ、その反射エコーから測定する方法、又は、遠心鋳造管に放射線を透過させ、放射線の減衰量から測定する方法が行われている。
【0006】
【発明が解決しようとする課題】
しかしながら、遠心鋳造管を切断する方法では、切断された遠心鋳造管は屑化せざるを得ず、製品歩留まりの低下を招く。又、硬度の高い遠心鋳造管を切断しなければならず、切断時間や切断装置を含めて作業負荷が極めて大きい。超音波パルスを用いた方法では、遠心鋳造管の表面が曲面形状で且つ平滑ではないために、遠心鋳造管と超音波発信器との間に液体を介在させて超音波パルスを入射させなければならず、精度良く測定するためには測定に長時間が費やされる。又、放射線を用いた方法では測定時間は短いものの、放射性物質の取り扱いには安全衛生上の制約が多く、実用的ではない。
【0007】
このように、従来の管軸方向の管厚測定方法は、測定に長時間を要したり、製品歩留まりの低下を来したりして、製造コストを上昇させる要因になっていた。又、鋼管、ポリエチレン管、及びレジンコンクリート管等の場合にも管軸方向の管厚を測定する際には、遠心鋳造管と同様の問題があり、簡便で且つ精度良く管軸方向の管厚を測定する手段が切望されていた。
【0008】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、製品歩留まりの低下を来すことなく、遠心鋳造管やポリエチレン管及びレジンコンクリート管等の管軸方向の管厚を迅速に且つ精度良く測定することのできる管厚測定装置及び管厚測定方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意検討を重ねた。その結果、遠心鋳造管は金型を用いた遠心鋳造方式により製造されていることから、遠心鋳造管の断面形状が真円に近い同心円であり、且つ、管軸方向の外径が一定しているため、遠心鋳造管の内径を管軸方向で連続して測定することで、管軸方向の管厚の変化を精度良く測定できるとの知見を得た。又、鋼管やポリエチレン管及びレジンコンクリート管も断面形状が真円に近い同心円であり、且つ、管軸方向の外径が一定しているため、遠心鋳造管と同様に、内径を管軸方向で連続して測定することで、管軸方向の管厚の変化を精度良く測定できるとの知見を得た。
【0010】
本発明は上記知見に基づきなされたもので、第1の発明に係る管厚測定装置は、2本のアームが外側に向かって山形状に連結され、その連結部に測定対象管の内面と接触する車輪が設けられた接触枝腕を円周方向に3組以上有する接触探索子が1本のシャフトに間隔を置いて2基設置された内径測定器本体と、この内径測定器本体の測定対象管内における位置を検出する位置検出手段と、前記内径測定器本体による測定データ並びに前記位置検出手段による測定データに基づいて測定対象管の管軸方向の管厚を求める演算手段と、を具備した管厚測定装置であって、前記接触枝腕は前記接触探索子の外側に向かって伸縮可能であり、この接触枝腕の伸縮量に基づいて測定対象管の内径を測定することを特徴とするものである。
【0011】
第2の発明に係る管厚測定装置は、第1の発明において、前記接触枝腕は、前記シャフトに固定されて取り付けられた第1アームコネクターと、前記シャフトに摺動可能に取り付けられた第2アームコネクターと、第1アームコネクターにその一端が軸支された第1アームと、第2アームコネクターにその一端が軸支された第2アームと、第1アームの他端と第2アームの他端とが連結される位置に設置された車輪と、から構成され、前記接触探索子には、第2アームコネクターを常に第1アームコネクター側に移動させるように第2アームコネクターにその力が作用するバネが設置され、前記内径測定器本体には、第2アームコネクターの摺動量を検出する変位計が設置されており、前記車輪の測定対象管内径方向の位置変動によって生ずる第2アームコネクターの摺動量から測定対象管の内径を測定することを特徴とするものである。
【0012】
第3の発明に係る管厚測定装置は、第1又は第2の発明において、前記測定対象管が、遠心鋳造設備により製造された遠心鋳造管であることを特徴とするものである。
【0013】
第4の発明に係る管厚測定方法は、外側に向かって伸縮可能な接触枝腕を円周方向に3組以上有する接触探索子が管軸方向に2基設置された内径測定器本体を測定対象管の内部で移動させ、測定対象管の内面と接触しながら移動する接触枝腕の伸縮量に基づいて測定対象管の管軸方向の内径を測定し、この内径測定値と別途入力した測定対象管の外径値とから、測定対象管の管軸方向の管厚を求めることを特徴とするものである。
【0014】
第5の発明に係る管厚測定方法は、第4の発明において、前記測定対象管が、遠心鋳造設備により製造された遠心鋳造管であることを特徴とするものである。
【0015】
上記構成の本発明に係る管厚測定装置及び管厚測定方法によれば、管軸方向の内径を測定するだけで、遠心鋳造管やポリエチレン管等の測定対象管の管軸方向の管厚分布を精度良く且つ迅速に測定することが可能となる。そして、非破壊検査であるために製品歩留まりの低下を来すこともない。
【0016】
又、本発明に係る内径測定器本体には、測定対象管の内面と接触しつつ移動する接触探索子が管軸方向に間隔を置いて2基設置されているので、内径測定器本体の軸芯と測定対象管の軸芯とを常に一致させることができるため、接触探索子に設置された接触枝腕は常に測定対象管に対して垂直に接触する状態が保たれ、遠心鋳造管等の測定対象管の内径測定精度が向上し且つ維持される。
【0017】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1〜図3は、本発明の実施の形態を示す図であって、図1は、本発明に係る管厚測定装置の全体構成を示す概略図、図2は、図1に示す内径測定器本体の概略図、図3は、図2の側面図である。尚、ここでは、遠心鋳造管を測定対象管とした例で説明する。
【0018】
図1〜図3に示すように、本発明に係る管厚測定装置は、遠心鋳造管22の内径を測定する内径測定器1と、この内径測定器1の主たる構成部位である内径測定器本体2の、遠心鋳造管22内における位置を検出する位置検出手段として設置されたリニアエンコーダー16と、内径測定器1による遠心鋳造管22の内径測定データ並びにリニアエンコーダー16による内径測定器本体2の位置測定データに基づいて、遠心鋳造管22の管軸方向の管厚を算出する演算手段として設置された演算装置19との、大別して3つの部分から構成されている。
【0019】
内径測定器1は、遠心鋳造管22の内面に接触して遠心鋳造管22の内径に関するデータを採取する内径測定器本体2と、内径測定器本体2を遠心鋳造管22内で移動させるための原動機20と、内径測定器本体2と原動機20とを連結する駆動用軸15と、内径測定器本体2と駆動用軸15とを連結する連結部14と、原動機20により作動して駆動用軸15を直接駆動させる駆動用ローラー21と、内径測定器本体2で採取したデータを入力して内径に換算する変換器13とから構成されている。変換器13の出力信号即ち内径測定値は、演算装置19に入力されている。ここで、連結部14は、内径測定器本体2の軸芯と駆動用軸15の軸芯とが合致しなくても連結可能な構造になっている。尚、原動機20及び駆動用ローラー21は必ずしも必要ではなく、操作員が駆動用軸15を持って人力により内径測定器本体2を移動させてもよい。又、駆動用ローラー21の替わりに牽引用のロープ及びワイヤー等を用いてもよい。
