JPH11230517A - Combustion treatment apparatus for waste - Google Patents

Combustion treatment apparatus for waste

Info

Publication number
JPH11230517A
JPH11230517A JP10036342A JP3634298A JPH11230517A JP H11230517 A JPH11230517 A JP H11230517A JP 10036342 A JP10036342 A JP 10036342A JP 3634298 A JP3634298 A JP 3634298A JP H11230517 A JPH11230517 A JP H11230517A
Authority
JP
Japan
Prior art keywords
heat recovery
recovery device
heat
sand
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10036342A
Other languages
Japanese (ja)
Other versions
JP3797781B2 (en
Inventor
Umeo Inoue
梅夫 井上
Tamotsu Kodera
保 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP03634298A priority Critical patent/JP3797781B2/en
Publication of JPH11230517A publication Critical patent/JPH11230517A/en
Application granted granted Critical
Publication of JP3797781B2 publication Critical patent/JP3797781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To significantly enhance the generation efficiency of the power generation for waste utilizing a waste heat recovery boiler by allowing a higher temperature and a higher pressure of superheat stream without causing a problem of corrosion attributed to a hydrogen chloride gas in a combustion treatment apparatus for waste. SOLUTION: In a combustion treatment apparatus of waste which is provided with a combustion furnace A of waste, a first heat recovery device 8 to recover heat of a combustion exhaust gas G from the combustion furnace A, a second heat recovery device 10 comprising a waste heat boiler for recovering the heat of the combustion exhaust gas G from the first heat recovery device 8, a third heat recovery device 16 to heat steam S generated in the second heat recovery device 10 by heat recovered with the first heat recovery device 8 and an exhaust gas treatment device for cleaning the combustion exhaust gas G from the second heat recovery device 10, the first heat recovery device 8 is built as a sand heating chamber in which the combustion exhaust gas G is kept in contact with sand C for a heat medium to heat the sand C while the third heat recovery device 16 is built as a steam superheater to heat a superheater pipe 18 of the steam S generated in the second heat recovery device 10 by the heat of the sand C from the first heat recovery device 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ等の廃棄
物の燃焼処理に利用されるものであり、燃焼装置からの
燃焼排ガスの熱回収システムに改良を加えることによ
り、蒸気過熱器管に高温腐食を生じることなしに発電用
蒸気の高温・高圧化が図れ、発電効率の大幅な向上を可
能とした新規な廃棄物の燃焼処理装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for the combustion treatment of waste such as municipal solid waste. By improving a heat recovery system for combustion exhaust gas from a combustion device, the present invention relates to a steam superheater tube. The present invention relates to a novel waste combustion treatment apparatus that can increase the temperature and pressure of steam for power generation without causing high-temperature corrosion, and can greatly improve power generation efficiency.

【0002】[0002]

【従来の技術】従前から、都市ごみ等の廃棄物の燃焼処
理装置に於いては、図3に示すように燃焼炉Aからの燃
焼排ガスGをボイラKへ導いて蒸気Sを発生させたあ
と、エコノマイザーJにより更に熱エネルギーを回収す
ると共に前記蒸気Sを過熱器Lにより加熱し、この過熱
蒸気S′を蒸気タービン発電機へ供給して発電を行なう
ようにした所謂ごみ発電方式が広く採用されている(特
開平5−256427号、特開平5−256428号
等)。
2. Description of the Related Art Conventionally, in an apparatus for combusting waste such as municipal solid waste, a combustion exhaust gas G from a combustion furnace A is guided to a boiler K to generate steam S as shown in FIG. The so-called refuse power generation system, in which heat energy is further recovered by an economizer J, the steam S is heated by a superheater L, and the superheated steam S 'is supplied to a steam turbine generator to generate power, is widely used. (JP-A-5-256427, JP-A-5-256428 and the like).

【0003】また、前記蒸気タービン発電機による発電
に於いては、蒸気タービン発電機へ導く過熱蒸気S′の
温度及び圧力が高いほど高い発電効率を得ることがで
き、従って前記過熱蒸気S′の温度・圧力を高めること
は、廃棄物の未利用エネルギーを有効に利用する観点か
らも、重要な課題となっている。即ち、発電用の過熱蒸
気S′を生成する過熱器Lは、可能な限り燃焼炉Aの燃
焼室A′の出口近傍に配設し、高温の燃焼排ガスGによ
り蒸気Sを加熱して、より高温・高圧の過熱蒸気S′と
するのが望ましい。
[0003] In the power generation by the steam turbine generator, the higher the temperature and pressure of the superheated steam S 'guided to the steam turbine generator, the higher the power generation efficiency can be obtained. Increasing the temperature and pressure is also an important issue from the viewpoint of effectively utilizing the unused energy of waste. That is, the superheater L that generates the superheated steam S 'for power generation is disposed as close to the exit of the combustion chamber A' of the combustion furnace A as possible, and the steam S is heated by the high-temperature combustion exhaust gas G, and It is desirable to use high temperature and high pressure superheated steam S '.

【0004】しかし、燃焼炉Aの燃焼室A′からの燃焼
排ガスG中には、廃棄物に含まれている塩化ビニールを
主体とした有機塩素化合物の燃焼に伴って生成する塩化
水素ガス(通常600〜1000ppm程度)や硫黄酸
化物(SOx・通常60〜100ppm・O2 12%換
算)が含まれており、高温に於いて激しい腐食性を示す
ことになる。
[0004] However, in the flue gas G from the combustion chamber A 'of the combustion furnace A, hydrogen chloride gas (usually hydrogen chloride gas produced by the combustion of organic chlorine compounds mainly composed of vinyl chloride contained in wastes) is contained. About 600 to 1000 ppm) and sulfur oxides (SOx, usually 60 to 100 ppm, converted to 12% O 2 ), and exhibit severe corrosiveness at high temperatures.

【0005】図2は前記塩化水素ガスを含有する燃焼排
ガスGの腐食線図を示すものである。図2からも明らか
なように、所謂高温腐食は塩化鉄またはアルカリ鉄硫酸
塩の介在により発生する腐食であって、温度が320℃
を越えると徐々に進行し、650℃でピークになる事が
知られている。つまり、320℃から480℃の間は、
塩化鉄またはアルカリ鉄硫酸塩の生成による腐食が、ま
た、460℃から700℃の間は、生成した塩化鉄また
はアルカリ鉄硫酸塩の分解による腐食が起こることにな
る。
FIG. 2 shows a corrosion diagram of the flue gas G containing the hydrogen chloride gas. As is clear from FIG. 2, the so-called high-temperature corrosion is corrosion caused by the presence of iron chloride or alkali iron sulfate, and the temperature is 320 ° C.
It is known that it gradually progresses when the temperature exceeds 650 ° C. and peaks at 650 ° C. In other words, between 320 ° C and 480 ° C,
Corrosion occurs due to the formation of iron chloride or alkali iron sulfate, and between 460 ° C and 700 ° C, corrosion occurs due to decomposition of the generated iron chloride or alkali iron sulfate.

