JP2004205430A - Ultrasonic inspection method - Google Patents

Ultrasonic inspection method Download PDF

Info

Publication number
JP2004205430A
JP2004205430A JP2002377187A JP2002377187A JP2004205430A JP 2004205430 A JP2004205430 A JP 2004205430A JP 2002377187 A JP2002377187 A JP 2002377187A JP 2002377187 A JP2002377187 A JP 2002377187A JP 2004205430 A JP2004205430 A JP 2004205430A
Authority
JP
Japan
Prior art keywords
defect
pipe
inspected
determined
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377187A
Other languages
Japanese (ja)
Inventor
Hidehiko Suetsugu
秀彦 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002377187A priority Critical patent/JP2004205430A/en
Publication of JP2004205430A publication Critical patent/JP2004205430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting fine cracking defects of a metallic material with high accuracy by using ultrasonic wave. <P>SOLUTION: In this ultrasonic wave inspection method for inspecting the defects by applying the ultrasonic wave to the metallic material and receiving the transmitted wave, the presence or absence of defect is determined on the basis of a ratio of the amplitude of transmitted wave determined on the inspected material to that determined on the same material free from defects, or a transmission time of the transmitted wave determined on the inspected material to that obtained on the same material free from defects. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料の微細な欠陥を、超音波を用いて検査する方法に関する。
【0002】
【従来の技術】
高温高圧流体や腐食性を有する流体を扱うボイラーの水管、ナフサやLPGの分解炉の加熱管、水素、アンモニア工場の改質炉の加熱管等では、長期間の使用により、クリープ損傷や粒界腐食割れ、水素浸食等による微細な割れが発生することがある。
これらの金属材料の微細な割れ欠陥を、超音波を用いて検査する方法は広く行われており、材料形状、欠陥の種類等に合わせて種々の方法が提案されている。これらの方法においては、欠陥の判定は超音波の減衰(振幅)から(例えば、特許文献1参照)または透過時間から(例えば、特許文献2参照)行なわれている。
【0003】
【特許文献1】
特開平11−211700号公報(段落番号「0019」)
【0004】
【特許文献2】
特開2001−272382号公報(段落番号「0019」)
【0005】
【発明が解決しようとする課題】
特許文献1および特許文献2に記載の方法は優れた方法であるが、なお欠陥の検出漏れや誤検出をすることがあり、更なる精度向上が望まれている。本発明の目的は、金属材料の微細な割れ欠陥を、超音波を用いて精度良く検査する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、かかる課題を解決するために金属材料の微細な欠陥を、超音波を用いて検査する方法について鋭意検討した結果、透過波の振幅および透過時間のそれぞれについて、被検査材料と同一の無欠陥材料について求めた値に対する被検査材料について求めた値の比を用いて判定することによって、微細な欠陥を精度良く検出できることを見出し、本発明を完成するに至った。