【0020】
内径測定器本体2は、その軸芯に設置されたシャフト5と、このシャフト5に間隔を置いて設置された2基の接触探索子3,3と、シャフト5に固定した設置された変位計12とから構成されている。変位計12による測定データは、ケーブル23を介して前述の変換器13に入力されている。
【0021】
接触探索子3は、図3に示すようにシャフト5の円周方向等間隔に設置された3組の接触枝腕4と、接触枝腕4が常に外側に向かって伸びるようにその力が働く収縮バネ11とから構成されている。本実施の形態では、接触枝腕4をシャフト5の円周方向で120度の等間隔に3組設置しているが、3組に限るわけではなく、隣り合う接触枝腕4との円周方向の間隔が180度以上でない条件であるならば、3組以上の幾つであってもよい。但し、遠心鋳造管22の断面形状は真円に近い同心円であるため、接触枝腕4が3組でもシャフト5の軸芯は遠心鋳造管22の軸芯に合致し、十分精度良く内径を測定することができる。又、接触枝腕4を数多く設置すると、装置が複雑化して製造費が上昇するが、3組の場合にはこのようなことはない。尚、隣り合う接触枝腕4との円周方向の間隔が180度以上の場合には、内径測定器本体2の軸芯と遠心鋳造管22の軸芯とが一致しなくなるために好ましくない。
【0022】
接触枝腕4は、シャフト5に固定されて取り付けられた第1アームコネクター6と、シャフト5に摺動可能に取り付けられた第2アームコネクター7と、第1アームコネクター6にその一端が軸支された第1アーム8と、第2アームコネクター7にその一端が軸支された第2アーム9と、第1アーム8の他端と第2アーム9の他端とが連結される位置に設置された車輪10とから構成されている。
【0023】
前述した収縮バネ11は、第1アームコネクター6と第2アームコネクター7とに連結されており、摺動可能な第2アームコネクター7を常に第1アームコネクター6側に引っ張るようにその力が作用している。即ち、第1アーム8と第2アーム9とが外側に向かって山形状に連結され、その連結部に車輪10が設けられた接触枝腕4が常に外側に向かって伸びるように収縮バネ11の力が作用するため、接触枝腕4の先端に設置された車輪10が常に遠心鋳造管22の内面に接触した状態を維持することができる。
【0024】
尚、本実施の形態では収縮バネ11を用いているが、第2アームコネクター7の外側に反撥バネを設け、第2アームコネクター7を常に第1アームコネクター6側に押し付けるようにしてもよい。但し、反撥バネの場合には、収縮バネ11の場合に比べて接触探索子3の管軸方向長さが長くなり、内径測定器本体2の遠心鋳造管22への一方向からの挿入のみでは管厚を測定できない範囲が長くなるため、収縮バネ11を用いることが好ましい。
【0025】
遠心鋳造管22の内面に接触する車輪10とシャフト5の軸芯との距離が、遠心鋳造管22の管厚の変化により変動すると、接触枝腕4は外側又は内側に伸縮し、この伸縮により第2アームコネクター7がシャフト5を管軸方向に摺動する。前述した変位計12は、この第2アームコネクター7の管軸方向の摺動量を測定している。このように、第2アームコネクター7の管軸方向の摺動量を変位計12により測定し、変換器13によって管軸方向の摺動量を内径方向の変位量に変換することで、遠心鋳造管22の内径を測定することができる。第2アームコネクター7の摺動量の測定は、片方の接触探索子3の第2アームコネクター7のみでよい。
【0026】
ここで、第2アームコネクター7の管軸方向の摺動量を内径方向の変位量へ変換する方法は、次のようにして行うことができる。
【0027】
即ち、図4にアームの移動状況を概念的に示すように、遠心鋳造管22の内径がhだけ減少すると、アームの支点Aはfだけ移動する。ここで、支点Aを固定して考えると、図5に示すアームの移動状況模式図のように、点Oを中心として点Cがhだけ下がったときの水平方向移動量fを求めることになる。
【0028】
図4及び図5において、H:基準内径でのアーム高さ、h:アーム高さの変化量、L:アーム長さ、f:アームのスライド量とし、更に、図5におけるアームの端部点Cの水平方向位置をxとすると、下記の(1)式及び(2)式が得られる。ここでhは、基準内径に対して内径が小さくなる場合に負の数値、大きくなる場合に正の数値である。
【0029】
【数1】

Figure 2004012366
【0030】
【数2】
Figure 2004012366
【0031】
(1)式のxを(2)式に代入した下記の(3)式により、fを求めることができる。但し、実際には片側のアーム(第1アーム8)を固定しているので、第2アーム9のスライド量即ち第2アームコネクター7の摺動量は2fとなる。
【0032】
【数3】
Figure 2004012366
【0033】
変位計12は(3)式によるスライド量fの二倍の値を測定しているので、測定した摺動量に1/2を乗算した数値をfとして(3)式に代入することで、変化量h即ち基準内径に対する実際の内径の変化量を求めることができる。
【0034】
連結部14には、リニアエンコーダー16から伸びるワイヤー17が取り付けられており、内径測定器本体2の移動に伴って生ずるワイヤー17の送り出し量の変化に基づくリニアエンコーダー16の測定データが変換器18に入力され、変換器18ではリニアエンコーダー16の測定データが遠心鋳造管22における内径測定器本体2の位置に換算される。変換器18の出力信号即ち内径測定器本体2の位置測定値は、演算装置19に入力されている。尚、図1では、変換器13、変換器18、演算装置19がそれぞれ独立しているが、これらをまとめて1つの装置としてもよい。
【0035】
このように構成される管厚測定装置により遠心鋳造管22の管軸方向の管厚を測定するに際しては、内径測定器本体2を遠心鋳造管22の内部に挿入し、この内径測定器本体2を適宜の速度で遠心鋳造管22の内部で移動させ、変位計12により第2アームコネクター7の摺動量を連続的又は断続的に測定し、この測定データに基づき変換器13により遠心鋳造管22の管軸方向各位置での内径を求める。同時に、リニアエンコーダー16及び変換器18により、遠心鋳造管22の管軸方向での内径測定位置を測定する。これらの測定データは演算装置19に送信される。一方、演算装置19には遠心鋳造管22の外径値を予め入力しておく。
【0036】
演算装置19は、送信された内径測定値に基づき、下記の(4)式により管厚を算出する。この場合、遠心鋳造管22の外径値は、製品規格の一定値として入力しても、又、遠心鋳造管22の外径をノギス等の測定器により測定し、その測定値を入力してもよい。遠心鋳造管22の管軸方向に或る間隔で外径を実測し、実測しない範囲は両側の実測値から類推した数値(例えば2点間を直線で結んで各測定位置の外径を求める)を外径値として入力することで、より正確に管軸方向の管厚分布を測定することができる。
【0037】
【数4】
Figure 2004012366
【0038】