【0006】即ち、前記過熱器Lの過熱器管や廃熱ボイ
ラKの各部伝熱面は、管壁温度が約300℃を越える
と、前記高温腐食の進行により急激に腐食されることに
なり、このような高温腐食の進行を避けるためには、廃
熱ボイラの、特に過熱器Lの運転圧力及び運転温度は、
それぞれ30kg/cm2 G及び300℃以下とする必
要があった。その結果、廃棄物発電の効率改善には蒸気
温度および圧力を上げることが望ましいが、従来の技術
では前述の理由から、蒸気の温度および圧力を上げるこ
とが出来なかった。
That is, when the tube wall temperature exceeds about 300 ° C., the superheater tube of the superheater L and the heat transfer surface of each part of the waste heat boiler K are rapidly corroded due to the progress of the high temperature corrosion. In order to avoid such high-temperature corrosion, the operating pressure and operating temperature of the waste heat boiler, particularly the superheater L,
Each had to be 30 kg / cm 2 G and 300 ° C. or less. As a result, it is desirable to increase the steam temperature and pressure in order to improve the efficiency of waste power generation, but in the prior art, it was not possible to increase the temperature and pressure of steam for the reasons described above.

【0007】尚、前記高温腐食の発生を防止する方策と
して、燃焼排ガスG内の塩化水素ガスを予かじめ除去
し、塩化水素ガスを除いた燃焼排ガスGを過熱器Lへ導
入する方法が考えられる。しかし、ごみ燃焼炉A、例え
ばストーカ式ごみ燃焼炉から排出される燃焼排ガスG
は、温度が850°〜950℃の高温であるため、この
中へ塩化水素ガスの吸収反応剤(例えば消石灰や生石
灰、炭酸カルシウム、炭酸ナトリウム等)を投入して塩
化水素ガスと十分に接触させたとしても、化学的な平衡
関係から生成した塩化カルシウム或いは塩化ナトリウム
は水蒸気と反応して再び塩化水素を生成するため、結局
塩化水素ガス濃度を引き下げることはできない。
As a measure for preventing the occurrence of the high-temperature corrosion, a method of removing hydrogen chloride gas in the flue gas G in advance and introducing the flue gas G excluding the hydrogen chloride gas into the superheater L is considered. Can be However, the flue gas G discharged from the refuse-burning furnace A, for example, the stoker-type refuse-burning furnace,
Has a high temperature of 850 ° C. to 950 ° C., and is charged with a hydrogen chloride gas absorbing reactant (eg, slaked lime, quicklime, calcium carbonate, sodium carbonate, etc.) and brought into sufficient contact with the hydrogen chloride gas. Even so, calcium chloride or sodium chloride generated from a chemical equilibrium relationship reacts with steam to generate hydrogen chloride again, so that the concentration of hydrogen chloride gas cannot be reduced after all.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従前の廃棄
物の燃焼処理装置に於ける上述の如き問題、即ち所謂高
温腐食の発生により発電用過熱蒸気の圧力・温度が約3
0kg/cm2 G・300℃以下に押さえられ、発電効
率のより一層の向上を図ることができないと云う問題を
解決せんとするものであり、過熱器管を腐食環境から隔
離することにより過熱器管の腐食防止と廃棄物発電に於
ける発電効率の大幅な向上を可能とした廃棄物の燃焼処
理装置を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, the pressure and temperature of the superheated steam for power generation are reduced to about 3 due to the above-mentioned problem in the conventional waste combustion treatment apparatus, that is, the occurrence of so-called high-temperature corrosion.
It is intended to solve the problem that the power generation efficiency cannot be further improved because it is suppressed to 0 kg / cm 2 G · 300 ° C. or less, and the superheater is isolated by isolating the superheater tube from the corrosive environment. It is an object of the present invention to provide a waste combustion treatment apparatus capable of preventing pipe corrosion and significantly improving power generation efficiency in waste power generation.

【0009】[0009]

【課題を解決するための手段】ごみ発電に於いて、発電
効率をより一層高めるためには、発電用過熱蒸気の圧力
・温度を30kg/cm2 G・250℃以上に高める必
要があり、過熱器管を腐食の少ない条件下に保持するこ
とが必要となる。一方、過熱器管を腐食の少ない条件下
に保持するには、過熱器へ導入する高温燃焼排ガス内の
塩化水素ガスを予め除去する必要があるが、前述の通り
高温度の燃焼排ガス内の塩化水素ガスを吸収剤により経
済的に除去することは現実に不可能である。そこで、本
願発明者等は高温燃焼排ガスによる過熱器管の間接加熱
を着想し、各種の熱媒体及び熱回収装置を用いて過熱蒸
気の発生試験を繰り返し実施した。
In order to further increase the power generation efficiency in waste power generation, it is necessary to increase the pressure and temperature of the superheated steam for power generation to 30 kg / cm 2 G · 250 ° C. or more. It is necessary to keep the vessel under less corrosive conditions. On the other hand, in order to maintain the superheater tube under conditions of low corrosion, it is necessary to remove hydrogen chloride gas in the high temperature combustion exhaust gas introduced into the superheater in advance. It is practically impossible to remove hydrogen gas economically with an absorbent. Therefore, the inventors of the present application conceived of indirect heating of the superheater tube by the high-temperature combustion exhaust gas, and repeatedly performed a superheated steam generation test using various heat media and heat recovery devices.

