JPH11230632A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPH11230632A
JPH11230632A JP10036038A JP3603898A JPH11230632A JP H11230632 A JPH11230632 A JP H11230632A JP 10036038 A JP10036038 A JP 10036038A JP 3603898 A JP3603898 A JP 3603898A JP H11230632 A JPH11230632 A JP H11230632A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
temperature regenerator
low
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10036038A
Other languages
Japanese (ja)
Inventor
Naoki Ko
直樹 広
Yoshio Ozawa
芳男 小澤
Yasuharu Kuroki
靖治 黒木
Masato Fujiwara
正人 藤原
Toshihiro Yamada
敏宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10036038A priority Critical patent/JPH11230632A/en
Priority to US09/381,909 priority patent/US6192694B1/en
Priority to CNB998000817A priority patent/CN1135343C/en
Priority to EP99901892A priority patent/EP0978694A4/en
Priority to PCT/JP1999/000350 priority patent/WO1999039140A1/en
Publication of JPH11230632A publication Critical patent/JPH11230632A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To let a refrigerant flowing out of a low-temperature reproducer flow to a condenser without delay, by detecting the sudden increase of the flow with a detection means, when the flow of a refrigerant increases suddenly at start up or at sudden increase, and increasing the flow of the refrigerant to be sent to a condenser with an adjusting means. SOLUTION: A detection means is equipped with a refrigerant tank 9 which is interposed in the middle of the pipe 7 for supplying a condenser 11 with a refrigerant liquefied with a low-temperature reproducer 12, and when the flow of the refrigerant increases suddenly, it detects the rise of liquid level of the refrigerant within the refrigerant tank 9. Accompanying this detection, the float valve 81 as an adjusting means is opened to supply the refrigerant to the condenser 11 through the float valve 81 and also supply it to the condenser 11 via an orifice 71 from the outlet of the refrigerant tank 9. Hereby, the refrigerant flowing out of the low-temperature reproducer 12 comes to flow to the condenser 11 without delay, thus the operation efficiency can be raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温再生器で発生
した冷媒蒸気を低温再生器に供給して凝縮させ、凝縮に
よって液化した冷媒は凝縮器へ供給する二重効用型の吸
収式冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double effect absorption refrigerator in which refrigerant vapor generated in a high-temperature regenerator is supplied to a low-temperature regenerator to be condensed, and refrigerant liquefied by the condensation is supplied to a condenser. It is about.

【0002】[0002]

【従来の技術】二重効用型の吸収式冷凍機は、図2に示
す如く、凝縮器(11)及び低温再生器(12)からなる上胴
(1)、蒸発器(21)及び吸収器(22)からなる下胴(2)、バ
ーナ(31)を内蔵した高温再生器(3)、高温熱交換器
(4)、低温熱交換器(5)などを相互に配管接続し、吸収
液ポンプ(6)によって、吸収液を高温再生器(3)、低温
再生器(12)及び吸収器(22)の間で循環させ、冷凍サイク
ルを実現するものである。
2. Description of the Related Art As shown in FIG. 2, a double effect type absorption refrigerator has an upper body comprising a condenser (11) and a low temperature regenerator (12).
(1) Lower trunk (2) consisting of evaporator (21) and absorber (22), high temperature regenerator (3) with built-in burner (31), high temperature heat exchanger
(4) The low-temperature heat exchanger (5) and the like are connected to each other by pipes, and the absorbent is pumped by the absorbent pump (6) into the high-temperature regenerator (3), the low-temperature regenerator (12) and the absorber (22). The refrigeration cycle is realized by circulating between the refrigeration cycles.