このように、本発明に係る管厚測定装置によれば、切断等による製品歩留まりの低下を来すことなく、遠心鋳造管22の管軸方向の管厚分布を精度良く且つ迅速に測定することが可能となる。又、本発明に係る内径測定器本体2には、遠心鋳造管22の内面と接触しつつ移動する接触探索子3が管軸方向に間隔を置いて2基設置されているので、内径測定器本体2の軸芯と遠心鋳造管22の軸芯とを常に一致させることができるため、接触枝腕4が常に遠心鋳造管22に対して垂直に接触する状態が保たれ、測定精度が向上し且つ維持される。
【0039】
尚、上記説明では、測定対象管として遠心鋳造管22の例で説明したが、本発明に係る管厚測定装置は遠心鋳造管用に限るわけではなく、遠心鋳造管以外にも鋼管、ポリエチレン管、レジンコンクリート管等を測定対象管とすることができる。この場合、前述した遠心鋳造管22の場合と全く同一方法によって、これらの管軸方向の管厚を測定することができる。
【0040】
【実施例】
遠心鋳造された長さ5mの鋳鉄管を用いて、本発明に係る管厚測定装置により管軸方向の管厚を測定した。鋳鉄管形状の規格値は、外径が169±1.5mm、管厚が7.5mm(但し最低6.5mm)である。鋳鉄管内に内径測定器本体を挿入し、0.1m/秒の速度で移動させながら、10mm間隔で内径を測定した。この場合、再現性を確認するために同一鋳鉄管を繰り返し測定した。又、管端ではノギスにより管厚を実測し、本発明に係る管厚測定装置による測定値と対比した。鋳鉄管の外径をノギスにより測定し、この測定値を外径値として演算装置に入力した。演算装置としては市販のパソコンを用いた。
【0041】
その結果、本発明に係る管厚測定装置の繰り返し再現性は0.2mm(3σ)であり、周方向に測定位置をずらしても同程度のばらつきに収まっていた。又、管端部におけるノギスによる管厚実測値と本発明に係る管厚測定装置による測定値との差は±0.2mm以内に収まっていた。従って、鋳鉄管を切断して対比していないものの、鋳鉄管の中央部も精度良く測定することができたと推定された。このように、本発明に係る管厚測定装置により極めて精度良く且つ迅速に管軸方向の管厚を測定できることが分かった。
【0042】
鋳鉄管の管軸方向の管厚分布は、鋳造の開始側である「受け口」側から徐々に薄くなり、最後の「押し湯」により挿し口側の管端部が一転して厚くなっていることが確認された。
【0043】
【発明の効果】
以上説明したように、本発明に係る管厚測定装置によれば、切断等による製品歩留まりの低下を来すことなく、遠心鋳造管やポリエチレン管等の測定対象管の管軸方向の管厚分布を精度良く且つ迅速に測定することが可能となる。又、本発明に係る内径測定器本体には、測定対象管の内面と接触しつつ移動する接触探索子が管軸方向に間隔を置いて2基設置されているので、内径測定器本体の軸芯と測定対象管の軸芯とを常に一致させることができるため、接触探索子に設置された接触枝腕は常に測定対象管に対して垂直に接触する状態が保たれ、内径測定精度が向上し且つ維持される。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す図であって、本発明に係る管厚測定装置の全体構成を示す概略図である。
【図2】図1に示す内径測定器本体の概略図である。
【図3】図2の側面図である。
【図4】アームの移動状況を概念的に示す図である。
【図5】アームの移動状況を模式的に示す図である。
【符号の説明】
1 内径測定器
2 内径測定器本体
3 接触探索子
4 接触枝腕
5 シャフト
6 第1アームコネクター
7 第2アームコネクター
8 第1アーム
9 第2アーム
10 車輪
11 収縮バネ
12 変位計
13 変換器
14 連結部
15 駆動用軸
16 リニアエンコーダー
17 ワイヤー
18 変換器
19 演算装置
20 原動機
21 駆動用ローラー
22 遠心鋳造管
23 ケーブル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for measuring a pipe thickness in a pipe axis direction such as a centrifugally cast pipe, a steel pipe, a polyethylene pipe, and a resin concrete pipe.
[0002]
[Prior art]
A centrifugal casting facility that manufactures a centrifugal cast pipe such as a ductile cast iron pipe includes a mold that rotates about its axis, a casting cart on which the mold is mounted, and a casting machine that supplies molten metal into the mold. A pan and a pouring gutter for pouring the molten metal supplied from the casting ladle into the mold are provided. By moving the mold to the opposite side of the casting ladle together with the casting cart while pouring the molten metal, the poured molten metal is solidified sequentially, and a centrifugally cast tube is manufactured directly from the molten metal.
[0003]
The casting ladle is a so-called "triangular ladle" in which the vertical cross-sectional shape passing through the tap hole is fan-shaped so that the surface area of the molten metal in the casting ladle when tilted becomes substantially constant. , The molten metal pouring amount from the casting ladle is controlled to be substantially constant. Then, by moving the mold at a constant speed except for the casting start time and the casting end time, a fixed amount of molten metal is supplied to each part in the mold, and the thickness of the manufactured centrifugally cast pipe is adjusted to the pipe axis. The direction is controlled to a predetermined value.