【0010】本発明は、前記過熱器管の高温燃焼排ガス
による間接加熱試験の結果を基にして創作されたもので
あり、請求項1の発明は、廃棄物の燃焼炉と、前記燃焼
炉からの燃焼排ガスの熱を回収する第一熱回収装置と、
第一熱回収装置からの燃焼排ガスの熱を回収する廃熱ボ
イラから成る第二熱回収装置と、前記第一熱回収装置で
回収した熱により第二熱回収装置で発生した蒸気を加熱
する第三熱回収装置と、第二熱回収装置からの燃焼排ガ
スを浄化する排ガス処理装置を備えた廃棄物の燃焼処理
装置に於いて、前記第一熱回収装置を燃焼排ガスと熱媒
体用の砂とを接触させて砂を加熱する砂加熱室とすると
共に、前記第三熱回収装置を前記第一熱回収装置からの
砂の熱により第二熱回収装置で発生した蒸気の過熱器管
を加熱する蒸気過熱器としたことを発明の基本構成とす
るものである。
The present invention has been made based on the results of an indirect heating test of the superheater tube with high-temperature combustion exhaust gas. The invention of claim 1 is directed to a waste-burning furnace and a waste-burning furnace. A first heat recovery device that recovers the heat of the combustion exhaust gas of
A second heat recovery device comprising a waste heat boiler for recovering heat of the combustion exhaust gas from the first heat recovery device, and a second heat recovery device for heating the steam generated in the second heat recovery device by the heat recovered in the first heat recovery device. Three heat recovery device, in a waste combustion treatment device provided with an exhaust gas treatment device for purifying the combustion exhaust gas from the second heat recovery device, wherein the first heat recovery device and the combustion exhaust gas and sand for the heat medium And a sand heating chamber for heating the sand by contacting the third heat recovery device with the heat of the sand from the first heat recovery device to heat the superheater tube of the steam generated in the second heat recovery device. A basic configuration of the present invention is to use a steam superheater.

【0011】請求項2の発明は、請求項1の発明に於い
て廃棄物の燃焼炉をストーカ炉とすると共に、第三熱回
収装置を、循環ブロワーにより供給した流動化ガスによ
り第一熱回収装置からの砂を流動させる流動層過熱器と
したことを発明の基本構成とするものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the waste combustion furnace is a stoker furnace, and the third heat recovery device is operated by the fluidized gas supplied by the circulation blower. The basic configuration of the present invention is a fluidized bed superheater for flowing sand from the apparatus.

【0012】請求項3の発明は、請求項1の発明に於い
て廃棄物の燃焼炉をストーカ炉とすると共に、第一熱回
収装置を、篩分け装置により飛灰等を除去した第三熱回
収装置からの砂を熱媒体として循環供給する構成の熱回
収装置としたことを発明の基本構成とするものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the waste combustion furnace is a stoker furnace and the first heat recovery device is a third heat removal device that removes fly ash and the like by a sieving device. A basic configuration of the present invention is to provide a heat recovery device configured to circulate and supply sand from the recovery device as a heat medium.

【0013】請求項4の発明は、請求項1、請求項2又
は請求項3の発明に於いて、熱媒体用の砂を粒径が1〜
2mmの砂とするようにしたことを発明の基本構成とす
るものである。
According to a fourth aspect of the present invention, in the first, second or third aspect of the present invention, the sand for the heat medium has a particle size of 1 to 3.
The use of 2 mm sand is the basic configuration of the present invention.

【0014】請求項5の発明は、請求項2の発明に於い
て、流動化ガスを空気又は窒素とし、流動層過熱器から
の流動化ガスをサイクロンを通して循環させると共に、
空気又は窒素の循環回路に蒸気タービンの復水を加熱す
るエコノマイザを介設するようにしたことを発明の基本
構成とするものである。
According to a fifth aspect of the present invention, in the second aspect, the fluidizing gas is air or nitrogen, and the fluidizing gas from the fluidized bed superheater is circulated through the cyclone.
The basic structure of the present invention is to provide an economizer for heating condensate of a steam turbine in a circulation circuit of air or nitrogen.

【0015】図1に示すように、廃棄物燃焼炉Aの燃焼
室から排出された850°〜950℃という高温の燃焼
排ガスGは、燃焼排ガス通路22を通して第一熱回収装
置8を構成する縦型の砂加熱室8の下部へ導入される。
また、熱媒体用の砂Cがこの装置の上方から散布され、
砂Cと燃焼排ガスGとを直接接触させることにより、効
率よく砂の加熱が行なわれる。
As shown in FIG. 1, the flue gas G having a high temperature of 850 ° C. to 950 ° C. discharged from the combustion chamber of the waste combustion furnace A passes through the flue gas passage 22 to form the first heat recovery device 8. It is introduced into the lower part of the sand heating chamber 8 of the mold.
Also, sand C for the heat medium is sprayed from above the device,
By bringing the sand C and the flue gas G into direct contact, the sand can be efficiently heated.

【0016】前記砂Cの粒径は、1から2mmの大きさ
が適当であり、上部から落下する空間部に於いて、廃棄
物燃焼炉Aからの燃焼排ガスGと向流接触させることに
より砂Cを加熱する。また、砂Cの散布量は、加熱され
た砂Cの温度が650℃以上になるように調節される。
The particle size of the sand C is suitably 1 to 2 mm, and the sand C is brought into countercurrent contact with the combustion exhaust gas G from the waste combustion furnace A in the space falling from the top. Heat C. The amount of the sand C to be sprayed is adjusted so that the temperature of the heated sand C becomes 650 ° C. or higher.

【0017】砂は、耐熱性及び対腐食性にすぐれた熱媒
体であり、廃棄物燃焼炉Aからの燃焼排ガスGが850
から950℃という高温度で且つ0.1〜3%の高濃度
の塩化水素ガスを含む過酷な雰囲気のガスであっても、
特に特殊な砂を使う必要はなく、通常の砂であっても、
燃焼排ガスGと直接接触させた状態下で十分に使用に耐
える事が出来る。尚、この様にして得られた高温の砂の
塩化水素の吸着量はごく微量であり、従って、砂Cを熱
の輸送媒体として作動させることにより、極めてクリー
ンな二次エネルギー源とする事ができる。
Sand is a heat medium excellent in heat resistance and corrosion resistance, and the combustion exhaust gas G from the waste combustion furnace A is 850.
Even at a high temperature of 950 ° C. and a gas in a severe atmosphere containing a high concentration of hydrogen chloride gas of 0.1 to 3%,
There is no need to use special sand.
It can sufficiently withstand use in a state of being in direct contact with the combustion exhaust gas G. The amount of hydrogen chloride adsorbed on the high-temperature sand thus obtained is very small. Therefore, by operating the sand C as a heat transport medium, it is possible to obtain an extremely clean secondary energy source. it can.

【0018】第一熱回収装置8から排出された燃焼排ガ
スGは、第二熱回収装置10として設けられた廃熱ボイ
ラへ導入される。そこで燃焼排ガスGの熱により水が加
熱・蒸発され、飽和蒸気が生成される。
The flue gas G discharged from the first heat recovery device 8 is introduced into a waste heat boiler provided as the second heat recovery device 10. Then, the water is heated and evaporated by the heat of the combustion exhaust gas G to generate saturated steam.