すなわち本発明は、超音波を金属材料に投射し、透過波を受信して欠陥検査を行う超音波検査方法において、被検査材料と同一の無欠陥材料について求めた透過波の振幅に対する被検査材料について求めた透過波の振幅の比、および被検査材料と同一の無欠陥材料について求めた透過波の透過時間に対する被検査材料について求めた透過時間の比、とから欠陥の有無を判定することを特徴とする。
また、上記の構成において、振幅の比が0.73以下で透過時間の比が1.000〜1.05である場合に欠陥があると判定することを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の一実施形態について図面に基づいて説明する。なお、以下では被検査材料が配管として説明する。なお、平板等についても、それに適応したプローブを用いて同様に検査することができる。
図1は超音波検査装置を使用した超音波検査方法を示す断面図である。図1において、6は被検査材料の配管である。この配管6の外面に超音波検査装置のプローブ1を接触させる。このプローブ1は、前記配管1の管壁内に送信される超音波のうち最も音圧の高い中心ビームが管壁中心を通過するように管外面に対して所定の斜角θに調整された送信用探触子4と、この送信用探触子4から送信され管壁内を通過したビームを受信するように管外面に対して所定の斜角θに調整された受信用探触子5とをそれぞれホルダー2および斜角ウェッジ3で前記配管6の周方向に所定の間隔でかつ前記した所定の斜角θで保持したものである。
【0008】
斜角ウェッジ3としては、市販の斜角ウェッジ等が使用可能である。このような斜角ウェッジとしては、例えばクラウトクレーマー社製のKBL70(鋼中縦波屈折角:70°)、KBL60(鋼中縦波屈折角:60°)等の異なる斜角θのものが種々市販されているので、配管6の外径に応じて必要とする斜角θを有する斜角ウェッジを選択使用することができる。
【0009】
使用する探触子4、5としては、例えば周波数5MHz、振動子径が0.25インチ(6.35mm)のものが挙げられる。管壁内に入射する超音波は、波長の短いほうが微細な割れに対する感受性が高く検査精度が向上することから、高い周波数を使用するのが好ましい。
【0010】
次にこのプローブ1を用いて配管6の超音波検査を行う方法を説明する。
この状態で配管6の管壁内にパルサー・レシーバー7から送信用探触子4を経て超音波を入射させ、超音波の中心ビームが管中心を通過するように伝播させる。このとき、管壁内にクリープ等による割れがあると、超音波の伝播が阻害される。この超音波を受信用探触子5を経てパルサー・レシーバー7で受信し、波形をオシロスコープ等に記録して、超音波の伝播阻害を検知することにより、割れ欠陥の存在を検出する。
上記した超音波の入射および透過波の受信、記録は従来と同様の方法である。
【0011】
図2は入射波および透過波を模式的に示す図である。配管中に割れが存在すると超音波の透過が阻害されるため,受信される透過波のエネルギーが減少し振幅値が低下する。また透過する超音波が割れを迂回して進行するため透過時間が長くなる。
本発明においては、振幅値および透過時間の両方から欠陥の有無を判定する。
【0012】
具体的には、被検査配管と同一の無欠陥配管について求めた透過波の振幅に対する被検査配管について求めた透過波の振幅の比、および被検査配管と同一の無欠陥配管について求めた透過波の透過時間に対する被検査配管について求めた透過時間の比、とから欠陥の有無を判定する。
被検査配管と同一の無欠陥配管としては、通常、被検査配管と同じ材料、形状の未使用の配管が用いられる。被検査配管と同一の無欠陥配管について求めた透過波の振幅および透過時間としては、測定値の平均値を使用する。
【0013】
本発明においては、振幅比が0.73以下で透過時間比が1.000〜1.05である場合に欠陥があると判定することによって欠陥を精度良く検出できる。
本発明の方法は、金属配管が特に遠心鋳造管である場合に精度良く欠陥が検出される。
【0014】
【実施例】
以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0015】
実施例1
加熱管として使用した遠心鋳造管(KHR24C)を図1に示す超音波検査装置を用いて欠陥検査を行った。使用機器は以下の通りである。
パルサー・レシーバー : パナメトリクス社製のモデル5072PR
オシロスコープ : ソニーテクトロニクス社製のTDS3014
超音波探触子 : クラウトクレーマー社製のMSWQC−GAMMA
(周波数:5.0MHz、振動子径:0.25インチ(6.35mm))
斜角ウェッジ : クラウトクレーマー社製のKBL70[縦波70°]
接触媒質 : 日合アセチレン社製のソニコートBS400
【0016】
試験配管(外径110mm×内径94mm×長さ50mm)として下記の表1に示す4種を使用した。
【表1】