[0004]
However, there is a difference in the molten metal temperature between the casting start stage and the casting ending stage, and when this temperature difference is large, a difference occurs in the molten metal flow on the pouring gutter, and the molten metal supply amount is not constant, A difference may occur in the tube thickness of the centrifugally cast tube to be cast in the tube axis direction. There is no problem if the variation of the pipe thickness is within the specification, but if it exceeds the specification range, it must be made into waste and redissolved. In order to prevent this, it is necessary to investigate the pipe thickness distribution in the pipe axis direction of the centrifugally cast pipe that has been cast, and feed back the result of the check to the casting conditions to maintain the pipe thickness within the standard.
[0005]
Conventionally, as a method of measuring the pipe thickness distribution of a centrifugally cast pipe in the pipe axis direction, a method of cutting a centrifugally cast pipe into several pieces in the pipe axis direction and measuring the pipe thickness in a cross section with a vernier caliper or an ultrasonic wave is used. A method in which a pulse is made incident on a centrifugally cast tube and measured from the reflected echo, or a method in which radiation is transmitted through the centrifugally cast tube and measured from the amount of radiation attenuation has been performed.
[0006]
[Problems to be solved by the invention]
However, in the method of cutting the centrifugally cast tube, the cut centrifugally cast tube must be turned into waste, which causes a decrease in product yield. In addition, the hardened centrifugal casting tube must be cut, and the work load including the cutting time and the cutting device is extremely large. In the method using ultrasonic pulses, since the surface of the centrifugal casting tube has a curved surface and is not smooth, a liquid must be interposed between the centrifugal casting tube and the ultrasonic transmitter to make the ultrasonic pulse incident. Rather, it takes a long time to measure with high accuracy. In addition, although the measurement time is short in the method using radiation, handling of radioactive materials has many safety and health restrictions and is not practical.
[0007]
As described above, the conventional method for measuring the pipe thickness in the pipe axis direction requires a long time for the measurement or lowers the product yield, thereby increasing the manufacturing cost. Also, in the case of steel pipe, polyethylene pipe, resin concrete pipe, etc., when measuring the pipe thickness in the pipe axis direction, there is the same problem as the centrifugally cast pipe, and the pipe thickness in the pipe axis direction is simple and accurate. There has been a long-awaited need for a means for measuring the
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to rapidly reduce the thickness of a pipe in the axial direction of a centrifugally cast pipe, a polyethylene pipe, a resin concrete pipe, or the like without lowering the product yield. It is an object of the present invention to provide a tube thickness measuring device and a tube thickness measuring method capable of performing accurate and accurate measurement.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems. As a result, since the centrifugally cast tube is manufactured by a centrifugal casting method using a mold, the cross-sectional shape of the centrifugally cast tube is a concentric circle close to a perfect circle, and the outer diameter in the tube axis direction is constant. Therefore, it has been found that by continuously measuring the inner diameter of the centrifugally cast pipe in the pipe axis direction, it is possible to accurately measure the change in pipe thickness in the pipe axis direction. Also, steel pipes, polyethylene pipes and resin concrete pipes have concentric circles whose cross-sectional shapes are close to perfect circles, and have a constant outer diameter in the pipe axis direction. It has been found that by continuously measuring, a change in tube thickness in the tube axis direction can be accurately measured.
[0010]
The present invention has been made based on the above findings. In the tube thickness measuring device according to the first invention, two arms are connected in a mountain shape toward the outside, and the connecting portion contacts the inner surface of the pipe to be measured. Inner diameter measuring device main body in which two contact probes having three or more sets of contact branch arms provided in the circumferential direction provided with wheels to be mounted are installed on a single shaft at an interval, and an object to be measured by the inner diameter measuring device main body A pipe comprising: a position detecting means for detecting a position in the pipe; and a calculating means for calculating a pipe thickness in a pipe axis direction of the pipe to be measured based on measurement data by the inner diameter measuring device main body and measurement data by the position detection means. A thickness measuring device, wherein the contact arm is extendable toward the outside of the contact probe, and measures the inner diameter of the pipe to be measured based on the amount of expansion and contraction of the contact arm. It is.
[0011]
In the tube thickness measuring device according to a second invention, in the first invention, the contact arm is a first arm connector fixedly attached to the shaft, and a second arm connector slidably attached to the shaft. A two-arm connector, a first arm having one end pivotally supported by the first arm connector, a second arm having one end pivotally supported by the second arm connector, and the other end of the first arm and the second arm. A wheel installed at a position where the other end is connected to the second arm connector so that the second arm connector always moves to the first arm connector side. A working spring is installed, and a displacement meter for detecting a sliding amount of the second arm connector is installed on the inner diameter measuring device main body. It is characterized in that for measuring the inner diameter of the measurement target tube from sliding amount of the second arm connector.
[0012]
A tube thickness measuring apparatus according to a third invention is characterized in that, in the first or second invention, the pipe to be measured is a centrifugally cast pipe manufactured by centrifugal casting equipment.
[0013]
The pipe thickness measuring method according to a fourth aspect of the present invention is to measure an inner diameter measuring device main body in which two contact seekers having three or more sets of contact branch arms extending and contracting outward in a circumferential direction are installed in a pipe axis direction. Move the inside of the target pipe, measure the inner diameter of the pipe to be measured in the pipe axis direction based on the amount of expansion and contraction of the contact branch arm that moves while contacting the inner surface of the pipe to be measured, and measure this inner diameter measured value and separately input The pipe thickness of the pipe to be measured in the pipe axis direction is obtained from the outer diameter value of the pipe to be measured.
[0014]
A pipe thickness measuring method according to a fifth invention is the pipe thickness measuring method according to the fourth invention, wherein the pipe to be measured is a centrifugally cast pipe manufactured by a centrifugal casting facility.
[0015]
According to the pipe thickness measuring apparatus and the pipe thickness measuring method according to the present invention having the above-described configuration, the pipe thickness distribution in the pipe axis direction of a pipe to be measured, such as a centrifugally cast pipe or a polyethylene pipe, is measured only by measuring the inner diameter in the pipe axis direction. Can be measured accurately and quickly. In addition, since the inspection is a non-destructive inspection, the product yield does not decrease.
