JPS6049260A - Method and device for nondestructive inspection of tunnel lining - Google Patents

Method and device for nondestructive inspection of tunnel lining

Info

Publication number
JPS6049260A
JPS6049260A JP58157695A JP15769583A JPS6049260A JP S6049260 A JPS6049260 A JP S6049260A JP 58157695 A JP58157695 A JP 58157695A JP 15769583 A JP15769583 A JP 15769583A JP S6049260 A JPS6049260 A JP S6049260A
Authority
JP
Japan
Prior art keywords
lining
sensor
tunnel
support cylinder
jack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58157695A
Other languages
Japanese (ja)
Inventor
Shinsuke Nakanishi
中西 信輔
Toshio Takatsuka
高塚 外志夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58157695A priority Critical patent/JPS6049260A/en
Publication of JPS6049260A publication Critical patent/JPS6049260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform nondestructive inspection at a job site by transmitting an ultrasonic wave from an internal lining surface by a sensor, and measuring the time up to when a reflected wave from the external surface of the lining returns to the sensor. CONSTITUTION:The columnar sensor 15 is installed in a support cylinder 16, and is allowed a sensor pressure jack 17 to move up and down in the support cylinder 16. The support cylinder 16 is united with a support plate 18, which is supported by a support cylinder pressure jack 19. This jack 19 is fixed to a rotary ring 10. Once an ultrasonic wave transmitter receiver 9 is set at a position on the internal lining surface to be measured, the jack 19 extends to press the support cylinder 16 against an internal tunnel surface at specific pressure. Then, the ultrasonic wave is transmitted from the sensor 15 and a reflected wave from the external surface of the lining is received to calculate the reflection time, thus obtaining the strength or size of the lining.

Description

【発明の詳細な説明】 本発明は、トンネルのライニングを、コンクリート等に
よシ現地で打設してライニングを建設してゆくトンネル
工法において、とのライニングの強度、寸法等を超音波
センサーを用いて非破壊で検査する方法ならびにライニ
ングの強度寸法等を任意の位置でかつ自動的に検査する
検査装置に関するものである、 一般のシールドトンネル工事においては、スチール等の
セグメントを組んで一次稼工と成し、この−次豊工の内
側に内型枠を組みこの内型枠装置kと一次覆工内面との
間の空げきにコンクリート等を打設してトンネルの二次
ライニングを建設している。寸だ、一部のシールドトン
ネル工事ニおいては、−次ライニングそのものを外型枠
と内型枠との間にコンクリート等を打設してt1!設し
ている。
Detailed Description of the Invention The present invention uses an ultrasonic sensor to measure the strength, dimensions, etc. of the lining in a tunnel construction method in which the lining is constructed by pouring concrete or the like on site. This relates to a method of non-destructive inspection using a lining, and an inspection device that automatically inspects the strength and dimensions of the lining at any location.In general shield tunnel construction, segments of steel etc. are assembled and the Then, an inner formwork was built inside the tunnel and concrete was poured into the gap between this inner formwork device k and the inner surface of the primary lining to construct the secondary lining of the tunnel. ing. In some shield tunnel construction, the next lining itself is poured with concrete etc. between the outer formwork and the inner formwork at t1! It is set up.

このようなライニングは現場で打設しているため、その
強度や寸法(厚さ)には((tらつきが生じ易く、もし
強度や寸法の不充分な箇所が多く存在すれば、トンネル
としての強度を期待することができなくなる。このため
、従来はこうした現場打ちのライニング本体の強度、寸
法を計測するためにライニング内面からコア抜きを実施
し、強度試験用ならびに寸法測定用のコアサンプルを採
取する方法がとられており、この方法以外には適切な方
法はなかった。しかし、このような方法では、サンプル
を採取した位置のみの計測値しか得られず、ザンプルヲ
採取すればトンネルライニングに傷を付けることになる
ため数多くのサンプルを採取することができないので、
トンネルライニングのすべての位1吋での計測は不可能
であった。。
Since this type of lining is cast on site, its strength and dimensions (thickness) tend to be unstable, and if there are many places with insufficient strength or dimensions, it may not be suitable for use as a tunnel. For this reason, conventionally, in order to measure the strength and dimensions of the cast-in-place lining body, cores were extracted from the inner surface of the lining, and core samples were taken for strength tests and dimension measurements. There was no other suitable method other than this method.However, with this method, only the measured values could be obtained from the location where the sample was taken; Since it is not possible to collect a large number of samples because it would cause damage,
It was not possible to measure every inch of the tunnel lining. .