Figure 2004205430
【0017】
試験配管の両端面より軸方向にそれぞれ10mmの位置において、周方向に任意(断面観察による欠陥の有無を参考にして選定)に12点/面の測定位置を選定し、1つの試験配管について合計24点(2面×12測定点/面)の測定を実施した。なお測定位置は、送・受信探触子間の超音波透過経路の中心とし、断面を見た時、一方の面において反時計回り方向に順に1〜12、他方の面において反時計回り方向に順に13〜24とした。
【0018】
試験は以下の手順で行った。
(1)送信用および受信用の各探触子4、5をそれぞれ斜角ウェッジ3、3に取り付けた。
(2)探触子4、5を取り付けた斜角ウェッジ3、3をホルダー2に装着し、セットビスにて各斜角ウェッジ3、3をホルダー2に固定した。
(3)対照となる感度調整用試験片に接触媒質を塗布し探触子を接触させた。透過エコーの高さが最大となるように,ホルダーに装着した各斜角ウェッジ3、3を動かし、再度ホルダー2に固定した。
(4)パルサー・レシーバー7の感度調節つまみを操作し、透過エコー振幅がオシロスコープ8上で1vとなるように設定する。
(5)また、その時の超音波波形をオシロスコープに記録した。
(6)試験配管について上記の操作をし、波形情報をCSV形式のデジタルデータに変換し、フロッピー(登録商標)ディスク9を介してパーソナルコンピューター10にデータを取り込み、エクセルソフトでデータ処理を行った。
試験結果を表2〜5に示す。
なお、補正振幅は基準感度値(30dB)で測定した場合への換算値である。
【0019】
次に、測定位置(切削・研磨代を加味)で切断し、その断面のマクロ組織観察および溶剤除去性浸透探傷試験(JIS Z2343-1992)を行い、欠陥の有無を確認した。そのうちで試験配管TP−Aの断面マクロ組織の写真を図3に、溶剤除去性浸透探傷試験結果の写真を図4に示した。
更に詳細に観察するために、測定点を中心に周方向左右10mmの位置で切断し、樹脂に埋め込んで研磨、エッチング処理し、断面のマクロ組織を観察した。そのうちで試験配管TP−Aの測定位置20における断面マクロ組織の写真を図5に示した。
また、代表的な測定点について断面のミクロ組織を観察した。そのうちで試験配管TP−Aの測定位置20における断面ミクロ組織の写真を図6に示した。
割れ欠陥の有無を表2〜5に示した。
【0020】
表2〜5に示した結果を図7に示す。欠陥の有無の判定基準を振幅比が0.73以下、透過時間比が1.000〜1.05とすることによって、欠陥を精度良く検出することができる。
振幅比だけでは、欠陥が見られなかったTP−Cの多くの部位で欠陥があると判定してしまう。また透過時間比だけでも、欠陥がなくても(例えば、TP−D)欠陥があると判定してしまうことがある。
【0021】
【表2】
Figure 2004205430
【0022】
【表3】
Figure 2004205430
【0023】
【表4】
Figure 2004205430
【0024】
【表5】
Figure 2004205430
【0025】
【発明の効果】
本発明の方法によれば、金属材料の微細な割れ欠陥を、超音波を用いて精度良く検査することができる。
【図面の簡単な説明】
【図1】本発明で使用する超音波検査装置の断面図である。
【図2】入射波および透過波の模式図である。
【図3】試験配管TP−Aの断面マクロ組織の写真である。
【図4】試験配管TP−Aの断面の溶剤除去性浸透探傷試験結果の写真である。
【図5】試験配管TP−Aの測定位置20における断面の詳細マクロ組織の写真である。
【図6】試験配管TP−Aの測定位置20における断面のミクロ組織の写真である。
【図7】実施例の結果を示す図である。
【符号の説明】
1:プローブ
2:ホルダー
3:斜角ウェッジ
4:送信用探触子
5:受信用探触子
6:配管
6:パルサー・レシーバー
7:オシロスコープ
8:フロッピー(登録商標)ディスク
9:コンピューター[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for inspecting minute defects of a metal material using ultrasonic waves.
[0002]
[Prior art]
Water pipes of boilers that handle high-temperature and high-pressure fluids or corrosive fluids, heating pipes of cracking furnaces for naphtha and LPG, heating pipes of reforming furnaces for hydrogen and ammonia plants, etc. Fine cracks due to corrosion cracking, hydrogen erosion, etc. may occur.
A method of inspecting a fine crack defect of such a metal material using an ultrasonic wave is widely performed, and various methods are proposed according to a material shape, a type of the defect, and the like. In these methods, the defect is determined from the attenuation (amplitude) of the ultrasonic wave (for example, see Patent Document 1) or the transmission time (for example, see Patent Document 2).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-211700 (paragraph number "0019")
[0004]
[Patent Document 2]
JP 2001-272382 A (paragraph number “0019”)
[0005]
[Problems to be solved by the invention]
The methods described in Patent Literature 1 and Patent Literature 2 are excellent methods. However, there are still cases where a defect may be missed or an erroneous detection may occur, and further improvement in accuracy is desired. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for accurately inspecting a fine crack defect of a metal material using ultrasonic waves.
[0006]
[Means for Solving the Problems]
The inventor of the present invention has intensively studied a method of inspecting a minute defect of a metal material using ultrasonic waves in order to solve the problem, and as a result, the amplitude and the transmission time of the transmitted wave are the same as those of the material to be inspected. By using the ratio of the value determined for the material to be inspected to the value determined for the defect-free material, it was found that minute defects could be detected with high accuracy, and the present invention was completed.
That is, the present invention provides an ultrasonic inspection method in which an ultrasonic wave is projected onto a metal material and a transmitted wave is received to perform a defect inspection. It is determined that the presence or absence of a defect is determined from the ratio of the amplitude of the transmitted wave obtained for the above, and the ratio of the transmission time obtained for the material to be inspected to the transmission time of the transmitted wave obtained for the same defect-free material as the material to be inspected. Features.
Further, in the above configuration, when the amplitude ratio is 0.73 or less and the transmission time ratio is 1.00 to 1.05, it is determined that there is a defect.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following, the inspection target material is described as a pipe. Note that a flat plate or the like can be similarly inspected using a probe adapted to the flat plate or the like.