【0019】第一熱回収装置8で加熱された砂は、第三
熱回収装置16として設けられた流動層過熱器へ供給さ
れ、その熱により流動層部に設置した過熱器管18を介
して前記第二熱回収装置10で生成された飽和蒸気Sを
加熱し、過熱蒸気S1 を生成させる。
The sand heated by the first heat recovery device 8 is supplied to a fluidized bed superheater provided as a third heat recovery device 16 and is heated by a heat through a superheater tube 18 installed in the fluidized bed portion. heating the saturated steam S generated in the second heat recovery unit 10, to produce superheated steam S 1.

【0020】第三熱回収装置16の流動化ガスEとして
は空気又は窒素が使用され、これをサイクロン19を介
して循環使用するようにしている。この流動化ガスEの
循環回路中にはエコノマイザ21を設ける事ができ、こ
れによって蒸気タービンからの復水またはドレンを加熱
して熱回収をすると共に、同時に循環ガスを冷却する事
ができる。
As the fluidizing gas E of the third heat recovery unit 16, air or nitrogen is used, which is circulated through the cyclone 19. An economizer 21 can be provided in the circulation circuit of the fluidizing gas E, whereby the condensed water or the drain from the steam turbine is heated to recover heat, and at the same time, the circulated gas can be cooled.

【0021】また、第三熱回収装置16では、前記第一
熱回収装置8から供給されてくる粒径1〜2mmの高温
の砂が流動媒体として用いられるが、この砂Cが緩やか
に流動する程度の流動化ガスEが供給される。また、こ
れと共に過熱器管18への伝熱をスムーズに行わせるた
め、0.1〜0.3mmの飛灰Hが別途に供給され、流
動化される。更に、第三熱回収装置16から飛散する
0.1〜0.3mmの飛灰Hや砂Cはサイクロン19で
捕集され、第三熱回収装置16の下部へ循環供給され
る。尚、前記0.1〜0.3mmの飛灰Hとしては燃焼
排ガス処理装置や廃熱ボイラ10等に於ける集塵ダスト
或いは後述する篩分け装置20で分別した飛灰Hや砂C
が利用される。
In the third heat recovery device 16, high-temperature sand having a particle diameter of 1 to 2 mm supplied from the first heat recovery device 8 is used as a fluid medium, and the sand C flows slowly. Of fluidized gas E is supplied. At the same time, fly ash H of 0.1 to 0.3 mm is separately supplied and fluidized in order to smoothly transfer heat to the superheater tube 18. Further, fly ash H and sand C of 0.1 to 0.3 mm scattered from the third heat recovery device 16 are collected by the cyclone 19 and circulated and supplied to a lower portion of the third heat recovery device 16. The fly ash H having a diameter of 0.1 to 0.3 mm may be dust collected in a flue gas treatment device, a waste heat boiler 10 or the like, or fly ash H or sand C separated by a sieving device 20 described later.
Is used.

【0022】第三熱回収装置16からの流動砂Cは、飛
灰Hと混合した状態となって流動床下部から排出された
あと、風力選別や振動篩などの篩分け装置20で分別さ
れ、飛灰H等を取り除いたあと粒径1〜2mmの砂Cの
みが第一熱回収装置8へ返送されて行く。
The fluidized sand C from the third heat recovery device 16 is mixed with the fly ash H and discharged from the lower part of the fluidized bed, and then separated by a sieving device 20 such as a wind filter or a vibrating sieve. After removing the fly ash H and the like, only the sand C having a particle size of 1 to 2 mm is returned to the first heat recovery device 8.

【0023】[0023]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。図1は本発明の実施形態に係る廃
棄物の燃焼処理装置のフローシートであり、廃棄物燃焼
炉Aとして所謂ストーカ炉を用いた場合を示すものであ
る。図1に於いて、1は廃棄物ピット、2はごみホッパ
ー、3は乾燥ストーカ、4は燃焼ストーカ、5は後燃焼
ストーカ、6は廃棄物燃焼炉Aの一次燃焼室、7は二次
燃焼室、8は第一熱回収装置を形成する砂加熱室、9は
砂ホッパー、10は第二熱回収装置を形成する廃熱ボイ
ラ、11は空気予熱器、12は急速冷却塔、13は燃焼
排ガス処理装置の主体を形成するバグフィルタ、14は
誘引送風機、15は煙突、16は第三熱回収装置を形成
する流動層過熱器、17は循環空気ブロアー、18は過
熱器管、19はサイクロン、20は篩分け装置、21は
エコノマイザー、Aは廃棄物燃焼炉(ストーカ炉)、B
は廃棄物、Cは砂、Dは燃焼残渣、Gは燃焼排ガス、E
は流動化ガス(空気)、Hは粒径0.1〜0.3mmの
飛灰、Sは飽和蒸気、S1 は過熱蒸気である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow sheet of a waste combustion treatment apparatus according to an embodiment of the present invention, in which a so-called stoker furnace is used as a waste combustion furnace A. In FIG. 1, 1 is a waste pit, 2 is a waste hopper, 3 is a drying stoker, 4 is a burning stoker, 5 is a post-burning stoker, 6 is a primary combustion chamber of a waste combustion furnace A, and 7 is a secondary combustion. Chamber 8, a sand heating chamber forming a first heat recovery device, 9 a sand hopper, 10 a waste heat boiler forming a second heat recovery device, 11 an air preheater, 12 a rapid cooling tower, 13 a combustion A bag filter which forms the main body of the exhaust gas treatment device, 14 is an induction blower, 15 is a chimney, 16 is a fluidized bed superheater which forms a third heat recovery device, 17 is a circulating air blower, 18 is a superheater tube, and 19 is a cyclone , 20 is a sieving apparatus, 21 is an economizer, A is a waste combustion furnace (stoker furnace), B
Is waste, C is sand, D is combustion residue, G is flue gas, E
The fluidizing gas (air), H is the fly ash particle size 0.1 to 0.3 mm, S is the saturated vapor, S 1 is superheated steam.

【0024】廃棄物Bは廃棄物ピット1に蓄えられてお
り、クレーン(図示省略)等によりごみホッパー2内へ
投入され、プッシャー(図示省略)を介して廃棄物燃焼
炉Aの乾燥ストーカ3上へ順次供給されて行く。また、
乾燥ストーカ3上へ供給された廃棄物Bは、燃焼ストー
カ4及び後燃焼ストーカ5上へ順次送られる過程で完全
燃焼され、燃焼残渣Dはスラグ冷却槽(図示省略)内へ
排出されて行く。
The waste B is stored in the waste pit 1 and is put into the refuse hopper 2 by a crane (not shown) or the like, and is placed on the drying stoker 3 of the waste combustion furnace A via a pusher (not shown). It is sequentially supplied to. Also,
The waste B supplied to the drying stoker 3 is completely burned in the course of being sequentially sent to the combustion stoker 4 and the post-burning stoker 5, and the combustion residue D is discharged into a slag cooling tank (not shown).