本発明はこれらの欠点を除去するため、現場でコンクリ
ート等を打設したトンネルライニングの強度や寸法を超
音波センサーを用いることによって非破壊でRt 61
t!することができるとともニ、トンネルライニングの
すべての位1青でn目1月できるようにしたもので、以
下図面に基づいて詳細に説明する。
In order to eliminate these drawbacks, the present invention uses ultrasonic sensors to measure the strength and dimensions of tunnel linings cast with concrete, etc., on-site, in a non-destructive manner.
T! This will be explained in detail below based on the drawings.

第1図は本発明の一実施例を示す図であって、シールド
マシン1は地盤を掘削し後端の型枠装置2内において、
トンネルライニングを現場でコンクリート等を打設して
成形し、連続したトンネル3を建設してゆくものである
。第1図は第7図の■−■線に泊り横断面図である。〕
−;す枠装置2 V′1円筒状の外型枠4と内型枠5と
から成ってお見婁型枠6の上部のライニング打設ロアか
らコンクリート等のライニング材料を型枠装置2内に打
設して硬化させ円形のトンネルライニングを形成する。
FIG. 1 is a diagram showing an embodiment of the present invention, in which a shield machine 1 excavates the ground and inside a formwork device 2 at the rear end,
The continuous tunnel 3 is constructed by pouring and forming the tunnel lining with concrete on site. FIG. 1 is a cross-sectional view taken along the line ■-■ in FIG. 7. ]
-; Framing device 2 V'1 Consisting of a cylindrical outer formwork 4 and an inner formwork 5, lining material such as concrete is poured into the formwork device 2 from the lining casting lower at the upper part of the cylindrical formwork 6. The tunnel lining is poured into a circular shape and hardened to form a circular tunnel lining.

型枠装置・2内で硬化したライニングを推進ジヤツキ8
によって押すとシールドマシン1全体がA+J進してラ
イニングが地盤内に形成されることKなる。
Jacket 8 propels the hardened lining inside the formwork device 2
When pressed, the entire shield machine 1 advances A+J and the lining is formed in the ground.

このライニングの強度あるいは寸法(厚さ)は、ライニ
ング内面に超音波送受信センサー(以下超音波センサー
という)を密着させ、超音波を発信し、ライニング外面
からの反射波をとらえその伝播時間をめることによって
推定することができる。しかしながら、この手法で計測
できるのは超音波センサーをあてた地点のみであシ、ト
ンネルライニングのすべての位置で計測するためには、
このセンサーをライニング内面の円周方向及び長手方向
に移動させねばならない。このため、該超音波センサを
含む超音波送受信装置9は回転リングIOK取付けられ
ておシ、回転リング10は内型枠保持リンクIIK数ケ
所設けられた滑車12によって保持されている。回転リ
ング10の内面には内歯車10aが設けられており、モ
ータ13と歯車14によって回転できるようになってい
る。
The strength or dimensions (thickness) of this lining is determined by placing an ultrasonic transmitting/receiving sensor (hereinafter referred to as an ultrasonic sensor) in close contact with the inner surface of the lining, which emits ultrasonic waves, captures the reflected waves from the outer surface of the lining, and measures the propagation time. It can be estimated by However, this method can only measure the point where the ultrasonic sensor is applied, and in order to measure at all positions of the tunnel lining,
This sensor must be moved circumferentially and longitudinally around the inner surface of the lining. For this reason, the ultrasonic transmitting/receiving device 9 including the ultrasonic sensor is attached to the rotating ring IOK, and the rotating ring 10 is held by pulleys 12 provided at several locations in the inner form holding link IIK. An internal gear 10a is provided on the inner surface of the rotating ring 10, and can be rotated by a motor 13 and a gear 14.