FIG. 1 is a sectional view showing an ultrasonic inspection method using an ultrasonic inspection device. In FIG. 1, reference numeral 6 denotes a pipe for a material to be inspected. The outer surface of the pipe 6 is brought into contact with the probe 1 of the ultrasonic inspection apparatus. The probe 1 was adjusted to a predetermined oblique angle θ with respect to the tube outer surface such that the center beam having the highest sound pressure among the ultrasonic waves transmitted into the tube wall of the pipe 1 passed through the center of the tube wall. A transmitting probe 4 and a receiving probe 5 adjusted to a predetermined oblique angle θ with respect to the tube outer surface so as to receive a beam transmitted from the transmitting probe 4 and passing through the inside of the tube wall. Are held at predetermined intervals in the circumferential direction of the pipe 6 by the holder 2 and the oblique angle wedge 3 and at the above-mentioned predetermined oblique angle θ.
[0008]
As the bevel wedge 3, a commercially available bevel wedge or the like can be used. Examples of such oblique wedges include those having different oblique angles θ such as KBL70 (longitudinal wave refraction angle in steel: 70 °) and KBL60 (longitudinal wave refraction angle in steel: 60 °) manufactured by Kraut Kramer. Since it is commercially available, an oblique wedge having a required oblique angle θ according to the outer diameter of the pipe 6 can be selectively used.
[0009]
The probes 4 and 5 to be used include, for example, those having a frequency of 5 MHz and a transducer diameter of 0.25 inch (6.35 mm). It is preferable to use a high frequency ultrasonic wave incident on the tube wall, since a shorter wavelength has higher sensitivity to fine cracks and improves inspection accuracy.
[0010]
Next, a method of performing an ultrasonic inspection of the pipe 6 using the probe 1 will be described.
In this state, ultrasonic waves are made to enter the wall of the pipe 6 from the pulsar receiver 7 via the transmitting probe 4 and propagate so that the center beam of the ultrasonic waves passes through the center of the pipe. At this time, if there is a crack in the pipe wall due to creep or the like, the propagation of ultrasonic waves is hindered. The ultrasonic waves are received by the pulser / receiver 7 via the receiving probe 5 and the waveform is recorded on an oscilloscope or the like, and the presence of a crack defect is detected by detecting the propagation inhibition of the ultrasonic waves.
The above-described method of receiving and recording the incident ultrasonic wave and the transmitted wave is the same as the conventional method.
[0011]
FIG. 2 is a diagram schematically showing an incident wave and a transmitted wave. If a crack is present in the pipe, transmission of the ultrasonic wave is hindered, so that the energy of the received transmitted wave decreases and the amplitude value decreases. Further, since the transmitted ultrasonic wave advances while bypassing the crack, the transmission time becomes longer.
In the present invention, the presence or absence of a defect is determined from both the amplitude value and the transmission time.
[0012]
Specifically, the ratio of the amplitude of the transmitted wave determined for the inspected pipe to the amplitude of the transmitted wave determined for the same defect-free pipe as the inspected pipe, and the transmitted wave determined for the same defect-free pipe as the inspected pipe Is determined based on the ratio of the transmission time obtained for the inspection pipe to the transmission time.
As the defect-free pipe identical to the pipe to be inspected, an unused pipe having the same material and shape as the pipe to be inspected is usually used. The average value of the measured values is used as the amplitude and transmission time of the transmitted wave obtained for the same defect-free pipe as the pipe to be inspected.
[0013]
In the present invention, when the amplitude ratio is 0.73 or less and the transmission time ratio is 1.00 to 1.05, it is possible to detect the defect with high accuracy by determining that there is a defect.
According to the method of the present invention, defects are detected with high accuracy when the metal pipe is a centrifugally cast pipe.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0015]
Example 1
The centrifugally cast tube (KHR24C) used as the heating tube was inspected for defects using the ultrasonic inspection apparatus shown in FIG. The equipment used is as follows.
Pulsar receiver: Model 5072PR manufactured by Panametrix
Oscilloscope: TDS3014 manufactured by Sony Tektronix
Ultrasonic probe: MSWQC-GAMMA manufactured by Kraut Kramer
(Frequency: 5.0 MHz, vibrator diameter: 0.25 inch (6.35 mm))
Bevel wedge: KBL70 [70 ° longitudinal wave] manufactured by Kraut Kramer
Coupling material: Sonicoat BS400 manufactured by Nichiai Acetylene
[0016]
As test pipes (outer diameter 110 mm x inner diameter 94 mm x length 50 mm), four types shown in Table 1 below were used.