【0003】二重効用型の吸収式冷凍機においては、低
温再生器(12)にて液化した冷媒を凝縮器(11)へ供給する
ための配管(7)に、図3に示す如くオリフィス(70)が取
り付けられ、低温再生器(12)にて液化した冷媒を減圧し
て、凝縮器(11)へ供給するようになっている。これによ
って低温再生器(12)内が低い圧力に保たれ、低温再生器
(12)で発生した冷媒蒸気が、凝縮器(11)内で凝縮、液化
されるのである。一方、高温再生器(3)で発生した冷媒
蒸気は、低温再生器(12)内の伝熱管中で凝縮して、凝縮
熱を吸収液に与えながら液化し、冷媒液となって上述の
オリフィス(70)を経て凝縮器(11)へ供給された後、凝縮
器(11)内で液化した冷媒液と一緒に蒸発器(21)に戻る。
In a double-effect absorption refrigerator, as shown in FIG. 3, an orifice (7) is provided in a pipe (7) for supplying a refrigerant liquefied by a low-temperature regenerator (12) to a condenser (11). 70) is attached, and the refrigerant liquefied by the low-temperature regenerator (12) is decompressed and supplied to the condenser (11). This keeps the inside of the low-temperature regenerator (12) at a low pressure,
The refrigerant vapor generated in (12) is condensed and liquefied in the condenser (11). On the other hand, the refrigerant vapor generated in the high-temperature regenerator (3) is condensed in a heat transfer tube in the low-temperature regenerator (12), liquefied while giving heat of condensation to the absorbing liquid, and becomes a refrigerant liquid to form the above-described orifice After being supplied to the condenser (11) via (70), the refrigerant returns to the evaporator (21) together with the refrigerant liquid liquefied in the condenser (11).

【0004】図2に示す様に、高温再生器(3)内のバー
ナ(31)に燃料ガスを供給するための配管には、ガス弁(3
2)が取り付けられ、蒸発器(21)から流出する冷水の温度
(冷水出口温度Tc_out)を目標値に保つべく、ガス弁(3
2)の開度が制御され、燃料ガスの供給量が調整される。
As shown in FIG. 2, a pipe for supplying a fuel gas to a burner (31) in a high-temperature regenerator (3) has a gas valve (3).
2) is attached, the temperature of the cold water flowing out of the evaporator (21)
(Cold water outlet temperature Tc_out) to maintain the target value, gas valve (3
The opening of 2) is controlled, and the supply amount of fuel gas is adjusted.

【0005】[0005]

【発明が解決しようとする課題】ところで、二重効用型
の吸収式冷凍機においては、高温再生器(3)に対する入
熱によって、高温再生器(3)では入熱量に応じた蒸気が
発生し、その蒸気によって、低温再生器(12)では同一熱
量の蒸気が発生する状態が理想であって、このとき最大
の効率が得られる。この理想状態に出来るだけ近づける
ために、適当な孔径を有するオリフィス(70)を採用し
て、適切な大きさの減圧を行なうことが必要である。
By the way, in the double effect type absorption refrigerator, the heat input to the high temperature regenerator (3) generates steam in the high temperature regenerator (3) in accordance with the heat input. Ideally, the low-temperature regenerator (12) generates the same amount of steam by the steam, and the maximum efficiency is obtained at this time. In order to approach this ideal state as much as possible, it is necessary to employ an orifice (70) having an appropriate hole diameter and to perform a reduced pressure of an appropriate size.

【0006】しかしながら、吸収式冷凍機においては、
立上げ時や、負荷の急激な増大時に、低温再生器(12)か
ら流出する冷媒の流量が急増するため、これを考慮し
て、オリフィス(70)としては、効率の上で最適な孔径よ
りも大きな孔径を有するものが採用されていた。従っ
て、従来の二重効用型の吸収式冷凍機においては、立上
げ後、冷凍負荷が安定した定常運転状態における減圧が
不十分となり、これによる効率の低下が問題となってい
た。更に、冷凍負荷が減少すると、蒸気抜けによる効率
の低下が顕著になるという問題があった。
However, in an absorption refrigerator,
At startup or when the load suddenly increases, the flow rate of the refrigerant flowing out of the low-temperature regenerator (12) sharply increases.In consideration of this, the orifice (70) has a smaller diameter than the optimal hole diameter for efficiency. Also, those having a large hole diameter have been adopted. Therefore, in the conventional double-effect absorption refrigerator, after the start-up, the decompression in a steady operation state in which the refrigeration load is stable becomes insufficient, and there has been a problem that the efficiency is reduced due to this. Furthermore, when the refrigerating load is reduced, there is a problem that the efficiency is remarkably reduced due to steam release.