超音波送受信装置9f′iこの回転リング10に取付け
られているため、モータ13を作動させることによって
ライニングの円周方向の任意の位置にセットすることが
できる。一方、こtLと同時に、推進ジヤツキ8によっ
て型枠装置2を前進させることによって、回転リング1
(EC取り付けられた超音波送受信装置9はライニング
の長手方向にも任意の位置へ移動することができるよう
Kなっている。このようにして、超音波送受信装置9を
トンネルライニング内面のすべての位11に移動させ、
ライニングの強度あるいは寸法のさ)をRt測すること
が可能となる。
Since the ultrasonic transmitting/receiving device 9f'i is attached to the rotating ring 10, it can be set at any position in the circumferential direction of the lining by operating the motor 13. On the other hand, at the same time as this tL, by moving the formwork device 2 forward by the propulsion jack 8, the rotary ring 1
(The ultrasonic transmitter/receiver 9 attached to the EC can be moved to any position in the longitudinal direction of the lining. In this way, the ultrasonic transmitter/receiver 9 can be moved to any position on the inner surface of the tunnel lining. Move it to 11,
It becomes possible to measure Rt (strength or dimension) of the lining.

超音波センサーは、その特性から測定しようとするライ
ニング内面との間に潤滑剤(水、油等)を塗布して介在
させ、超音波センサーの表面とライニング内面とを密着
させなければならない。このため、本発明実施例では超
音波センサーをライニング内面に密着させる機構もイJ
しておシ、以下この機構を第3図〜第7図に基づいて説
明する1、第3図は超音波送受信装置9部分の鳥かん図
でちる。回転リング100回転によって測定しようとす
る位置にセットされた超音波送受信装置9の横断面図を
第7図に、縦10[面図を第5図に示す3、第≠図にお
いて、円柱状のセンサー15は支持円筒16内に納めら
れており、センサー押付はジヤツキ17によって支持円
筒:1,6内を上下に移動することができるようKなっ
ている。支持円筒16は支持板18と一体化されており
、この支持板18は支持円筒押付はジヤツキ19Vcよ
って支持されている。支持円筒押付はジヤツキ19は回
転リングIOK固定されている。超音波送受信装置9が
第グ図、第5図に示したように、測定しようとするライ
ニング内面の位置にセットされたら、第6図に示すよう
に支持円筒押付はジヤツキ19が伸び、支持円筒16を
トンネル内面に定められた力で押しつける。支持円筒1
6の下端にはクッション材21が取付けられており、こ
れによシライニング内面との筐着を雌実にしている。次
に、支持円筒16の下部側1面に設けられた注入孔20
からこの注入孔20に接続された潤滑液給送パイプを介
して潤滑液を注入すると同時に第7図に示すようにセン
サー押付はジヤツキ17を伸ばしセンサー15を潤滑液
を介してライニング内面と密着させ[J1]定する。こ
のような状態にした後、センサー15から超音波を発信
すると同時にライニング外面からの反射波をとらえ、そ
の反射時間をめることによってライニングの当該位置で
の強度あるいは寸法をめることができる。なお、6i1
1定完了後は、センサー押付はジヤツキ17および支持
円筒押付はジヤツキ19を縮め、超音波送受信装置9を
次の測定地点へと移動させ、同様に計測を行う。
Due to the characteristics of the ultrasonic sensor, it is necessary to apply a lubricant (water, oil, etc.) between it and the inner surface of the lining to be measured, so that the surface of the ultrasonic sensor and the inner surface of the lining are brought into close contact. Therefore, in the embodiment of the present invention, a mechanism for bringing the ultrasonic sensor into close contact with the inner surface of the lining is also provided.
This mechanism will be explained below with reference to FIGS. 3 to 7. FIGS. 1 and 3 are bird's-eye views of the ultrasonic transmitter/receiver 9 portion. FIG. 7 shows a cross-sectional view of the ultrasonic transmitting/receiving device 9 set at the position to be measured by rotating the rotating ring 100 times. The sensor 15 is housed in a support cylinder 16, and the sensor is pressed so that it can be moved up and down within the support cylinders 1 and 6 by a jack 17. The support cylinder 16 is integrated with a support plate 18, and this support plate 18 is supported by a jack 19Vc for pressing the support cylinder. For pressing the support cylinder, the jack 19 is fixed to the rotating ring IOK. When the ultrasonic transmitting/receiving device 9 is set at the position of the inner surface of the lining to be measured as shown in Figs. 16 against the inner surface of the tunnel with a specified force. Support cylinder 1
A cushioning material 21 is attached to the lower end of the housing 6, and this makes the housing securely connected to the inner surface of the lining. Next, an injection hole 20 provided on one surface of the lower side of the support cylinder 16
At the same time, the lubricant is injected through the lubricant supply pipe connected to the injection hole 20, and as shown in FIG. [J1] Set. After such a state is established, the sensor 15 transmits ultrasonic waves and at the same time captures the reflected waves from the outer surface of the lining, and by measuring the reflection time, it is possible to determine the intensity or size of the lining at the relevant position. In addition, 6i1
After the first constant is completed, the sensor pressing jack 17 and the support cylinder pressing jack 19 are contracted, the ultrasonic transmitting/receiving device 9 is moved to the next measurement point, and measurement is performed in the same manner.