【0025】尚、廃棄物燃焼炉(ストーカ炉)Aそのも
のは公知であるため、ここではその詳細な説明は省略す
る。また、図1の実施形態に於いては、廃棄物燃焼炉A
としてストーカ炉を用いているが、ストーカ炉に替えて
他の構成の廃棄物燃焼炉、例えば流動層燃焼炉等であっ
てもよいことは勿論である。
Since the waste combustion furnace (stoker furnace) A itself is known, a detailed description thereof is omitted here. Further, in the embodiment of FIG.
Although a stoker furnace is used as a stoker furnace, it is a matter of course that a waste combustion furnace having another configuration, such as a fluidized bed combustion furnace, may be used instead of the stoker furnace.

【0026】前記第一熱回収装置8を形成する砂加熱室
8は、ストーカ炉Aの二次燃焼室7に隣接して配置され
ており、底部を逆錐状に形成した竪型の筒体状に形成さ
れていて、後述する如く、上方空間部が砂Cと燃焼排ガ
スGとの向流接触部を形成する。
A sand heating chamber 8 forming the first heat recovery device 8 is disposed adjacent to the secondary combustion chamber 7 of the stoker furnace A, and has a vertical cylindrical shape having a bottom formed in an inverted pyramid shape. The upper space forms a countercurrent contact portion between the sand C and the combustion exhaust gas G as described later.

【0027】当該砂加熱室8の上方には砂ホッパー9が
設けられており、砂散布器9aを通して第三熱回収装置
16から返送されてくる粒径1〜2mmの砂Cが、天井
面から下方へ向けて均一に散布される。更に、砂加熱室
8の前記2次燃焼室7側の側壁下方には高温燃焼排ガス
Gの流入口8aが、また、当該流入口8aと対向する側
の側壁上方には燃焼排ガスGの流出口8bが、夫々形成
されている。
A sand hopper 9 is provided above the sand heating chamber 8, and sand C having a particle diameter of 1 to 2 mm returned from the third heat recovery unit 16 through the sand disperser 9a flows from the ceiling surface. Spreads downward uniformly. Further, an inflow port 8a of the high-temperature combustion exhaust gas G is provided below the side wall of the sand heating chamber 8 on the side of the secondary combustion chamber 7, and an outflow port of the combustion exhaust gas G is provided above the side wall opposite to the inflow port 8a. 8b are formed respectively.

【0028】前記廃棄物燃焼炉Aの二次燃焼室7の上方
から排ガス通路22を通して導出された約850°〜9
50℃の温度を有する高温燃焼排ガスGは、通路22に
沿って流下したあとその下方で反転し、流入口8aから
砂加熱室8内へ流入する。当該砂加熱室8内へ流入した
燃焼排ガスGは、砂加熱室8内を上方へ向けて流通する
間に、落下する砂Cと向流接触することにより保有する
熱エネルギーを砂Cへ与え、これを約650℃以上の温
度に過熱する。
Approximately 850 ° -9 ° drawn out through the exhaust gas passage 22 from above the secondary combustion chamber 7 of the waste combustion furnace A
The high-temperature combustion exhaust gas G having a temperature of 50 ° C. flows down along the passage 22 and then reverses below it, and flows into the sand heating chamber 8 from the inlet 8 a. The combustion exhaust gas G that has flowed into the sand heating chamber 8 gives heat energy to the sand C by flowing in the sand heating chamber 8 upward while flowing in contact with the falling sand C, This is heated to a temperature above about 650 ° C.

【0029】尚、前記砂散布器9aから砂加熱室8内へ
散布する砂Cの散布量は、前述の如く砂Cの温度が約6
50℃以上となるように調整される。また前述の通り、
熱媒体である砂Cに燃焼排ガスG内の塩化水素ガス等が
吸着される量は極く僅かであり、殆ど無視し得るもので
ある。
The amount of the sand C to be sprayed from the sand sprayer 9a into the sand heating chamber 8 depends on the temperature of the sand C as described above.
The temperature is adjusted to be 50 ° C. or higher. As mentioned above,
The amount of hydrogen chloride gas and the like in the combustion exhaust gas G adsorbed on the sand C as the heat medium is extremely small and can be almost ignored.

【0030】前記第二熱回収装置10を形成する廃熱ボ
イラ10は、前記砂加熱室8に隣接してその下流側に設
けられており、前記第1熱回収装置8から排出された燃
焼排ガスG1 の保有熱を回収し、飽和蒸気Sを生成す
る。即ち、前記第一熱回収装置8から排出された燃焼排
ガスG1 は、なお350〜450℃の温度を保持してお
り、第二熱回収装置10としての廃熱ボイラへ導入さ
れ、ここで飽和蒸気を生成する。また、第二熱回収装置
10から排出された燃焼排ガスG2 は、空気予熱器11
で熱回収をされたあと、急速冷却塔12及びバグフィル
タ13等から成る排ガス処理装置で処理され、その後誘
引送風機14および煙突15を通して大気中へ放出され
る。
A waste heat boiler 10 forming the second heat recovery unit 10 is provided adjacent to and downstream of the sand heating chamber 8, and the combustion exhaust gas discharged from the first heat recovery unit 8 is provided. The heat retained in G 1 is recovered to generate saturated steam S. That is, the combustion exhaust gas G 1 discharged from the first heat recovery unit 8 is still holds the temperature of 350 to 450 ° C., is introduced into the waste heat boiler of the second heat recovery unit 10, the saturation where Generates steam. Further, the combustion exhaust gas G 2 discharged from the second heat recovery device 10 is supplied to the air preheater 11.
After being recovered by the heat treatment, it is processed by an exhaust gas treatment device including a rapid cooling tower 12 and a bag filter 13, and then discharged to the atmosphere through an induced blower 14 and a chimney 15.