[Table 1]
Figure 2004205430
[0017]
At the position 10 mm in the axial direction from each end face of the test pipe, 12 measurement points per face are selected at random in the circumferential direction (select with reference to the presence or absence of defects by cross-section observation), and a total of one test pipe is selected. Twenty-four points (2 surfaces × 12 measurement points / surface) were measured. The measurement position is the center of the ultrasonic transmission path between the transmitting and receiving probes, and when looking at the cross section, 1 to 12 in the counterclockwise direction on one surface and in the counterclockwise direction on the other surface. 13 to 24 in order.
[0018]
The test was performed according to the following procedure.
(1) The transmitting and receiving probes 4, 5 were attached to the oblique wedges 3, 3, respectively.
(2) The oblique wedges 3, 3 to which the probes 4, 5 were attached were mounted on the holder 2, and the oblique wedges 3, 3 were fixed to the holder 2 with set screws.
(3) A couplant was applied to a sensitivity adjustment test piece as a control, and the probe was brought into contact. The oblique wedges 3 attached to the holder were moved so that the height of the transmitted echo was maximized, and fixed to the holder 2 again.
(4) Operate the sensitivity adjustment knob of the pulser / receiver 7 to set the transmitted echo amplitude to 1 V on the oscilloscope 8.
(5) The ultrasonic waveform at that time was recorded on an oscilloscope.
(6) The above operation was performed on the test pipe, the waveform information was converted into digital data in CSV format, the data was loaded into the personal computer 10 via the floppy (registered trademark) disk 9, and the data was processed by Excel software. .
The test results are shown in Tables 2 to 5.
Note that the correction amplitude is a converted value when measured at the reference sensitivity value (30 dB).
[0019]
Next, cut at the measurement position (taking into account the cutting and grinding allowance), the macro structure observation and solvent removability of cross penetrant (JIS Z2343 -1992), to confirm the presence or absence of a defect. FIG. 3 shows a photograph of the cross-sectional macrostructure of the test pipe TP-A, and FIG. 4 shows a photograph of the result of the solvent removal penetrant test.
For more detailed observation, the sample was cut at a position of 10 mm in the left and right directions around the measurement point in the circumferential direction, embedded in resin, polished and etched, and the macrostructure of the cross section was observed. Among them, FIG. 5 shows a photograph of a cross-sectional macrostructure at the measurement position 20 of the test pipe TP-A.
In addition, the microstructure of the cross section was observed at typical measurement points. Among them, FIG. 6 shows a photograph of the cross-sectional microstructure at the measurement position 20 of the test pipe TP-A.
Tables 2 to 5 show the presence or absence of crack defects.
[0020]
The results shown in Tables 2 to 5 are shown in FIG. By setting the amplitude ratio to 0.73 or less and the transmission time ratio to 1.00 to 1.05 as the criterion for determining the presence or absence of a defect, the defect can be detected with high accuracy.
With only the amplitude ratio, it is determined that there are defects in many parts of the TP-C where no defect is found. In addition, even if there is no defect (for example, TP-D), it may be determined that there is a defect only by the transmission time ratio.
[0021]
[Table 2]
Figure 2004205430
[0022]
[Table 3]
Figure 2004205430
[0023]
[Table 4]
Figure 2004205430
[0024]
[Table 5]
Figure 2004205430
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the method of this invention, the fine crack defect of a metal material can be inspected accurately using an ultrasonic wave.
[Brief description of the drawings]
FIG. 1 is a sectional view of an ultrasonic inspection apparatus used in the present invention.
FIG. 2 is a schematic diagram of an incident wave and a transmitted wave.
FIG. 3 is a photograph of a cross-sectional macrostructure of a test pipe TP-A.
FIG. 4 is a photograph of the results of a solvent removal penetrant inspection test of a cross section of a test pipe TP-A.
FIG. 5 is a photograph of a detailed macrostructure of a cross section at a measurement position 20 of a test pipe TP-A.
FIG. 6 is a photograph of a microstructure of a cross section at a measurement position 20 of a test pipe TP-A.
FIG. 7 is a diagram showing the results of an example.
[Explanation of symbols]
1: Probe 2: Holder 3: Bevel wedge 4: Transmitting probe 5: Receiving probe 6: Piping 6: Pulser / Receiver 7: Oscilloscope 8: Floppy (registered trademark) disk 9: Computer