さらに、以上の工程は、第に図に示すようにシールド工
事用の発進立坑22内に設置した制御装置23によって
計測、制御することができる。即ち、回転リング回転用
のモータ13、潤滑液送給用ポンプ24、推進ジヤツキ
8、センサー押付はジャッキ17支持円筒押付はジヤツ
キ19用の油圧ポンプ29とその切替弁等は制@ilケ
ーブルによって端末制御装置26と結ばれている。この
端末制御装置26の入出力信号ならびに超音波センサー
15の計測値の信号は、すべて伝送装置27と伝送ケー
ブル28によって発進立坑22の1Iil坤1j装置f
i23とに古ばれているため、上り己のすべての工+呈
はすべて発進立坑22において遠隔操作で行うことがで
きる。
Furthermore, the above steps can be measured and controlled by a control device 23 installed in the starting shaft 22 for shield construction, as shown in the figure. That is, a motor 13 for rotating the rotary ring, a pump 24 for supplying lubricating fluid, a propulsion jack 8, a jack 17 for sensor pressing, a hydraulic pump 29 for the jack 19 for pressing the cylinder, and its switching valve, etc. are terminals with control @il cables. It is connected to the control device 26. The input/output signals of the terminal control device 26 and the measurement value signals of the ultrasonic sensor 15 are all transmitted to the starting shaft 22 by the transmission device 27 and the transmission cable 28.
Since the I23 is the oldest in the world, all the uphill work can be done by remote control in the starting shaft 22.