[0016]
In addition, the inner diameter measuring instrument body according to the present invention is provided with two contact probes that move while being in contact with the inner surface of the measurement target pipe at an interval in the pipe axis direction. Since the core and the axis of the pipe to be measured can always be made coincident, the contact arm set on the contact searcher is always kept in vertical contact with the pipe to be measured. The accuracy of measuring the inner diameter of the pipe to be measured is improved and maintained.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 to 3 are diagrams showing an embodiment of the present invention. FIG. 1 is a schematic diagram showing an entire configuration of a tube thickness measuring device according to the present invention, and FIG. FIG. 3 is a schematic view of the vessel main body, and FIG. 3 is a side view of FIG. Here, an example will be described in which a centrifugally cast tube is used as a tube to be measured.
[0018]
As shown in FIGS. 1 to 3, an inner diameter measuring device 1 for measuring the inner diameter of a centrifugally cast pipe 22 and an inner diameter measuring device main body which is a main constituent part of the inner diameter measuring device 1 are provided. 2, a linear encoder 16 installed as a position detecting means for detecting a position in the centrifugal casting tube 22, an inner diameter measurement data of the centrifugal casting tube 22 by the inner diameter measuring device 1, and a position of the inner diameter measuring device main body 2 by the linear encoder 16. It is roughly composed of three parts, and an arithmetic unit 19 installed as arithmetic means for calculating the pipe thickness of the centrifugally cast pipe 22 in the pipe axis direction based on the measurement data.
[0019]
The inner diameter measuring device 1 includes an inner diameter measuring device main body 2 that comes into contact with the inner surface of the centrifugal casting tube 22 and collects data on the inner diameter of the centrifugal casting tube 22, and a device that moves the inner diameter measuring device main body 2 within the centrifugal casting tube 22. A motor 20, a driving shaft 15 for connecting the inner diameter measuring device main body 2 to the motor 20, a connecting portion 14 for connecting the inner diameter measuring device main body 2 to the driving shaft 15, and a driving shaft operated by the motor 20; The drive roller 21 directly drives the drive roller 15, and a converter 13 that inputs data collected by the inner diameter measuring device main body 2 and converts the data into an inner diameter. The output signal of the converter 13, that is, the measured value of the inner diameter is input to the arithmetic unit 19. Here, the connecting portion 14 has a structure capable of connecting even if the axis of the inner diameter measuring device main body 2 does not match the axis of the driving shaft 15. Note that the prime mover 20 and the driving roller 21 are not always necessary, and the operator may move the inner diameter measuring device main body 2 with the driving shaft 15 by human power. Further, instead of the driving roller 21, a rope or a wire for towing may be used.
[0020]
The inner diameter measuring device main body 2 includes a shaft 5 installed on its axis, two contact probes 3 and 3 arranged at an interval from the shaft 5, and a displacement meter fixed to the shaft 5. 12. Data measured by the displacement meter 12 is input to the above-described converter 13 via the cable 23.
[0021]
As shown in FIG. 3, the contact search element 3 has three sets of contact branch arms 4 installed at equal intervals in the circumferential direction of the shaft 5, and the force acts so that the contact branch arm 4 always extends outward. It is composed of a contraction spring 11. In the present embodiment, three sets of the contact arm 4 are installed at equal intervals of 120 degrees in the circumferential direction of the shaft 5, but the number is not limited to three, and the circumference of the adjacent contact arm 4 is not limited to three. If the interval in the direction is not more than 180 degrees, any number of three or more sets may be used. However, since the cross-sectional shape of the centrifugally cast pipe 22 is a concentric circle close to a perfect circle, even with three sets of contact branch arms 4, the axis of the shaft 5 matches the axis of the centrifugally cast pipe 22, and the inner diameter is measured with sufficient accuracy. can do. Further, if a large number of contact arm arms 4 are provided, the apparatus becomes complicated and the manufacturing cost increases, but this does not occur in the case of three sets. If the interval between the adjacent contact arm 4 in the circumferential direction is 180 degrees or more, it is not preferable because the axis of the inner diameter measuring device main body 2 and the axis of the centrifugal casting tube 22 do not match.
[0022]
The contact arm 4 includes a first arm connector 6 fixedly attached to the shaft 5, a second arm connector 7 slidably attached to the shaft 5, and one end of the first arm connector 6 supported by the first arm connector 6. The first arm 8, the second arm 9, one end of which is pivotally supported by the second arm connector 7, and a position where the other end of the first arm 8 is connected to the other end of the second arm 9. And the wheels 10 formed.
[0023]
The above-described contraction spring 11 is connected to the first arm connector 6 and the second arm connector 7, and its force acts so as to always pull the slidable second arm connector 7 toward the first arm connector 6. are doing. That is, the first arm 8 and the second arm 9 are connected to each other in a mountain shape toward the outside, and the contact branch arm 4 provided with the wheel 10 at the connection portion of the contraction spring 11 is always extended outward. Since the force acts, the wheel 10 installed at the tip of the contact arm 4 can always maintain the state in which the wheel 10 is in contact with the inner surface of the centrifugal casting tube 22.
[0024]
Although the contraction spring 11 is used in the present embodiment, a rebound spring may be provided outside the second arm connector 7 so that the second arm connector 7 is always pressed against the first arm connector 6. However, in the case of the repulsion spring, the length of the contact search element 3 in the tube axis direction is longer than that of the contraction spring 11, and the insertion of the inner diameter measuring device main body 2 into the centrifugally cast tube 22 from only one direction is not sufficient. It is preferable to use the contraction spring 11 because the range where the tube thickness cannot be measured becomes long.
[0025]
If the distance between the wheel 10 contacting the inner surface of the centrifugally cast tube 22 and the axis of the shaft 5 fluctuates due to a change in the tube thickness of the centrifugally cast tube 22, the contact arm 4 expands or contracts outward or inward. The second arm connector 7 slides the shaft 5 in the tube axis direction. The displacement meter 12 measures the sliding amount of the second arm connector 7 in the tube axis direction. As described above, the sliding amount of the second arm connector 7 in the tube axis direction is measured by the displacement meter 12, and the sliding amount in the tube axis direction is converted into the displacement amount in the inner diameter direction by the converter 13. Can be measured. The measurement of the sliding amount of the second arm connector 7 may be performed only by the second arm connector 7 of one contact search element 3.
[0026]
Here, the method of converting the sliding amount of the second arm connector 7 in the tube axis direction into the displacement amount in the inner diameter direction can be performed as follows.