【0007】本発明の目的は、立上げ時や負荷の急激な
増大時には、そのときに発生する冷媒を滞りなく凝縮器
へ流すことが出来、然も、定常運転状態では、冷媒に適
切な減圧を与えることが出来る吸収式冷凍機を提供し、
これによって運転効率を従来よりも向上させることであ
る。
An object of the present invention is to allow the refrigerant generated at the time of start-up or a sudden increase in load to flow to the condenser without any delay. Provide an absorption refrigerator that can give
Thereby, the operation efficiency is improved as compared with the conventional case.

【0008】[0008]

【課題を解決する為の手段】本発明に係る吸収式冷凍機
においては、低温再生器(12)にて液化した冷媒を凝縮器
(11)へ供給するための流路に、低温再生器(12)から流出
する冷媒の流量変化を検知する検知手段と、凝縮器(11)
へ送り込まれる冷媒の流量を調整すると共に冷媒に適切
な減圧を与える調整手段とを設け、検知手段により流量
増大が検知されたとき、調整手段によって冷媒の流量を
増大させる。
In the absorption refrigerator according to the present invention, the refrigerant liquefied by the low-temperature regenerator (12) is cooled by the condenser.
A detecting means for detecting a change in the flow rate of the refrigerant flowing out of the low-temperature regenerator (12), and a condenser (11)
Adjusting means for adjusting the flow rate of the refrigerant fed to the cooling medium and applying an appropriate pressure reduction to the refrigerant, and when the increase in the flow rate is detected by the detection means, the flow rate of the refrigerant is increased by the adjustment means.

【0009】上記本発明の吸収式冷凍機においては、立
上げ時や負荷の急激な増大時に、冷媒の流量が急激に増
大したとき、これが検知手段によって検知され、調整手
段によって凝縮器(11)へ送り込まれる冷媒の流量が増大
される。これによって、低温再生器(12)から流出する冷
媒は、滞りなく凝縮器へ流れることになる。その後、負
荷が安定して定常運転状態になると、低温再生器(12)か
ら流出する冷媒の流量が一定となって、冷媒には調整手
段によって適切な減圧が与えられる。
In the absorption refrigerator of the present invention, when the flow rate of the refrigerant suddenly increases at the time of start-up or a sudden increase in the load, this is detected by the detecting means, and the condenser (11) is adjusted by the adjusting means. The flow rate of the refrigerant sent to the is increased. Thereby, the refrigerant flowing out of the low-temperature regenerator (12) flows to the condenser without interruption. After that, when the load becomes stable and enters a steady operation state, the flow rate of the refrigerant flowing out of the low-temperature regenerator (12) becomes constant, and the refrigerant is appropriately depressurized by the adjusting means.

【0010】具体的構成において、検知手段は、低温再
生器(12)にて液化した冷媒を凝縮器(11)へ供給するため
の配管(7)の途中に介在する冷媒タンク(9)を具え、該
冷媒タンク(9)内の冷媒の液面位によって冷媒流量の変
化が検知可能である。又、調整手段は、冷媒タンク(9)
内の液面位に応じて開閉するフロート弁(81)の入口を冷
媒タンク(9)内に設置すると共に出口を凝縮器(11)へ接
続し、冷媒タンク(9)と凝縮器(11)を接続する配管(7)
にオリフィス(71)を取り付けて構成される。
In a specific construction, the detecting means comprises a refrigerant tank (9) interposed in a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11). The change in the flow rate of the refrigerant can be detected based on the liquid level of the refrigerant in the refrigerant tank (9). The adjusting means is a refrigerant tank (9).
The inlet of the float valve (81) that opens and closes according to the liquid level in the inside is installed in the refrigerant tank (9) and the outlet is connected to the condenser (11), and the refrigerant tank (9) and the condenser (11) are connected. Connecting pipe (7)
And an orifice (71).