以上説明したように本発明のトンネルライニングの非破
壊検査方法および検査装置によれば、トンネルライニン
グの強度あるいは寸法(厚さ)をトンネル内面の任意の
位置で非破壊でかつ遠隔地点でl(測することが可能と
l如、このため従来のように トンネル内面からサンプ
リングして試験する方法に比べ、トンネル内でのサンプ
リング作業ならびに採取したサンプルの強度試験等の作
業から解放され、時間の節約とトンネル内での作業に伴
う危険性をなくすことができるという利点がある また
、立坑からの遠隔制御計測も可能となることから、人間
や大型機械の入れないような小口径のトンネル施工にお
いても適用できるという利点がある。
As explained above, according to the tunnel lining non-destructive testing method and testing device of the present invention, the strength or dimension (thickness) of the tunnel lining can be measured non-destructively and remotely at any position on the inner surface of the tunnel. Therefore, compared to the conventional method of sampling and testing from the inside of the tunnel, it is possible to free up the work of sampling inside the tunnel and testing the strength of the collected samples, which saves time. It has the advantage of eliminating the dangers associated with working inside tunnels.It also enables remote control and measurement from the shaft, making it suitable for construction of small-diameter tunnels where humans and large machinery cannot enter. It has the advantage of being possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は本発明の一実施例を示す縦断側面図、第1図は
第1図の■−■線に沿う断面図、W、3図はその超音波
送受信装置部分の鳥かん図、第弘図はその超音波送受信
装置部分の横断面図、第5図はその超音波送受信装置部
分の縦断面図、第6図はその超音波センサー支持円筒を
ライニング内面に密着させた状態を示す横lO′T面図
、第7図はその超音波センサーをライニング内面に密着
させた状態を示す横断面図、第r図はその制御、舊](
illシステムを示す縦断面図である。 1・・・・・・シールドマシン、3・・・・・・トンオ
、ル、4・・・・・・外型枠、5・・・・・・内型枠、
8・・・・・・推進ジヤツキ、9・・・・・・超音波送
受信装置、10・・・・・・回転リング、10a・・・
・・・内歯車、13・・・・・・モータ、14・・・・
・・歯車、15・・・・・・センサー、17・・・・・
・センサー押付はジヤツキ、19・・・・・・支持円筒
押付はジヤツキ、23・・・・・・制御装置、24・・
・・・・潤滑液送給用ポンプ。 第1図 第2図 第3図 ノ・ 第4図 0 第5図 26 第6図
Fig. 7 is a longitudinal side view showing one embodiment of the present invention, Fig. 1 is a sectional view taken along the line ■-■ in Fig. The figure is a cross-sectional view of the ultrasonic transmitter/receiver, FIG. 5 is a vertical cross-sectional view of the ultrasonic transmitter/receiver, and FIG. 'T view, Figure 7 is a cross-sectional view showing the ultrasonic sensor in close contact with the inner surface of the lining, and Figure R is its control.
FIG. 2 is a vertical cross-sectional view showing the ill system. 1...Shield machine, 3...Tongo, le, 4...Outer formwork, 5...Inner formwork,
8...Propulsion jack, 9...Ultrasonic transmitting/receiving device, 10...Rotating ring, 10a...
...Internal gear, 13...Motor, 14...
...Gear, 15...Sensor, 17...
・Sensor pressing is carried out by a jack, 19... Support cylinder is pushed by a jack, 23... Control device, 24...
...Pump for lubricating fluid supply. Figure 1 Figure 2 Figure 3 Figure 4 0 Figure 5 26 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)トンネルのライニングをコンクリート等で現場3
゜で打設するトンネル工法において、センサーにより超
音波を該ライニング内面から発信させ、該ライニング外
面からの反射波がセンサに返ってくるまでの時間を計測
することによって前記ライニングの強度、寸法等を推足
することを特徴とするトンネルライニングの非破壊検査
方法う グを現場で打設するための内型枠の円周面に回転リング
を設置、−、y L、該回転リングの内面に、内2%1
4枠内に取付けられたモータの歯車と噛み合わされlζ
内歯車を設け、前記回転リングの一部に超音波接触セン
サーと、該センサーを前記ライニング内面に垂直な方向
に移動させる機構と前記センサーと前記ライニング内面
との間に潤滑剤を注入する(幾構とを設けてなシ、前記
センサーと前記各機構を前記ライニング内面に垂直な方
向に移動させることを特徴とするトンネルライニングの
非破壊検査装置。
(1) Lining the tunnel with concrete, etc. at site 3
In the tunnel construction method, in which the lining is poured at a temperature of A method for non-destructive testing of tunnel linings characterized by the following: A rotating ring is installed on the circumferential surface of the inner formwork for casting the rug on site, -, y L, on the inner surface of the rotating ring, 2%1
4 It is meshed with the gear of the motor installed in the frame.
An internal gear is provided, an ultrasonic contact sensor is provided in a part of the rotating ring, a mechanism for moving the sensor in a direction perpendicular to the inner surface of the lining, and a lubricant is injected between the sensor and the inner surface of the lining. 1. A non-destructive inspection device for tunnel lining, characterized in that the sensor and each mechanism are moved in a direction perpendicular to the inner surface of the lining without providing a mechanism.
JP58157695A 1983-08-29 1983-08-29 Method and device for nondestructive inspection of tunnel lining Pending JPS6049260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157695A JPS6049260A (en) 1983-08-29 1983-08-29 Method and device for nondestructive inspection of tunnel lining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157695A JPS6049260A (en) 1983-08-29 1983-08-29 Method and device for nondestructive inspection of tunnel lining

Publications (1)

Publication Number Publication Date
JPS6049260A true JPS6049260A (en) 1985-03-18

Family

ID=15655360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157695A Pending JPS6049260A (en) 1983-08-29 1983-08-29 Method and device for nondestructive inspection of tunnel lining