[0027]
That is, as shown conceptually in FIG. 4, the movement state of the arm, when the inner diameter of the centrifugal casting tube 22 decreases by h, the fulcrum A of the arm moves by f. Here, assuming that the fulcrum A is fixed, the horizontal movement amount f when the point C is lowered by h around the point O as shown in the schematic diagram of the movement state of the arm shown in FIG. .
[0028]
4 and 5, H is the arm height at the reference inner diameter, h is the amount of change in the arm height, L is the arm length, f is the sliding amount of the arm, and the end point of the arm in FIG. When the horizontal position of the C and x O, (1) and equation (2) below is obtained. Here, h is a negative value when the inner diameter is smaller than the reference inner diameter, and a positive value when the inner diameter is larger than the reference inner diameter.
[0029]
(Equation 1)
Figure 2004012366
[0030]
(Equation 2)
Figure 2004012366
[0031]
(1) (3) below was substituted for x O (2) where the expression can be obtained f. However, since one arm (first arm 8) is actually fixed, the sliding amount of the second arm 9, that is, the sliding amount of the second arm connector 7 is 2f.
[0032]
[Equation 3]
Figure 2004012366
[0033]
Since the displacement meter 12 measures a value twice as large as the sliding amount f according to the equation (3), a value obtained by multiplying the measured sliding amount by 1/2 is substituted into the equation (3) as f to obtain a change. The quantity h, ie the amount of change of the actual inner diameter with respect to the reference inner diameter, can be determined.
[0034]
A wire 17 extending from the linear encoder 16 is attached to the connecting portion 14, and measurement data of the linear encoder 16 based on a change in the sending amount of the wire 17 caused by movement of the inner diameter measuring device main body 2 is transmitted to the converter 18. Input, the converter 18 converts the measurement data of the linear encoder 16 into the position of the inner diameter measuring device main body 2 in the centrifugal casting tube 22. The output signal of the converter 18, that is, the position measurement value of the inner diameter measuring device main body 2 is input to the arithmetic unit 19. In FIG. 1, the converter 13, the converter 18, and the arithmetic unit 19 are independent of each other, but these may be combined into one device.
[0035]
When measuring the tube thickness of the centrifugal casting tube 22 in the tube axis direction by the tube thickness measuring device thus configured, the inner diameter measuring device main body 2 is inserted into the centrifugal casting tube 22 and the inner diameter measuring device main body 2 is inserted. Is moved at an appropriate speed inside the centrifugal casting tube 22, the displacement of the second arm connector 7 is measured continuously or intermittently by the displacement meter 12, and the centrifugal casting tube 22 is Find the inner diameter at each position in the tube axis direction. At the same time, the linear encoder 16 and the converter 18 measure the inner diameter measurement position of the centrifugally cast tube 22 in the tube axis direction. These measurement data are transmitted to the arithmetic unit 19. On the other hand, the outer diameter value of the centrifugal casting tube 22 is input to the arithmetic unit 19 in advance.
[0036]
The arithmetic unit 19 calculates the tube thickness by the following equation (4) based on the transmitted inner diameter measurement value. In this case, the outer diameter of the centrifugally cast pipe 22 may be input as a constant value of the product standard, or the outer diameter of the centrifugally cast pipe 22 may be measured with a measuring instrument such as a caliper, and the measured value may be input. Is also good. The outer diameter is actually measured at a certain interval in the pipe axis direction of the centrifugally cast pipe 22, and the range not measured is a numerical value estimated from the measured values on both sides (for example, the outer diameter of each measurement position is obtained by connecting two points with a straight line). Is input as the outer diameter value, the pipe thickness distribution in the pipe axis direction can be measured more accurately.
[0037]
(Equation 4)
Figure 2004012366
[0038]
As described above, according to the pipe thickness measuring apparatus according to the present invention, it is possible to accurately and quickly measure the pipe thickness distribution in the pipe axis direction of the centrifugally cast pipe 22 without lowering the product yield due to cutting or the like. Becomes possible. Further, the inner diameter measuring device body 2 according to the present invention is provided with two contact probes 3 which move while being in contact with the inner surface of the centrifugal casting tube 22 at intervals in the tube axis direction. Since the axis of the main body 2 and the axis of the centrifugal casting tube 22 can always be matched, the state where the contact branch arm 4 is always in vertical contact with the centrifugal casting tube 22 is maintained, and the measurement accuracy is improved. And is maintained.
[0039]
In the above description, the example of the centrifugally cast pipe 22 has been described as the measurement target pipe. However, the pipe thickness measuring device according to the present invention is not limited to the centrifugally cast pipe, but also includes a steel pipe, a polyethylene pipe, and a centrifugally cast pipe. A resin concrete pipe or the like can be used as a pipe to be measured. In this case, the pipe thickness in the pipe axis direction can be measured by exactly the same method as that of the centrifugally cast pipe 22 described above.
[0040]
【Example】
Using a centrifugally cast 5 m long cast iron pipe, the pipe thickness in the pipe axis direction was measured by the pipe thickness measuring apparatus according to the present invention. The standard values for the shape of the cast iron tube are an outer diameter of 169 ± 1.5 mm and a tube thickness of 7.5 mm (at least 6.5 mm). The inner diameter measuring instrument body was inserted into a cast iron tube, and the inner diameter was measured at 10 mm intervals while moving at a speed of 0.1 m / sec. In this case, the same cast iron tube was repeatedly measured to confirm reproducibility. At the end of the tube, the thickness of the tube was measured with a vernier caliper, and compared with the value measured by the tube thickness measuring device according to the present invention. The outer diameter of the cast iron pipe was measured with a vernier caliper, and the measured value was input as an outer diameter value to the arithmetic unit. A commercially available personal computer was used as the arithmetic unit.
[0041]
As a result, the reproducibility of the tube thickness measuring apparatus according to the present invention was 0.2 mm (3σ), and the variation was within the same range even if the measurement position was shifted in the circumferential direction. The difference between the measured value of the pipe thickness at the pipe end by a caliper and the value measured by the pipe thickness measuring apparatus according to the present invention was within ± 0.2 mm. Therefore, it was presumed that although the cast iron pipe was cut and not compared, the central part of the cast iron pipe could also be accurately measured. As described above, it was found that the pipe thickness measurement apparatus according to the present invention can measure the pipe thickness in the pipe axis direction extremely accurately and quickly.
[0042]
The pipe thickness distribution of the cast iron pipe in the pipe axis direction becomes gradually thinner from the "reception port" side, which is the starting side of casting, and the pipe end on the insertion port side is turned thicker by the last "feeder". It was confirmed that.