【0031】前記第三熱回収装置16を形成する流動層
過熱器は所謂流動床型に構成されており、流動床の下方
より循環ブロアー17により空気(又は窒素)を流動化
ガスEとして供給することにより、第三熱回収装置16
の内部に前記砂Cと流動化ガスEとから成る流動層部を
形成している。また、当該第三熱回収装置16の流動層
部には過熱器管18が設けられており、前記第二熱回収
装置10に於いて生成された飽和蒸気Sを加熱して、発
電用の過熱蒸気(温度400℃、圧力40kg/cm2
G)S1 を生成する。
The fluidized bed superheater forming the third heat recovery unit 16 is of a so-called fluidized bed type, and air (or nitrogen) is supplied as a fluidizing gas E from below the fluidized bed by a circulation blower 17. As a result, the third heat recovery device 16
Is formed a fluidized bed portion composed of the sand C and the fluidizing gas E. Further, a superheater tube 18 is provided in the fluidized bed portion of the third heat recovery device 16 to heat the saturated steam S generated in the second heat recovery device 10 so as to generate a superheat for power generation. Steam (temperature 400 ° C, pressure 40kg / cm 2
G) to generate the S 1.

【0032】当該第三熱回収装置16の流動層部へは、
前記第一熱回収装置8内で加熱された砂Cが供給されて
くる。即ち、第一熱回収装置8内で高温の燃焼排ガスG
により加熱され、650℃以上の高温になった熱媒体用
の砂Cは、第一熱回収装置8の下部より重力で排出さ
れ、砂排出管23を通して第三熱回収装置16の流動層
部内へ供給される。
The fluidized bed portion of the third heat recovery device 16 is
Sand C heated in the first heat recovery device 8 is supplied. That is, the high temperature flue gas G in the first heat recovery device 8
The sand C for a heat medium heated to a temperature of 650 ° C. or higher is discharged by gravity from the lower part of the first heat recovery device 8 and flows into the fluidized bed portion of the third heat recovery device 16 through the sand discharge pipe 23. Supplied.

【0033】また、当該、第三熱回収装置16の下方よ
り供給された流動化ガスEは、約450〜650℃の高
温度となってその上方より排出され、サイクロン19に
於いて随伴して来た粒径が0.1〜0.3mmの飛灰や
砂を分離除去される。その後、当該流動化ガスEは、エ
コノマイザー21に於いて蒸気タービンを駆動させた後
の蒸気の復水を過熱すること等により約450℃以下に
まで冷却され、循環空気ブロワー17によって前記流動
層部の下方へ戻される。尚、第三熱回収装置16へ供給
する流動化ガスEの供給量は、流動熱媒体として供給さ
れた粒径1〜2mmの熱媒体用の砂Cが、流動層部で僅
かに動く程度の供給量で十分である。
The fluidizing gas E supplied from below the third heat recovery unit 16 has a high temperature of about 450 to 650 ° C. and is discharged from above, and accompanying the cyclone 19. Fly ash and sand having a particle size of 0.1 to 0.3 mm are separated and removed. Thereafter, the fluidized gas E is cooled to about 450 ° C. or less by, for example, heating the condensate of the steam after driving the steam turbine in the economizer 21, and the fluidized gas E is circulated by the circulating air blower 17. Part is returned below. The supply amount of the fluidizing gas E supplied to the third heat recovery device 16 is such that the sand C for the heat medium having a particle size of 1 to 2 mm supplied as the fluidized heat medium slightly moves in the fluidized bed portion. The supply is sufficient.

【0034】更に、当該第三熱回収装置16の前記流動
層部へは、別途に0.1〜0.3mmの飛灰Hを供給す
るように構成されており、これによって流動する砂Cか
ら過熱器管18への伝熱がスムーズに行なえるように為
されている。尚、前記0.1〜0.3mm粒径の飛灰H
としては、廃熱ボイラ10や燃焼排ガス処理装置で回収
した集塵灰等が使用される。また、第三熱回収装置16
から流動化ガスEと共に排出された粒径が0.1〜0.
3mmの飛灰Hや砂Cは、前記サイクロン19で補集さ
れ、管路25を通して流動層部内へ戻される。
Further, the fly ash H of 0.1 to 0.3 mm is separately supplied to the fluidized bed portion of the third heat recovery device 16 so that the sand C flowing from the fluid ash H can be supplied from the fly ash H. The heat transfer to the superheater tube 18 is performed smoothly. The fly ash H having a particle size of 0.1 to 0.3 mm is used.
For example, dust ash collected by the waste heat boiler 10 or the combustion exhaust gas treatment device is used. In addition, the third heat recovery device 16
The particle diameter discharged together with the fluidizing gas E from 0.1 to 0.1.
The fly ash H and sand C of 3 mm are collected by the cyclone 19 and returned to the fluidized bed through the pipe 25.

【0035】一方、前記第三熱回収装置16に於いて蒸
気過熱器管18を介して飽和蒸気Sへ熱を与えることに
より冷却された砂Cは、第三熱回収装置16の下方より
取り出され、風力選別装置や振動篩等の篩分け装置20
を通して飛灰等を篩い分けしたあと、砂供給管24を通
して砂ホッパー9へ戻される。
On the other hand, the sand C cooled by applying heat to the saturated steam S via the steam superheater tube 18 in the third heat recovery device 16 is taken out from below the third heat recovery device 16. Sieving device 20 such as a wind screen sorter or a vibrating sieve
Then, the fly ash and the like are sieved and returned to the sand hopper 9 through the sand supply pipe 24.

【0036】[0036]