Country Status (1)

Country Link
JP (1) JPS6049260A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325373B1 (en) * 1999-11-15 2002-02-28 김인식 Device and Method to Measure Stress Waves inside a Core Hole of Tunnel Lining
JP2008050765A (en) * 2006-08-22 2008-03-06 Okumura Corp Tunnel lining method
JP2009179944A (en) * 2008-01-29 2009-08-13 Kajima Corp Concrete placing control method and concrete placing system
JP2011038835A (en) * 2009-08-07 2011-02-24 Kajima Corp Tunnel lining thickness measuring device, measuring method, and formwork
CN110530982A (en) * 2019-09-12 2019-12-03 四川督信工程试验检测有限责任公司 A kind of tunnel-liner non-destructive testing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737257A (en) * 1980-08-15 1982-03-01 Mitsubishi Heavy Ind Ltd Bonding inspection apparatus
JPS57136160A (en) * 1981-02-18 1982-08-23 Taisei Corp Detecting method and device for exfoliation of outer layer member for structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737257A (en) * 1980-08-15 1982-03-01 Mitsubishi Heavy Ind Ltd Bonding inspection apparatus
JPS57136160A (en) * 1981-02-18 1982-08-23 Taisei Corp Detecting method and device for exfoliation of outer layer member for structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325373B1 (en) * 1999-11-15 2002-02-28 김인식 Device and Method to Measure Stress Waves inside a Core Hole of Tunnel Lining
JP2008050765A (en) * 2006-08-22 2008-03-06 Okumura Corp Tunnel lining method
JP4536044B2 (en) * 2006-08-22 2010-09-01 株式会社奥村組 Tunnel lining method
JP2009179944A (en) * 2008-01-29 2009-08-13 Kajima Corp Concrete placing control method and concrete placing system
JP2011038835A (en) * 2009-08-07 2011-02-24 Kajima Corp Tunnel lining thickness measuring device, measuring method, and formwork
CN110530982A (en) * 2019-09-12 2019-12-03 四川督信工程试验检测有限责任公司 A kind of tunnel-liner non-destructive testing device

Similar Documents

Publication Publication Date Title
CN110455914B (en) Grouting sleeve internal grouting state detection method based on built-in piezoelectric ceramic element
US10330823B2 (en) Borehole testing device
CN108802187B (en) Grouting fullness detection method and system based on sleeve surface ultrasound
WO2020119468A1 (en) Method for detecting grout plumpness of sleeve cylinder with single-sided ultrasound detection along grout outlet channel
CN101245991A (en) Concrete early deformation non-contact test method and device
US20190271796A1 (en) Borehole testing device
CN108978740A (en) Drilled pile quality determining method based on distributed ultrasound wave sensor
CN101418579A (en) The detection method of diaphragm wall clay seam
CN102537669A (en) Method and system for detecting pipeline defect based on ultrasonic guided wave focusing
JPS6049260A (en) Method and device for nondestructive inspection of tunnel lining
US4102206A (en) Device for inspecting a tube by ultrasonics
JP2000073389A (en) Method and device for examining soundness of existing pile
CN108802188B (en) Grouting fullness detection method and system based on sleeve surface excitation
US20230047417A1 (en) A system for monitoring at least one property of concrete in real time
CN202152923U (en) Pipeline defect detecting system based on ultrasonic guided wave focusing
CN110455915A (en) Tunnel Second Lining supplements grouting method
JP2004012366A (en) Pipe thickness measuring device and pipe thickness measuring method
CN109822719A (en) A method of burying both-end FBG sensor in concrete
EP0392937B1 (en) Method for establishing a state diagnostic of a conduit or pipe and apparatus for carrying out this method
Secanellas et al. A system designed to monitor in-situ the curing process of sprayed concrete
CN108663384A (en) A kind of anchor pole detection without damage device and method based on TDR
CN103925894A (en) Device for measuring length of slurry spraying pipe in grout hole
JP2756837B2 (en) Ultrasonic transmission speed measurement method in concrete slab
CN113030259A (en) Road and bridge maintenance method based on nondestructive testing
GB1520373A (en) Method and apparatus for determination of the concrete st-rength in concrete structures