[0043]
【The invention's effect】
As described above, according to the pipe thickness measuring apparatus according to the present invention, the pipe thickness distribution in the pipe axis direction of a pipe to be measured such as a centrifugally cast pipe or a polyethylene pipe without lowering the product yield due to cutting or the like. Can be measured accurately and quickly. In addition, the inner diameter measuring instrument body according to the present invention is provided with two contact probes that move while being in contact with the inner surface of the measurement target pipe at an interval in the pipe axis direction. Since the core and the axis of the pipe to be measured can always be matched, the contact arm installed on the contact probe always keeps vertical contact with the pipe to be measured, improving the accuracy of inner diameter measurement. And maintained.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of the present invention, and is a schematic view showing an entire configuration of a tube thickness measuring apparatus according to the present invention.
FIG. 2 is a schematic view of an inner diameter measuring device main body shown in FIG. 1;
FIG. 3 is a side view of FIG. 2;
FIG. 4 is a diagram conceptually showing a movement state of an arm.
FIG. 5 is a diagram schematically showing a movement state of an arm.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner diameter measuring device 2 Inner diameter measuring device main body 3 Contact searcher 4 Contact branch arm 5 Shaft 6 First arm connector 7 Second arm connector 8 First arm 9 Second arm 10 Wheel 11 Shrink spring 12 Displacement meter 13 Converter 14 Connection Unit 15 drive shaft 16 linear encoder 17 wire 18 converter 19 arithmetic unit 20 prime mover 21 drive roller 22 centrifugal casting tube 23 cable

Claims (5)

2本のアームが外側に向かって山形状に連結され、その連結部に測定対象管の内面と接触する車輪が設けられた接触枝腕を円周方向に3組以上有する接触探索子が1本のシャフトに間隔を置いて2基設置された内径測定器本体と、この内径測定器本体の測定対象管内における位置を検出する位置検出手段と、前記内径測定器本体による測定データ並びに前記位置検出手段による測定データに基づいて測定対象管の管軸方向の管厚を求める演算手段と、を具備した管厚測定装置であって、前記接触枝腕は前記接触探索子の外側に向かって伸縮可能であり、この接触枝腕の伸縮量に基づいて測定対象管の内径を測定することを特徴とする管厚測定装置。One contact search element having three or more pairs of contact arms in the circumferential direction, in which two arms are connected outward in a mountain shape and a wheel is provided at the connection part thereof to contact the inner surface of the pipe to be measured. Inner diameter measuring device main body, two of which are installed at an interval on the shaft, position detecting means for detecting the position of the inner diameter measuring device main body in the measurement object pipe, measurement data by the inner diameter measuring device main body, and the position detecting means Calculating means for determining the pipe thickness of the pipe to be measured in the pipe axis direction based on the measurement data according to the above, wherein the contact arm is extendable and contractable toward the outside of the contact search element. A pipe thickness measuring device for measuring an inner diameter of a pipe to be measured based on the amount of expansion and contraction of the contact arm. 前記接触枝腕は、前記シャフトに固定されて取り付けられた第1アームコネクターと、前記シャフトに摺動可能に取り付けられた第2アームコネクターと、第1アームコネクターにその一端が軸支された第1アームと、第2アームコネクターにその一端が軸支された第2アームと、第1アームの他端と第2アームの他端とが連結される位置に設置された車輪と、から構成され、前記接触探索子には、第2アームコネクターを常に第1アームコネクター側に移動させるように第2アームコネクターにその力が作用するバネが設置され、前記内径測定器本体には、第2アームコネクターの摺動量を検出する変位計が設置されており、前記車輪の測定対象管内径方向の位置変動によって生ずる第2アームコネクターの摺動量から測定対象管の内径を測定することを特徴とする、請求項1に記載の管厚測定装置。The contact arm has a first arm connector fixedly attached to the shaft, a second arm connector slidably attached to the shaft, and a second arm connector having one end pivotally supported by the first arm connector. An arm, a second arm having one end pivotally supported by the second arm connector, and a wheel installed at a position where the other end of the first arm and the other end of the second arm are connected. A spring for applying a force to the second arm connector so as to always move the second arm connector to the first arm connector side, and the inner diameter measuring device main body includes a second arm; A displacement meter for detecting a sliding amount of the connector is provided, and an inner diameter of the pipe to be measured is determined from a sliding amount of the second arm connector caused by a position change of the wheel in the inner diameter direction of the pipe to be measured. Characterized by the constant, wall thickness measuring apparatus according to claim 1. 前記測定対象管が、遠心鋳造設備により製造された遠心鋳造管であることを特徴とする、請求項1又は請求項2に記載の管厚測定装置。The pipe thickness measuring device according to claim 1 or 2, wherein the pipe to be measured is a centrifugally cast pipe manufactured by a centrifugal casting facility. 外側に向かって伸縮可能な接触枝腕を円周方向に3組以上有する接触探索子が管軸方向に2基設置された内径測定器本体を測定対象管の内部で移動させ、測定対象管の内面と接触しながら移動する接触枝腕の伸縮量に基づいて測定対象管の管軸方向の内径を測定し、この内径測定値と別途入力した測定対象管の外径値とから、測定対象管の管軸方向の管厚を求めることを特徴とする管厚測定方法。A contact probe having three or more sets of contact arm arms extending and contracting outward in the circumferential direction moves an inner diameter measuring instrument body in which two sets are installed in the pipe axis direction inside the pipe to be measured. The inner diameter of the pipe to be measured in the pipe axis direction is measured based on the amount of expansion and contraction of the contact arm which moves while being in contact with the inner surface, and the measured pipe diameter is calculated from the measured inner diameter and the outer diameter of the pipe to be measured separately input. A pipe thickness in the pipe axis direction. 前記測定対象管が、遠心鋳造設備により製造された遠心鋳造管であることを特徴とする、請求項4に記載の管厚測定方法。The method according to claim 4, wherein the pipe to be measured is a centrifugally cast pipe manufactured by centrifugal casting equipment.