【0011】上記具体的構成においては、立上げ時や負
荷の急激な増大時に、冷媒の流量が急激に増大したと
き、冷媒タンク(9)内の冷媒の液面位が上昇し、これに
伴ってフロート弁(81)が開くことになる。この結果、低
温再生器(12)から流出する冷媒は、一旦、冷媒タンク
(9)に溜まった後、フロート弁(81)を通過して凝縮器(1
1)へ供給されると同時に、冷媒タンク(9)の出口からオ
リフィス(71)を経て凝縮器(11)へ供給される。これによ
って、低温再生器(12)から凝縮器(11)へ至る十分な流路
が形成され、低温再生器(12)から流出する冷媒は滞るこ
となく、凝縮器(11)へ流れ込むことになる。その後、負
荷が安定して定常運転状態になると、冷媒タンク(9)内
の冷媒の液面位が低下し、フロート弁(81)が閉じること
になる。従って、冷媒タンク(9)に溜まった冷媒は、フ
ロート弁(81)を通過することなく、冷媒タンク(9)の出
口から配管(7)のみを経て凝縮器(11)へ供給される。こ
の際、冷媒は配管(7)中のオリフィス(71)による適切な
減圧を受けることになる。
In the above-described specific configuration, when the flow rate of the refrigerant suddenly increases at startup or when the load suddenly increases, the liquid level of the refrigerant in the refrigerant tank (9) rises. Then, the float valve (81) is opened. As a result, the refrigerant flowing out of the low-temperature regenerator (12)
After accumulating in (9), it passes through the float valve (81) and passes through the condenser (1).
At the same time, the refrigerant is supplied from the outlet of the refrigerant tank (9) to the condenser (11) through the orifice (71). Thereby, a sufficient flow path from the low-temperature regenerator (12) to the condenser (11) is formed, and the refrigerant flowing out of the low-temperature regenerator (12) flows into the condenser (11) without being stopped. . Thereafter, when the load is stabilized and the steady operation state is established, the liquid level of the refrigerant in the refrigerant tank (9) decreases, and the float valve (81) closes. Therefore, the refrigerant accumulated in the refrigerant tank (9) is supplied from the outlet of the refrigerant tank (9) to the condenser (11) through only the pipe (7) without passing through the float valve (81). At this time, the refrigerant is appropriately decompressed by the orifice (71) in the pipe (7).

【0012】[0012]

【発明の効果】本発明に係る吸収式冷凍機においては、
低温再生器(12)から凝縮器(11)へ供給される冷媒に適切
な減圧が与えられる結果、高温再生器(3)及び低温再生
器(12)の夫々において、高温再生器(3)に対する入熱量
に応じた十分な蒸気発生量が得られることとなって、従
来よりも高い効率が実現される。
In the absorption refrigerator according to the present invention,
Appropriate pressure reduction is applied to the refrigerant supplied from the low-temperature regenerator (12) to the condenser (11), so that the high-temperature regenerator (3) and the low-temperature regenerator (12) respectively As a result, a sufficient amount of steam generated according to the heat input is obtained, so that higher efficiency than before can be realized.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。本発明に係る二重
効用型の吸収式冷凍機は、図2に示す従来の吸収式冷凍
機と同様に、凝縮器(11)及び低温再生器(12)からなる上
胴(1)、蒸発器(21)及び吸収器(22)からなる下胴(2)、
バーナ(31)を内蔵した高温再生器(3)、高温熱交換器
(4)、低温熱交換器(5)などを相互に配管接続し、吸収
液ポンプ(6)によって、吸収液を高温再生器(3)、低温
再生器(12)及び吸収器(22)の間で循環させ、冷凍サイク
ルを実現するものである。高温再生器(3)内のバーナ(3
1)に燃料ガスを供給するための配管には、ガス弁(32)が
取り付けられ、蒸発器(21)から流出する冷水の温度(冷
水出口温度Tc_out)を目標値に保つべく、ガス弁(32)
の開度が制御され、燃料ガスの供給量が調整される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. The double-effect absorption refrigerator according to the present invention comprises an upper body (1) comprising a condenser (11) and a low-temperature regenerator (12), as in the conventional absorption refrigerator shown in FIG. Lower body (2) consisting of vessel (21) and absorber (22),
High temperature regenerator (3) with built-in burner (31), high temperature heat exchanger
(4) The low-temperature heat exchanger (5) and the like are connected to each other by pipes, and the absorbent is pumped by the absorbent pump (6) into the high-temperature regenerator (3), the low-temperature regenerator (12) and the absorber (22). The refrigeration cycle is realized by circulating between the refrigeration cycles. Burner (3) in high temperature regenerator (3)
A gas valve (32) is attached to a pipe for supplying a fuel gas to (1), and a gas valve (32) is provided to keep the temperature of the cold water flowing out of the evaporator (21) (the cold water outlet temperature Tc_out) at a target value. 32)
Is controlled, and the supply amount of the fuel gas is adjusted.