【発明の効果】本発明に於いては、廃棄物焼却炉で生成
された高温の燃焼排ガスを第一熱回収装置(砂加熱室)
へ導き、そこで燃焼排ガスと熱媒体である砂とを接触熱
交換させることにより熱砂を作ると共に、この熱砂を、
循環空気を流動化ガスとして用いる第三熱回収装置(流
動層過熱器)へ供給し、その流動層内に設置した過熱器
管を介して飽和蒸気を加熱し、過熱蒸気を得る構成とし
ている。このため、過熱器管は、廃棄物燃焼炉で生成さ
れた塩化水素ガスや硫黄酸化物などの腐食性ガスを含む
燃焼排ガスと直接接触することなく、腐食性雰囲気から
完全に隔離された清浄雰囲気中で運転されるので、所謂
高温腐食から全く開放される事になる。その結果、従前
の所謂ごみ発電に於いては、過熱器管等の腐食を回避す
るため、過熱蒸気の運転条件は300℃・30kg/c
2 Gが限界であったが、本発明によれば、容易に50
0℃x100kg/cm2 Gの過熱蒸気を得る事がで
き、それに伴い廃棄物発電に於ける発電効果を、従来の
10〜15%程度から30〜35%程度まで引上げるこ
とが可能となった。本発明は上述のように、廃棄物発電
の発電効果を高めることにより廃棄物燃焼による熱回収
効率を著しく高くする事が出来、優れた実用的効用を奏
するものである。
According to the present invention, a high-temperature flue gas generated in a waste incinerator is used as a first heat recovery unit (sand heating chamber).
To make hot sand by contact heat exchange between the combustion exhaust gas and the sand that is the heat medium.
The circulating air is supplied to a third heat recovery device (fluidized bed superheater) using fluidized gas, and the saturated steam is heated through a superheater tube installed in the fluidized bed to obtain superheated steam. For this reason, the superheater tube does not come into direct contact with the combustion exhaust gas containing corrosive gas such as hydrogen chloride gas or sulfur oxide generated in the waste combustion furnace, and the clean atmosphere is completely isolated from the corrosive atmosphere. Since it is operated inside, it is completely free from so-called high-temperature corrosion. As a result, in the conventional so-called waste power generation, the operating condition of the superheated steam is 300 ° C./30 kg / c in order to avoid corrosion of the superheater tube and the like.
Although m 2 G was the limit, according to the present invention, 50 m
A superheated steam of 0 ° C. × 100 kg / cm 2 G can be obtained, and as a result, the power generation effect in waste power generation can be increased from about 10 to 15% of the conventional to about 30 to 35%. . As described above, the present invention can remarkably increase the heat recovery efficiency due to waste combustion by enhancing the power generation effect of waste power generation, and has excellent practical utility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る廃棄物の燃焼処理装
置の全体系統図である。
FIG. 1 is an overall system diagram of a waste combustion treatment apparatus according to an embodiment of the present invention.

【図2】塩化水素ガスを含有する燃焼排ガスの管壁温度
と腐食速度の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a pipe wall temperature and a corrosion rate of a combustion exhaust gas containing hydrogen chloride gas.

【図3】従前の廃棄物の燃焼処理装置の概要説明図であ
る。
FIG. 3 is a schematic explanatory view of a conventional waste combustion treatment apparatus.

【符号の簡単な説明】[Brief description of reference numerals]

Aは廃棄物燃焼炉(ストーカ炉)、Bは廃棄物、Cは
砂、Dは燃焼残査、Eは流動化ガス(空気)、Gは燃焼
排ガス、Hは粒径0.1〜0.3mmの飛灰、Sは飽和
蒸気、S1 は過熱蒸気、1は廃棄物ピット、2はごみホ
ッパ、3は乾燥ストーカ、4は燃焼ストーカ、5は後燃
焼ストーカ、6は一次燃焼室、7は二次燃焼室、8は第
一熱回収装置(砂加熱室)、8aは燃焼排ガス流入口、
8bは燃焼排ガス流出口、9は砂ホッパ、9aは砂散布
器、10は第二熱回収装置(廃熱ボイラ)、11は空気
予熱器、12は急速冷却塔、13はバグフィルタ、14
は誘引送風機、15は煙突、16は第三熱回収装置(流
動層過熱器)、17は循環空気ブロアー、18は伝熱
管、19はサイクロン、20は篩分け装置、21はエコ
ノマイザー、22は燃焼排ガス通路、23は砂供給管、
24は砂供給管、25は管路。
A is a waste combustion furnace (stoker furnace), B is waste, C is sand, D is combustion residue, E is fluidized gas (air), G is combustion exhaust gas, and H is particle size 0.1 to 0.1. 3 mm fly ash, S is saturated steam, S 1 is superheated steam, 1 is waste pit, 2 is waste hopper, 3 is dry stoker, 4 is combustion stoker, 5 is post-burning stoker, 6 is primary combustion chamber, 7 Is a secondary combustion chamber, 8 is a first heat recovery unit (sand heating chamber), 8a is a flue gas inlet,
8b is a flue gas outlet, 9 is a sand hopper, 9a is a sand disperser, 10 is a second heat recovery unit (waste heat boiler), 11 is an air preheater, 12 is a rapid cooling tower, 13 is a bag filter, 14
Is an induction blower, 15 is a chimney, 16 is a third heat recovery device (fluidized bed superheater), 17 is a circulating air blower, 18 is a heat transfer tube, 19 is a cyclone, 20 is a sieving device, 21 is an economizer, 22 is Flue gas passage, 23 is a sand supply pipe,
24 is a sand supply pipe, 25 is a pipeline.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物の燃焼炉と、前記燃焼炉からの燃
焼排ガスの熱を回収する第一熱回収装置と、第一熱回収
装置からの燃焼排ガスの熱を回収する廃熱ボイラから成
る第二熱回収装置と、前記第一熱回収装置で回収した熱
により第二熱回収装置で発生した蒸気を加熱する第三熱
回収装置と、第二熱回収装置からの燃焼排ガスを浄化す
る排ガス処理装置を備えた廃棄物の燃焼処理装置に於い
て、前記第一熱回収装置を燃焼排ガスと熱媒体用の砂と
を接触させて砂を加熱する砂加熱室とすると共に、前記
第三熱回収装置を前記第一熱回収装置からの砂の熱によ
り第二熱回収装置で発生した蒸気の過熱器管を加熱する
蒸気過熱器としたことを特徴とする廃棄物の燃焼処理装
置。
1. A combustion furnace for waste, a first heat recovery device for recovering heat of flue gas from the combustion furnace, and a waste heat boiler for recovering heat of flue gas from the first heat recovery device. A second heat recovery device, a third heat recovery device for heating steam generated in the second heat recovery device with heat recovered in the first heat recovery device, and an exhaust gas for purifying combustion exhaust gas from the second heat recovery device In the waste combustion treatment device provided with a treatment device, the first heat recovery device is a sand heating chamber for heating sand by contacting combustion exhaust gas with sand for a heat medium, and the third heat recovery device. A waste combustion treatment device, wherein the recovery device is a steam superheater that heats a superheater tube of steam generated in the second heat recovery device by heat of sand from the first heat recovery device.
【請求項2】 廃棄物の燃焼炉をストーカ炉とすると共
に第三熱回収装置を、循環ブロワーにより供給した流動
化ガスにより第一熱回収装置からの砂を流動させる流動
層過熱器とした請求項1に記載の廃棄物の燃焼処理装
置。
2. The waste combustion furnace is a stoker furnace, and the third heat recovery device is a fluidized bed superheater for flowing sand from the first heat recovery device by fluidizing gas supplied by a circulation blower. Item 2. A waste combustion treatment apparatus according to Item 1.
【請求項3】 廃棄物の燃焼炉をストーカ炉とすると共
に第一熱回収装置を、篩分け装置により飛灰等を除去し
た第三熱回収装置からの砂を熱媒体として循環供給する
構成の熱回収装置とした請求項1に記載の廃棄物の燃焼
処理装置。
3. The waste combustion furnace is a stoker furnace, and the first heat recovery device is circulated and supplied as sand as a heat medium from the third heat recovery device from which fly ash and the like are removed by a sieving device. The waste combustion treatment device according to claim 1, which is a heat recovery device.
【請求項4】 熱媒体用の砂を粒径が1〜2mmの砂と
するようにした請求項1、請求項2又は請求項3に記載
の廃棄物の燃焼処理装置。
4. The waste combustion treatment apparatus according to claim 1, wherein the heat medium sand is sand having a particle size of 1 to 2 mm.
【請求項5】 流動化ガスを空気又は窒素とし、流動層
過熱器からの流動化ガスをサイクロンを通して循環させ
ると共に、空気又は窒素の循環回路に蒸気タービンの復
水を加熱するエコノマイザを介設する構成とした請求項
2に記載の廃棄物の燃焼処理装置。
5. The fluidizing gas is air or nitrogen, the fluidizing gas from the fluidized bed superheater is circulated through a cyclone, and an air or nitrogen circulation circuit is provided with an economizer for heating the condensate of the steam turbine. The waste combustion treatment device according to claim 2, wherein the waste combustion treatment device is configured.
JP03634298A 1998-02-18 1998-02-18 Waste treatment equipment Expired - Fee Related JP3797781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03634298A JP3797781B2 (en) 1998-02-18 1998-02-18 Waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03634298A JP3797781B2 (en) 1998-02-18 1998-02-18 Waste treatment equipment