JP2002168413A 2002-06-10 2002-06-10 Pipe thickness measuring device and pipe thickness measuring method Pending JP2004012366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168413A JP2004012366A (en) 2002-06-10 2002-06-10 Pipe thickness measuring device and pipe thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168413A JP2004012366A (en) 2002-06-10 2002-06-10 Pipe thickness measuring device and pipe thickness measuring method

Publications (1)

Publication Number Publication Date
JP2004012366A true JP2004012366A (en) 2004-01-15

Family

ID=30435336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168413A Pending JP2004012366A (en) 2002-06-10 2002-06-10 Pipe thickness measuring device and pipe thickness measuring method

Country Status (1)

Country Link
JP (1) JP2004012366A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217144A (en) * 2009-03-19 2010-09-30 Ihi Corp Inner surface inspection device, and inner surface processing inspection device with the same
KR101236382B1 (en) 2008-01-11 2013-02-22 미쯔이 죠센 가부시키가이샤 The cylinder diameter measuring instrument of a reciprocating internal combustion engine
CN103940327A (en) * 2014-04-17 2014-07-23 中国建筑第八工程局有限公司 Device and method for measuring thickness
EP3093613A1 (en) * 2015-05-15 2016-11-16 Tiroler Rohre GmbH Method for measuring and matching the thickness of a tube
KR20170023611A (en) * 2015-08-24 2017-03-06 (주)대륙전설 Endoscope type pipe inner diameter and titing measurement system having multi-stage rack gear
CN108405817A (en) * 2018-03-09 2018-08-17 上海宝钢工业技术服务有限公司 The diameter measuring rule at the ladle high temperature mouth of a river
KR101914357B1 (en) 2017-01-17 2018-11-01 서영곤 device for measuring deformation of pipe route
KR102060394B1 (en) * 2019-06-19 2019-12-30 주식회사 삼정이엔씨 A cable pipeline testing implement of underground conduit
CN117383017A (en) * 2023-11-01 2024-01-12 江苏京生管业有限公司 Plastic tubing model pastes seal device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352008A (en) * 1986-08-21 1988-03-05 Nippon Sharyo Seizo Kaisha Ltd Nondestructive measuring method for tube thickness
JPH05321567A (en) * 1992-05-26 1993-12-07 Takenaka Doboku Co Ltd Observation instrumentation device of bore hole
JPH09229868A (en) * 1996-02-28 1997-09-05 Tomoe Corp Image-pickup means holder to be inserted into pipe
JPH11230948A (en) * 1998-02-17 1999-08-27 Sumitomo Chem Co Ltd Ultrasonic flaw detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352008A (en) * 1986-08-21 1988-03-05 Nippon Sharyo Seizo Kaisha Ltd Nondestructive measuring method for tube thickness
JPH05321567A (en) * 1992-05-26 1993-12-07 Takenaka Doboku Co Ltd Observation instrumentation device of bore hole
JPH09229868A (en) * 1996-02-28 1997-09-05 Tomoe Corp Image-pickup means holder to be inserted into pipe
JPH11230948A (en) * 1998-02-17 1999-08-27 Sumitomo Chem Co Ltd Ultrasonic flaw detection method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236382B1 (en) 2008-01-11 2013-02-22 미쯔이 죠센 가부시키가이샤 The cylinder diameter measuring instrument of a reciprocating internal combustion engine
JP2010217144A (en) * 2009-03-19 2010-09-30 Ihi Corp Inner surface inspection device, and inner surface processing inspection device with the same
CN103940327A (en) * 2014-04-17 2014-07-23 中国建筑第八工程局有限公司 Device and method for measuring thickness
EP3093613A1 (en) * 2015-05-15 2016-11-16 Tiroler Rohre GmbH Method for measuring and matching the thickness of a tube
KR20170023611A (en) * 2015-08-24 2017-03-06 (주)대륙전설 Endoscope type pipe inner diameter and titing measurement system having multi-stage rack gear
KR101720585B1 (en) 2015-08-24 2017-03-29 (주)대륙전설 Endoscope type pipe inner diameter and titing measurement system and method using the same
KR101914357B1 (en) 2017-01-17 2018-11-01 서영곤 device for measuring deformation of pipe route
CN108405817A (en) * 2018-03-09 2018-08-17 上海宝钢工业技术服务有限公司 The diameter measuring rule at the ladle high temperature mouth of a river
KR102060394B1 (en) * 2019-06-19 2019-12-30 주식회사 삼정이엔씨 A cable pipeline testing implement of underground conduit
CN117383017A (en) * 2023-11-01 2024-01-12 江苏京生管业有限公司 Plastic tubing model pastes seal device
CN117383017B (en) * 2023-11-01 2024-05-28 江苏京生管业有限公司 Plastic tubing model pastes seal device

Similar Documents

Publication Publication Date Title
US20190091811A1 (en) Method and apparatus for measuring a pipe weld joint
JP2004012366A (en) Pipe thickness measuring device and pipe thickness measuring method
JP5588346B2 (en) System and method for measuring mounting dimensions of a flow measurement system
CA2800976C (en) Procede et dispositif d&#39;aide au controle en production de la traversabilite de tubes
EP2811294A1 (en) Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
CN1094191C (en) Method and apparatus for non-contact measuring thickness of non-metal coating on surface of metal matrix
CN108072675B (en) Detection device and detection method for embedding depth of steel bar in complex hydraulic concrete structure
CN105806234A (en) Automatic detection device and detection method for thickness of solid rocket engine coating
CN108535355B (en) System and method for monitoring whole damage process of profile steel member
CN104792876A (en) Nondestructive testing method for peel-off of oxidation layer on inner wall of boiler tube
JP2006153546A (en) Contact type steel pipe dimension-measuring device
JP2011007587A (en) Apparatus for measuring steel pipe dimensions
WO2021057288A1 (en) Pipe creep measurement system and method
GB2029030A (en) A fluid flowmeter
CN113124732A (en) Device and method for detecting wall thickness of nodular cast iron pipe on line
CN108918674A (en) A kind of online ultrasonic detection device of steel pipe and method
EP1199548A3 (en) Method and apparatus for measuring lsaw propagation characteristics
JP2004251648A (en) Apparatus for measuring internal diameter of tubular body
JPH10219323A (en) Method for evaluating wear of refractory, device therefor and method for controlling refractory device therefor
JP3675443B2 (en) Method and apparatus for measuring flow rate of molten metal and detection rod used therefor
JPH06307845A (en) Roll alignment measuring method
JPH04351254A (en) Instrument for measuring level in mold in continuous casting
CN105004313A (en) Measuring method for pipe bending extension quantities
JPS6049260A (en) Method and device for nondestructive inspection of tunnel lining
KR101731895B1 (en) Method and apparatus for estimating axial extent of cracks in pipes using differential signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070104