【0014】図1は、本発明に係る吸収式冷凍機の特徴
的構成を表わしており、低温再生器(12)にて液化した冷
媒を凝縮器(11)へ供給するための第1配管(7)の途中
に、冷媒タンク(9)が介在すると共に、冷媒タンク(9)
の出口側には、定常運転状態において適当な大きさとな
る孔径のオリフィス(71)が取り付けられている。冷媒タ
ンク(9)内には、フロート弁(81)が設置され、該フロー
ト弁(81)の入口は、冷媒タンク(9)内の冷媒中で開口す
ると共に、その出口は第2配管(8)によって上胴(1)に
接続されている。フロート弁(81)は、立上げ時や負荷の
急激な増大時に、低温再生器(12)から流出する冷媒の流
量が急増して、冷媒タンク(9)内の冷媒の液面位が所定
の液面位よりも上昇したとき、フロート(82)の上昇に伴
って開状態となり、その後、負荷が安定して定常運転状
態となり、低温再生器(12)ら流出する冷媒の流量が一定
となって、冷媒タンク(9)内の冷媒の液面位が前記所定
の液面位よりも低下したとき、フロート(82)の下降に伴
って閉状態となるものである。
FIG. 1 shows a characteristic structure of an absorption refrigerator according to the present invention, and a first pipe () for supplying a refrigerant liquefied by a low-temperature regenerator (12) to a condenser (11). 7) A refrigerant tank (9) is interposed in the middle of the refrigerant tank (9).
An orifice (71) having a hole diameter that is appropriately large in a steady operation state is attached to the outlet side of the valve. A float valve (81) is installed in the refrigerant tank (9), and the inlet of the float valve (81) opens in the refrigerant in the refrigerant tank (9), and the outlet thereof is connected to the second pipe (8). ) Is connected to the upper body (1). When the float valve (81) is started up or when the load suddenly increases, the flow rate of the refrigerant flowing out of the low-temperature regenerator (12) sharply increases, and the liquid level of the refrigerant in the refrigerant tank (9) becomes a predetermined level. When the liquid level rises above the liquid level, the float (82) rises and becomes open, and thereafter the load becomes stable and becomes a steady operation state, and the flow rate of the refrigerant flowing out of the low-temperature regenerator (12) becomes constant. When the liquid level of the refrigerant in the refrigerant tank (9) falls below the predetermined liquid level, the refrigerant is closed as the float (82) is lowered.

【0015】従って、立上げ時や負荷の急激な増大時
に、低温再生器(12)から冷媒タンク(9)へ流入した冷媒
は、開状態のフロート弁(81)を通過し、第2配管(8)を
経て凝縮器(11)へ供給されると共に、第1配管(7)を経
て凝縮器(11)へ供給される。この2つの流路の形成によ
って、低温再生器(12)から流出する冷媒は滞ることな
く、凝縮器(11)へ向けて流れることになる。
Therefore, at the time of start-up or a sudden increase in load, the refrigerant flowing from the low-temperature regenerator (12) into the refrigerant tank (9) passes through the float valve (81) in the open state, and the second pipe ( It is supplied to the condenser (11) via 8) and is supplied to the condenser (11) via the first pipe (7). Due to the formation of these two flow paths, the refrigerant flowing out of the low-temperature regenerator (12) flows toward the condenser (11) without stagnation.

【0016】又、定常運転状態では、フロート弁(81)が
閉状態であるため、低温再生器(12)から流出する冷媒は
第2配管(8)を通過することが出来ず、第1配管(7)の
みを経て、凝縮器(11)へ供給される。ここで、第1配管
(8)には、適当な孔径のオリフィス(71)が設置されてい
るから、冷媒は適切な大きさの減圧を受けることにな
る。その結果、高温再生器(3)及び低温再生器(12)の夫
々において、高温再生器(3)に対する入熱量に応じた十
分な蒸気発生量が得られることとなって、従来よりも高
い運転効率が実現されるのである。
In the steady operation state, since the float valve (81) is closed, the refrigerant flowing out of the low temperature regenerator (12) cannot pass through the second pipe (8), After only (7), it is supplied to the condenser (11). Here, the first pipe
In (8), since the orifice (71) having an appropriate hole diameter is provided, the refrigerant is subjected to an appropriate amount of reduced pressure. As a result, in each of the high-temperature regenerator (3) and the low-temperature regenerator (12), a sufficient amount of steam generated in accordance with the amount of heat input to the high-temperature regenerator (3) can be obtained. Efficiency is realized.

【0017】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、冷媒タンク(9)の液面位を
センサーで監視すると共に、第1配管(7)に制御バルブ
を取り付け、冷媒タンク(9)の液面位に応じて制御バル
ブの開度を調整する構成を採用することが出来る。これ
によって、第2配管(8)及びフロート弁(81)の省略が可
能となる。ここで、減圧機能と流量調整機能を有する制
御バルブを採用すれば、オリフィス(71)を省略すること
も可能となる。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, while monitoring the liquid level of the refrigerant tank (9) with a sensor, a control valve is attached to the first pipe (7), and the opening of the control valve is adjusted according to the liquid level of the refrigerant tank (9). A configuration can be employed. This makes it possible to omit the second pipe (8) and the float valve (81). Here, if a control valve having a pressure reducing function and a flow rate adjusting function is adopted, the orifice (71) can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る吸収式冷凍機の要部の構成を表わ
す系統図である。
FIG. 1 is a system diagram showing a configuration of a main part of an absorption refrigerator according to the present invention.

【図2】二重効用型吸収式冷凍機の全体構成を表わす系
統図である。
FIG. 2 is a system diagram showing an entire configuration of a double-effect absorption refrigerator.

【図3】従来の吸収式冷凍機の図1に対応する系統図で
ある。
FIG. 3 is a system diagram corresponding to FIG. 1 of a conventional absorption refrigerator.

【符号の説明】[Explanation of symbols]

(1) 上胴 (11) 凝縮器 (12) 低温再生器 (2) 下胴 (21) 蒸発器 (22) 吸収器 (3) 高温再生器 (7) 第1配管 (71) オリフィス (8) 第2配管 (9) 冷媒タンク (81) フロート弁 (1) Upper body (11) Condenser (12) Low temperature regenerator (2) Lower body (21) Evaporator (22) Absorber (3) High temperature regenerator (7) First piping (71) Orifice (8) Second pipe (9) Refrigerant tank (81) Float valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 正人 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山田 敏宏 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masato Fujiwara 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiro Yamada 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器(3)で発生した冷媒蒸気を低
温再生器(12)に供給して凝縮させ、凝縮によって液化し
た冷媒は凝縮器(11)へ供給する二重効用型の吸収式冷凍
機において、低温再生器(12)にて液化した冷媒を凝縮器
(11)へ供給するための流路に、低温再生器(12)から流出
する冷媒の流量変化を検知する検知手段と、凝縮器(11)
へ送り込まれる冷媒の流量を調整すると共に冷媒に適切
な減圧を与える調整手段とを設け、検知手段により流量
増大が検知されたとき、調整手段によって冷媒の流量を
増大させることを特徴とする吸収式冷凍機。
The refrigerant vapor generated in the high-temperature regenerator (3) is supplied to the low-temperature regenerator (12) to be condensed, and the refrigerant liquefied by the condensation is supplied to the condenser (11) in a double effect type absorption. In the refrigerator, the refrigerant liquefied by the low-temperature regenerator (12)
A detecting means for detecting a change in the flow rate of the refrigerant flowing out of the low-temperature regenerator (12), and a condenser (11)
Adjusting means for adjusting the flow rate of the refrigerant fed into the refrigerant and applying an appropriate pressure reduction to the refrigerant, and when the increase in the flow rate is detected by the detection means, the flow rate of the refrigerant is increased by the adjustment means. refrigerator.
【請求項2】 検知手段は、低温再生器(12)にて液化し
た冷媒を凝縮器(11)へ供給するための配管(7)の途中に
介在する冷媒タンク(9)を具え、該冷媒タンク(9)内の
冷媒の液面位によって冷媒流量の変化を検知する請求項
1に記載の吸収式冷凍機。
The detecting means comprises a refrigerant tank (9) interposed in a pipe (7) for supplying the refrigerant liquefied by the low-temperature regenerator (12) to the condenser (11). The absorption refrigerator according to claim 1, wherein a change in the flow rate of the refrigerant is detected based on a liquid level of the refrigerant in the tank (9).
【請求項3】 調整手段は、冷媒タンク(9)内の液面位
に応じて開閉するフロート弁(81)の入口を冷媒タンク
(9)内に設置すると共に出口を凝縮器(11)へ接続し、冷
媒タンク(9)と凝縮器(11)を接続する配管(7)にオリフ
ィス(71)を取り付けて構成される請求項2に記載の吸収
式冷凍機。
3. An adjusting means for connecting an inlet of a float valve (81) which opens and closes according to a liquid level in the refrigerant tank (9) to the refrigerant tank.
The orifice (71) is attached to a pipe (7) connecting the refrigerant tank (9) and the condenser (11), the outlet is connected to the condenser (11), and the outlet is connected to the condenser (11). 3. The absorption refrigerator according to 2.
JP10036038A 1998-01-29 1998-02-18 Absorption refrigerator Pending JPH11230632A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10036038A JPH11230632A (en) 1998-02-18 1998-02-18 Absorption refrigerator
US09/381,909 US6192694B1 (en) 1998-01-29 1999-01-27 Absorption type refrigerating machine
CNB998000817A CN1135343C (en) 1998-01-29 1999-01-27 Absorption type refrigerating machine
EP99901892A EP0978694A4 (en) 1998-01-29 1999-01-27 Absorption type refrigerating machine
PCT/JP1999/000350 WO1999039140A1 (en) 1998-01-29 1999-01-27 Absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10036038A JPH11230632A (en) 1998-02-18 1998-02-18 Absorption refrigerator

Publications (1)

Publication Number Publication Date
JPH11230632A true JPH11230632A (en) 1999-08-27

Family

ID=12458549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10036038A Pending JPH11230632A (en) 1998-01-29 1998-02-18 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH11230632A (en)

Similar Documents

Publication Publication Date Title
WO1999039140A1 (en) Absorption type refrigerating machine
JPH11230632A (en) Absorption refrigerator
JP4157723B2 (en) Triple effect absorption refrigerator
JP3832191B2 (en) Absorption refrigerator
KR20020050928A (en) Control Method and Structure of Condensate of an Absorption Chiller with Hot Water Supply Function
JP3831427B2 (en) Heat input control method of absorption refrigerator
JPH11211265A (en) Absorption type refrigerating machine
JP3210773B2 (en) Double effect absorption refrigerator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JPS6021721Y2 (en) Absorption chiller control device
JP2883372B2 (en) Absorption chiller / heater
JP3824441B2 (en) Absorption refrigeration equipment
JPH08145494A (en) Absorption type heat pump
JPH11159906A (en) Absorption heat pump system
JPS58130972A (en) Absorption type refrigerator
JPS5921957A (en) Absorption cold and hot water machine
JPS5818139Y2 (en) Double effect absorption chiller
JPS5823541B2 (en) Double effect absorption chiller
JPH0356861Y2 (en)
JPS62138663A (en) Absorption refrigerator
JPS6113888Y2 (en)
JPS6028934Y2 (en) Refrigeration equipment
CN110513914A (en) A kind of heat pump heat distribution system and its control method
JPH02101354A (en) Method for controlling absorptive type freezer
JPH11230631A (en) Absorption refrigerator