Claims (3)

超音波を金属材料に入射し、透過波を受信して欠陥検査を行う超音波検査方法において、被検査材料と同一の無欠陥材料について求めた透過波の振幅に対する被検査材料について求めた透過波の振幅の比、および被検査材料と同一の無欠陥材料について求めた透過波の透過時間に対する被検査材料について求めた透過時間の比、とから欠陥の有無を判定することを特徴とする超音波検査方法。In an ultrasonic inspection method in which an ultrasonic wave is incident on a metal material and a transmitted wave is received and a defect is inspected, the transmitted wave obtained for the material to be inspected with respect to the amplitude of the transmitted wave obtained for the same defect-free material as the material to be inspected Determining the presence / absence of a defect from the ratio of the amplitude of the test object and the ratio of the transmission time obtained for the test material to the transmission time of the transmission wave obtained for the same defect-free material as the test material. Inspection methods. 振幅の比が0.73以下で透過時間の比が1.000〜1.05である場合に欠陥があると判定する請求項1記載の方法。The method according to claim 1, wherein a defect is determined when the amplitude ratio is 0.73 or less and the transmission time ratio is 1.00 to 1.05. 金属材料が遠心鋳造管である請求項1記載の方法。The method of claim 1, wherein the metallic material is a centrifugally cast tube.
JP2002377187A 2002-12-26 2002-12-26 Ultrasonic inspection method Pending JP2004205430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377187A JP2004205430A (en) 2002-12-26 2002-12-26 Ultrasonic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377187A JP2004205430A (en) 2002-12-26 2002-12-26 Ultrasonic inspection method

Publications (1)

Publication Number Publication Date
JP2004205430A true JP2004205430A (en) 2004-07-22

Family

ID=32814433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377187A Pending JP2004205430A (en) 2002-12-26 2002-12-26 Ultrasonic inspection method

Country Status (1)

Country Link
JP (1) JP2004205430A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294163A (en) * 2008-06-09 2009-12-17 Toho Gas Co Ltd Grain boundary surface crack detection method and grain boundary surface crack detection device
JP2011043427A (en) * 2009-08-21 2011-03-03 Tobishima Corp Internal defect detection device of structure
CN103323529A (en) * 2013-05-23 2013-09-25 暨南大学 Method for identifying ultrasonic guided wave of oblique crack pipeline through utilizing improved Duffing chaotic system
CN103512955A (en) * 2013-09-25 2014-01-15 暨南大学 Ultrasonic guided-wave method for identifying inclined crack of steel rail by using chaotic oscillator system
CN104155368A (en) * 2014-07-31 2014-11-19 暨南大学 Method and device for identifying cracking angle of pipeline based on phase locus partitioned by round window
CN104155364A (en) * 2014-07-31 2014-11-19 暨南大学 Method and device for identifying defect position of pipeline based on phase locus partitioned by round window
CZ305383B6 (en) * 2010-03-30 2015-08-26 tarman Stanislav Ĺ Device for non-destructive testing and determining surface and internal faults and/or metal material thickness particularly that of seamless steel cylinders
JP2020162337A (en) * 2019-03-27 2020-10-01 株式会社カネカ Inspection device and inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294163A (en) * 2008-06-09 2009-12-17 Toho Gas Co Ltd Grain boundary surface crack detection method and grain boundary surface crack detection device
JP2011043427A (en) * 2009-08-21 2011-03-03 Tobishima Corp Internal defect detection device of structure
CZ305383B6 (en) * 2010-03-30 2015-08-26 tarman Stanislav Ĺ Device for non-destructive testing and determining surface and internal faults and/or metal material thickness particularly that of seamless steel cylinders
CN103323529A (en) * 2013-05-23 2013-09-25 暨南大学 Method for identifying ultrasonic guided wave of oblique crack pipeline through utilizing improved Duffing chaotic system
CN103512955A (en) * 2013-09-25 2014-01-15 暨南大学 Ultrasonic guided-wave method for identifying inclined crack of steel rail by using chaotic oscillator system
CN104155368A (en) * 2014-07-31 2014-11-19 暨南大学 Method and device for identifying cracking angle of pipeline based on phase locus partitioned by round window
CN104155364A (en) * 2014-07-31 2014-11-19 暨南大学 Method and device for identifying defect position of pipeline based on phase locus partitioned by round window
JP2020162337A (en) * 2019-03-27 2020-10-01 株式会社カネカ Inspection device and inspection method

Similar Documents

Publication Publication Date Title
CN103336055B (en) Method for ultrasonically detecting weld quality of main loop pipeline of nuclear power plant by phased array
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
US4890496A (en) Method and means for detection of hydrogen attack by ultrasonic wave velocity measurements
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
US4760737A (en) Procedure for flaw detection in cast stainless steel
JP2004205430A (en) Ultrasonic inspection method
JP4144703B2 (en) Tube inspection method using SH waves
JPH0210261A (en) Measurement of intercrystalline corrosion
JP2004212366A (en) Creep damage detecting method
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
Moles Defect sizing in pipeline welds: What can we really achieve?
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
Norli et al. Ultrasonic detection of stress corrosion cracks in pipe samples using guided waves
JPH0155409B2 (en)
JP2001272382A (en) Ultrasonic testing method and device used for the same
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
Willems et al. Recent improvements regarding ultrasonic crack inspection of pipelines
Debbouz et al. Nondestructive testing of 2017 aluminum copper alloy diffusion welded joints by an automatic ultrasonic system
AIZAWA et al. Detection method for type IV creep voids in high-chromium steel welds
JPH11211700A (en) Ultrasonic flaw detecting method and ultrasonic flaw detecting device used for same
JPH07325069A (en) Method and device for detecting deterioration of high temperature member
JP2007170968A (en) Piping inspection method
Akgün Investigating the reliability of ultrasound phased array method and conventional ultrasonic testing for detection of defects in austenitic stainless steels