Publications (2)

Publication Number Publication Date
JPH11230517A true JPH11230517A (en) 1999-08-27
JP3797781B2 JP3797781B2 (en) 2006-07-19

Family

ID=12467171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03634298A Expired - Fee Related JP3797781B2 (en) 1998-02-18 1998-02-18 Waste treatment equipment

Country Status (1)

Country Link
JP (1) JP3797781B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030918B1 (en) 2010-09-16 2011-04-27 지이큐솔루션 주식회사 Waste heat recovery boiler for high temperature and doubleness waste heat recovery system having the same
CN103438415A (en) * 2013-09-25 2013-12-11 济南澳海炭素有限公司 Waste heat boiler of carbon calcining furnace
CN105757675A (en) * 2016-04-15 2016-07-13 北京神雾环境能源科技集团股份有限公司 System and method for treating household garbage
CN106524176A (en) * 2016-12-30 2017-03-22 重庆科技学院 Waste gasification melting combustion system
CN106642138A (en) * 2016-12-30 2017-05-10 重庆科技学院 Waste gasification melting furnace
WO2019097932A1 (en) * 2017-11-16 2019-05-23 株式会社Ihi Energy storage device
CN115597075A (en) * 2022-10-31 2023-01-13 中国矿业大学(Cn) Ultralow-concentration gas heat-storage combustion system and method based on magnetic field induction

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030918B1 (en) 2010-09-16 2011-04-27 지이큐솔루션 주식회사 Waste heat recovery boiler for high temperature and doubleness waste heat recovery system having the same
CN103438415A (en) * 2013-09-25 2013-12-11 济南澳海炭素有限公司 Waste heat boiler of carbon calcining furnace
CN105757675A (en) * 2016-04-15 2016-07-13 北京神雾环境能源科技集团股份有限公司 System and method for treating household garbage
CN106524176A (en) * 2016-12-30 2017-03-22 重庆科技学院 Waste gasification melting combustion system
CN106642138A (en) * 2016-12-30 2017-05-10 重庆科技学院 Waste gasification melting furnace
CN106642138B (en) * 2016-12-30 2018-11-27 重庆科技学院 waste gasification melting furnace
CN106524176B (en) * 2016-12-30 2018-11-27 重庆科技学院 Waste gasification melt-combustion system
WO2019097932A1 (en) * 2017-11-16 2019-05-23 株式会社Ihi Energy storage device
JPWO2019097932A1 (en) * 2017-11-16 2020-07-16 株式会社Ihi Energy storage device
AU2018370396B2 (en) * 2017-11-16 2021-02-25 Ihi Corporation Energy storage device
US11156410B2 (en) 2017-11-16 2021-10-26 Ihi Corporation Energy storage device
CN115597075A (en) * 2022-10-31 2023-01-13 中国矿业大学(Cn) Ultralow-concentration gas heat-storage combustion system and method based on magnetic field induction
CN115597075B (en) * 2022-10-31 2023-06-30 中国矿业大学 Ultralow-concentration gas heat-storage combustion system and method based on magnetic field induction

Also Published As

Publication number Publication date
JP3797781B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
CN100529532C (en) Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
CN105214457B (en) A kind of fume desulfuring and denitrifying Processes and apparatus
CN100535131C (en) Dry-method dust collection and surplus energy recovery device for steel-smelting converter flue gas
CN109458623B (en) High-salt-content high-chlorine-content organic waste liquid incineration environment-friendly energy-saving discharge system
EP0767343A2 (en) Heat recovery system and power generation system
JPH11148625A (en) Device and method of recovering combustion heat of waste
CN103292339B (en) Comprehensive processing recycling process and device of bromine-contained high temperature flue gas
JPWO2004023040A1 (en) Smoke treatment system
KR970006969B1 (en) Incinerator
JP3009926B2 (en) Flue gas cooling and purification method
JP2005098552A (en) High-moisture waste incineration system with gas turbine
JP3797781B2 (en) Waste treatment equipment
TW397706B (en) Methods for reactivating ash particulates containing unreacted CaO for purposes of the reuse thereof
CN112555834A (en) Garbage incineration system and method coupled with chemical chain air separation technology
JP4295653B2 (en) High temperature exhaust gas treatment method and cooling device used in high temperature exhaust gas treatment process
JP2001248827A (en) Equipment for treatment of incineration waste gas for obtaining clean incineration fly ash
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
CN209944283U (en) High-speed circulation combustion system
JP3640327B2 (en) High-efficiency power generation method, exhaust gas treatment method and exhaust gas treatment device in a waste treatment plant
JP2002121574A (en) System for producing hydrogen from organic waste
TW588140B (en) Flue gas recirculation power plant with waste heat and byproduct recovery
JP3514838B2 (en) Heat recovery system in waste treatment plant
CN212746475U (en) Flue gas purification and waste heat utilization system for low-calorific-value garbage incinerator
CN218132533U (en) Tail gas treatment system of sludge pyrolysis carbonization furnace
CN209944341U (en) Waste high-temperature air/steam gasification combustion melting system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees