JPH11222950A - Heat insulating plate for wooden building - Google Patents

Heat insulating plate for wooden building

Info

Publication number
JPH11222950A
JPH11222950A JP3968298A JP3968298A JPH11222950A JP H11222950 A JPH11222950 A JP H11222950A JP 3968298 A JP3968298 A JP 3968298A JP 3968298 A JP3968298 A JP 3968298A JP H11222950 A JPH11222950 A JP H11222950A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating plate
weight
wooden building
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3968298A
Other languages
Japanese (ja)
Inventor
Hidehiro Sasaki
秀浩 佐々木
Masakazu Sakaguchi
正和 坂口
Mitsuhiro Akiyama
光宏 秋山
Toshio Tokoro
寿男 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP3968298A priority Critical patent/JPH11222950A/en
Publication of JPH11222950A publication Critical patent/JPH11222950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Building Environments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating plate for a wooden building excellent in chemical resistance and heat insulating effect per unit weight and unit thickness. SOLUTION: A heat insulating plate used being fitted between support frame bodies of a wooden building is formed of a foam grain in-die molding comprising a polypropylene resin/styrene graft polymer obtained by graft-polymerizing a styrene monomer with polypropylene resin (the ratio of polypropylene resin content/styrene resin content is 95-65 wt.%/5-35 wt.%), as base material resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、木造建築物の床部
や壁の断熱を行うために支持枠体間に嵌め込まれて使用
される木造建築物用断熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating board for a wooden building which is used by being fitted between support frames to insulate the floor and walls of the wooden building.

【0002】[0002]

【従来の技術】従来、木造建築物の床部や壁の支持枠間
に嵌め込まれて使用される木造建築物用断熱板として、
ポリプロピレン系樹脂を基材樹脂とする発泡粒子型内成
形体からなるものが知られている。このような断熱板
は、それをシロアリ等の害虫から保護するためにその表
面に適用される防蟻剤や木材に塗布する防腐剤等の薬品
に対しては良好な耐薬品性を示すものの、その単位重量
及び単位厚さ当りの断熱効果がまだ低いという問題を含
むものであった。単位重量及び単位厚さ当りの断熱効果
が低いと高い断熱効果を有する断熱板を得ようとするに
は、その断熱板の厚さを厚くすることが必要になるが、
断熱板の軽量性が損なわれるとともにその断熱板のコス
トも高くなる等の問題が生じる。
2. Description of the Related Art Conventionally, as a heat insulating plate for a wooden building, which is used by being fitted between a floor and a supporting frame of a wall of the wooden building,
What consists of a molded article in a foaming particle type | mold which uses a polypropylene resin as a base resin is known. Although such a heat insulating board shows good chemical resistance to chemicals such as termiticides applied to its surface and preservatives applied to wood to protect it from pests such as termites, The problem was that the heat insulating effect per unit weight and unit thickness was still low. In order to obtain a heat insulating plate having a high heat insulating effect when the heat insulating effect per unit weight and unit thickness is low, it is necessary to increase the thickness of the heat insulating plate,
There are problems such as the lightness of the heat insulating plate being impaired and the cost of the heat insulating plate being increased.

【0003】[0003]

【発明が解決しようとする課題】本発明は、耐薬品性並
びに単位重量及び単位厚さ当りの断熱効果の優れた木造
建築物用断熱板を提供することをその課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat insulating board for a wooden building having excellent chemical resistance and heat insulating effect per unit weight and unit thickness.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果本発明を完成するに
至った。即ち、本発明によれば、木造建築物の支持枠体
間に嵌め込まれて使用される断熱板であって、該断熱板
はポリプロピレン系樹脂にスチレン系単量体をグラフト
重合させて得られる、〔ポリプロピレン系樹脂含有量〕
/〔スチレン系樹脂含有量〕の比が95〜65重量%/
5〜35重量%であるポリプロピレン系樹脂/スチレン
グラフト共重合体を基材樹脂とする発泡粒子型内成形体
からなることを特徴とする木造建築物用断熱板が提供さ
れる。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, according to the present invention, an insulating plate used by being fitted between support frames of a wooden building, the insulating plate being obtained by graft-polymerizing a styrene-based monomer to a polypropylene-based resin, [Polypropylene resin content]
/ [Styrene resin content] ratio is 95 to 65% by weight /
There is provided a heat insulating board for a wooden building, comprising a molded article in a foamed particle mold containing 5 to 35% by weight of a polypropylene resin / styrene graft copolymer as a base resin.

【0005】[0005]

【発明の実施の形態】本発明の木造建築物用断熱板は、
ポリプロピレン系樹脂にスチレン系単量体をグラフト重
合させて得られる、〔ポリプロピレン系樹脂含有量〕/
〔スチレン系樹脂含有量〕の比が95〜65重量%/5
〜35重量%であるポリプロピレン系樹脂/スチレング
ラフト共重合体(以下、単に変性ポリプロピレン系樹脂
ともいう)を基材樹脂とする発泡粒子型内成形体からな
るものである。本発明において用いられるポリプロピレ
ン系樹脂としては、プロピレンの単独重合体、プロピレ
ン・エチレン(エチレン成分0.5〜8重量%)ランダ
ム共重合体、プロピレン・エチレン(エチレン成分3〜
18重量%)ブロック共重合体、プロピレン・ブテン−
1(ブテン−1成分2〜15重量%)ランダム共重合
体、プロピレン・エチレン(エチレン成分0.3〜5重
量%)・ブテン−1(ブテン−1成分0.5〜20重量
%)ランダム共重合体、プロピレン・ヘキセン−1(ヘ
キセン−1成分2〜6重量%)ランダム共重合体、プロ
ピレン・4−メチルペンテン−1(4−メチルペンテン
−1成分1〜8重量%)ランダム共重合体等の結晶性ポ
リマー;これらのポリマー同士のブレンド物;これらの
ポリマーに他のポリマー、例えばポリエチレン樹脂、エ
チレン・プロピレンラバー等を50重量%以下の割合で
ブレンドしたブレンド物が挙げられる。なお、ポリプロ
ピレン系樹脂は、粒子形状のものを用いるとよく、通常
は粒径が、0.1〜3.0mm、好ましくは0.5〜
2.0mm、又は粒子重量が0.1〜20.0mg、好
ましくは0.4〜4.0mgのものを用いるとよい。
BEST MODE FOR CARRYING OUT THE INVENTION The insulating plate for a wooden building of the present invention
[Polypropylene resin content] obtained by graft polymerization of styrene monomer to polypropylene resin, [Polypropylene resin content] /
The ratio of [styrene resin content] is 95 to 65% by weight / 5.
It is formed of a foamed particle-type molded product having a base resin of a polypropylene resin / styrene graft copolymer (hereinafter, also simply referred to as a modified polypropylene resin) of about 35% by weight. As the polypropylene resin used in the present invention, propylene homopolymer, propylene / ethylene (ethylene component 0.5 to 8% by weight) random copolymer, propylene / ethylene (ethylene component 3 to
18% by weight) block copolymer, propylene / butene
1 (butene-1 component 2 to 15% by weight) random copolymer, propylene / ethylene (ethylene component 0.3 to 5% by weight) / butene-1 (butene-1 component 0.5 to 20% by weight) random copolymer Polymer, propylene / hexene-1 (hexene-1 component 2 to 6% by weight) random copolymer, propylene / 4-methylpentene-1 (4-methylpentene-1 component 1 to 8% by weight) random copolymer Blends of these polymers; blends of these polymers with other polymers, for example, polyethylene resins, ethylene-propylene rubber, etc. at a ratio of 50% by weight or less. In addition, it is good to use a polypropylene resin in the form of particles, and the particle size is usually 0.1 to 3.0 mm, preferably 0.5 to 3.0 mm.
It is good to use 2.0 mm, or the thing whose particle weight is 0.1-20.0 mg, Preferably it is 0.4-4.0 mg.

【0006】前記スチレン系単量体としては、スチレ
ン、クロロスチレン、ブロモスチレン、ビニルトルエ
ン、ビニルキシレン、p−メチルスチレン及びα−メチ
ルスチレンなどを挙げることができる。
Examples of the styrene monomer include styrene, chlorostyrene, bromostyrene, vinyltoluene, vinylxylene, p-methylstyrene and α-methylstyrene.

【0007】前記変性ポリプロピレン系樹脂は、前記ポ
リプロピレン系樹脂粒子に、前記スチレン系単量体を含
浸させてグラフト重合させることによって得られる。そ
の製造例を示すと、まず、オートクレーブ内に、水等の
水性媒体、ポリプロピレン系樹脂粒子、スチレン系単量
体及び分散剤を仕込み、密閉した後にオートクレーブ内
容物をかく拌しつつ加熱し、ポリプロピレン系樹脂粒子
にスチレン系単量体を充分含浸させる。この際の加熱温
度は、通常70〜120℃程度である。また、分散剤と
しては、例えば、ポリビニルアルコ−ル、メチルセルロ
−ス、燐酸三カルシウム、ピロリン酸マグネシウム、炭
酸カルシウム、ドデシルベンゼンスルホン酸ナトリウム
などが用いられる。これらの分散剤は、一般に、水性媒
体である水に対して0.01〜50重量%添加される。
次に、オートクレーブ内容物を50℃以下となるまで冷
却する。冷却後、オートクレーブ内にラジカル重合開始
剤を添加し、密閉した後、再度加熱してグラフト重合を
生起させる。
The modified polypropylene-based resin is obtained by impregnating the polypropylene-based resin particles with the styrene-based monomer and performing graft polymerization. As an example of its production, first, an aqueous medium such as water, a polypropylene-based resin particle, a styrene-based monomer and a dispersant are charged into an autoclave, heated after stirring the contents of the autoclave while stirring, and then closed. The styrene monomer is sufficiently impregnated in the resin particles. The heating temperature at this time is usually about 70 to 120 ° C. As the dispersant, for example, polyvinyl alcohol, methyl cellulose, tricalcium phosphate, magnesium pyrophosphate, calcium carbonate, sodium dodecylbenzenesulfonate and the like are used. These dispersants are generally added in an amount of 0.01 to 50% by weight based on water as an aqueous medium.
Next, the content of the autoclave is cooled down to 50 ° C. or less. After cooling, a radical polymerization initiator is added into the autoclave, and after sealing, the mixture is heated again to cause graft polymerization.

【0008】なお、この場合ラジカル重合開始剤として
は、10時間半減期温度が70℃以下のものを用いると
よく、具体的には、以下の有機過酸化物を挙げることが
できる。 ビス(4−t−ブチルシクロヘキシル)パーオキシジカ
ーボネート;1−シクロヘキシル−1−メチルエチルパ
ーオキシネオデカノエート;ジ(2−エトキシヘキシル
パーオキシ)ジカーボネート;ジメトキシブチルパーオ
キシジカーボネート;t−ブチルパーオキシネオデカノ
エート;t−ヘキシルパーオキシピバレート;t−ブチ
ルパーオキシピバレート;オクタノイルパーオキサイ
ド;ラウロイルパーオキサイド;ステアロイルパーオキ
サイド;イソブチリルパーオキサイド;α,α’ビス
(ネオデカノイルパーオキシ)ジイソプロピルベンゼ
ン;クミルパーオキシネオデカノエート;ジ−n−プロ
ピルパーオキシジカーボネート;1,1,3,3−テト
ラメチルブチルパーオキシネオデカノエート;ジ−2−
エトキシエチルパーオキシジカーボネート;ジ(3−メ
チル−3−メトキシブチルパーオキシ)ジカーボネー
ト;t−ブチルパーオキシネオデカノエート;2,4−
ジクロロベンゾイルパーオキサイド;3,5,5−トリ
メチルヘキサノイルパーオキサイド;1,1,3,3−
テトラメチルブチルパーオキシ2−エチルヘキサノエー
ト;スクシニックパーオキサイド;2,5−ジメチル−
2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキ
サン;1−シクロヘキシル−1−メチルエチルパーオキ
シ2−エチルヘキサノエート;t−ヘキシルパーオキシ
2−エチルヘキサノエート。
In this case, it is preferable to use a radical polymerization initiator having a 10-hour half-life temperature of 70 ° C. or less, and specific examples thereof include the following organic peroxides. Bis (4-t-butylcyclohexyl) peroxydicarbonate; 1-cyclohexyl-1-methylethylperoxy neodecanoate; di (2-ethoxyhexylperoxy) dicarbonate; dimethoxybutyl peroxydicarbonate; Butyl peroxy neodecanoate; t-hexyl peroxy pivalate; t-butyl peroxy pivalate; octanoyl peroxide; lauroyl peroxide; stearoyl peroxide; isobutyryl peroxide; α, α'bis (neodeca Noyl peroxy) diisopropylbenzene; cumyl peroxy neodecanoate; di-n-propyl peroxy dicarbonate; 1,1,3,3-tetramethylbutyl peroxy neodecanoate; di-2-
Ethoxyethyl peroxy dicarbonate; di (3-methyl-3-methoxybutyl peroxy) dicarbonate; t-butyl peroxy neodecanoate; 2,4-
Dichlorobenzoyl peroxide; 3,5,5-trimethylhexanoyl peroxide; 1,1,3,3-
Tetramethylbutylperoxy 2-ethylhexanoate; succinic peroxide; 2,5-dimethyl-
2,5-di (2-ethylhexanoylperoxy) hexane; 1-cyclohexyl-1-methylethylperoxy 2-ethylhexanoate; t-hexylperoxy-2-ethylhexanoate.

【0009】重合開始剤の使用量は、スチレン系単量体
100重量部に対して2.0〜10重量部、好ましくは
3.0〜7.0重量とするとよい。重合反応の温度は、
90℃未満、より好ましくは50℃〜89℃である。9
0℃を超えると、気泡が微細化し好ましくない。反応時
間は、3〜12時間、より好ましくは3.5〜8時間で
ある。以上のようにしてスチレン系単量体によるグラフ
ト変性ポリプロピレン系樹脂粒子が得られる。こうして
得られた変性ポリプロピレン系樹脂粒子は無架橋のもの
である。
The amount of the polymerization initiator to be used is 2.0 to 10 parts by weight, preferably 3.0 to 7.0 parts by weight, based on 100 parts by weight of the styrene monomer. The temperature of the polymerization reaction is
It is less than 90 ° C, more preferably 50 ° C to 89 ° C. 9
If the temperature exceeds 0 ° C., bubbles are undesirably reduced. The reaction time is 3 to 12 hours, more preferably 3.5 to 8 hours. As described above, the graft-modified polypropylene resin particles with the styrene monomer are obtained. The modified polypropylene resin particles thus obtained are non-crosslinked.

【0010】本発明においては、前記グラフト重合反応
により得られる変性ポリプロピレン系樹脂中の〔ポリプ
ロピレン系樹脂含有量〕/〔スチレン系樹脂含有量〕の
比が95〜65重量%5〜35重量%、より好ましくは
(90〜80)/(10〜20)であることを要する。
スチレン系樹脂含有量が前記比率よりも少ないと断熱板
の断熱性能が低下する(同じ厚み及び同じ密度におい
て)。従って、所望の断熱性能を得るためには厚みをよ
り厚くしなければならないが、そうすると製造コストが
上昇すると共に、重量や体積の増大に伴う運搬コストや
保管コストが増加してしまう。また該断熱板を建築物床
部の大引−土台間又は大引−大引間等で使用するような
場合、断熱板の重量が重くなり施工がしずらくなる。一
方、スチレン系樹脂含有量が前記比率よりも多くなると
耐薬品性が格段に悪くなり、防蟻剤や防腐剤が断熱板施
工部又はその近辺に散布された場合、該薬剤が断熱板に
触れ断熱板が大きく減容し断熱性能を著しく低下させ、
また断熱板が支持枠体間より外れたりする。このこと
は、前記断熱板施工箇所のシロアリの駆除や防腐処理等
のメンテナンスが万全にできないということであり、ひ
いては木造建築物等の耐久性を低下させる原因となる。
前記ポリプロピレン系樹脂含有量とスチレン系樹脂含有
量との比率は、原料として用いるポリプロピレン系樹脂
及びスチレン単量体の仕込量によって調節する。
In the present invention, the ratio of [polypropylene resin content] / [styrene resin content] in the modified polypropylene resin obtained by the graft polymerization reaction is 95 to 65% by weight to 5 to 35% by weight. More preferably, it is required to be (90-80) / (10-20).
If the styrene resin content is less than the above ratio, the heat insulating performance of the heat insulating plate is reduced (at the same thickness and the same density). Therefore, in order to obtain the desired heat insulating performance, the thickness must be increased. However, this increases the manufacturing cost, and increases the transportation cost and storage cost associated with the increase in weight and volume. In addition, when the heat insulating plate is used between the floor of the building and the floor of the building or between the floor of the floor and the floor of the building, the weight of the heat insulating plate becomes heavy and the construction becomes difficult. On the other hand, if the styrene-based resin content is higher than the above ratio, the chemical resistance is significantly deteriorated, and when the termiticide or the preservative is sprayed on or near the heat insulating plate construction part, the chemical touches the heat insulating plate. Insulation plate greatly reduces the volume, significantly lowering the insulation performance,
Also, the heat insulating plate may come off from between the support frames. This means that maintenance such as termite extermination and antiseptic treatment at the heat insulating board construction site cannot be performed thoroughly, which eventually leads to a decrease in durability of a wooden building or the like.
The ratio between the content of the polypropylene-based resin and the content of the styrene-based resin is adjusted by adjusting the amounts of the polypropylene-based resin and the styrene monomer used as raw materials.

【0011】次に、前記変性ポリプロピレン系樹脂粒子
(以下、単に変性粒子ともいう)を常法により発泡させ
て変性ポリプロピレン系樹脂発泡粒子(以下、単に発泡
粒子ともいう)とする。すなわち、変性粒子、水等の分
散媒、発泡剤及び分散剤等を密閉容器内に入れ、該変性
粒子の軟化温度以上の温度に加熱して変性粒子内に発泡
剤を含浸させ、次いで、密閉容器の一端を開けて変性粒
子と水を低圧部に放出させて発泡粒子とする。なお、前
記の樹脂軟化温度とはASTM−D−648に規定され
ている荷重4.6Kg/cm2の条件で測定される軟化
温度をいう。
Next, the modified polypropylene resin particles (hereinafter, also simply referred to as modified particles) are foamed by a conventional method to obtain modified polypropylene resin expanded particles (hereinafter, also simply referred to as expanded particles). That is, the modified particles, a dispersion medium such as water, a foaming agent, a dispersant, and the like are placed in a closed container, heated to a temperature equal to or higher than the softening temperature of the modified particles to impregnate the modified particles with the foaming agent, and then sealed. One end of the container is opened to release the modified particles and water to the low-pressure section to form expanded particles. The resin softening temperature is a softening temperature measured under a load of 4.6 kg / cm 2 specified in ASTM-D-648.

【0012】発泡剤としては、プロパン、ブタン、ペン
タン、ヘキサン、シクロブタン、シクロヘキサン、クロ
ロフロロメタン、トリフロロメタン、1,1−ジフロロ
エタン、1−クロロ−1,1−ジフロロエタン、1,
2,2,2−テトラフロロエタン、1−クロロ−1,
2,2,2−テトラフロロエタン等の揮発性発泡剤、又
は窒素、空気、二酸化炭素、アルゴン等の無機ガス系発
泡剤が用いられるが、環境面で問題がなくかつ安価な二
酸化炭素や空気等の無機ガス系発泡剤が好ましい。ま
た、発泡剤使用量は、一般に変性粒子100重量部に対
し2〜50重量部、より好ましくは3〜10重量部と
し、発泡倍率や発泡温度を考慮して前記範囲内で適宜定
めれば良い。
Examples of the blowing agent include propane, butane, pentane, hexane, cyclobutane, cyclohexane, chlorofluoromethane, trifluoromethane, 1,1-difluoroethane, 1-chloro-1,1-difluoroethane,
2,2,2-tetrafluoroethane, 1-chloro-1,
Volatile foaming agents such as 2,2,2-tetrafluoroethane or inorganic gas-based foaming agents such as nitrogen, air, carbon dioxide, and argon are used, but they are environmentally friendly and inexpensive carbon dioxide and air. And the like are preferable. The amount of the foaming agent used is generally 2 to 50 parts by weight, more preferably 3 to 10 parts by weight, based on 100 parts by weight of the modified particles, and may be appropriately determined within the above range in consideration of the expansion ratio and the expansion temperature. .

【0013】分散媒は、変性粒子を溶解しない水、エチ
レングリコール、グリセリン、メタノール、エタノール
等の液体であり、その使用量は一般に変性粒子総重量の
1.5〜10倍、好ましくは2〜5倍とする。また、通
常は分散媒として水が使用される。
The dispersion medium is a liquid such as water, ethylene glycol, glycerin, methanol, ethanol or the like which does not dissolve the modified particles. The amount of the dispersion medium is generally 1.5 to 10 times, preferably 2 to 5 times the total weight of the modified particles. Double it. Usually, water is used as a dispersion medium.

【0014】変性粒子を分散媒に分散させ、加熱下に発
泡剤を該変性粒子に含浸させる際には、変性粒子の相互
融着を防ぐために融着防止剤を使用するとよい。融着防
止剤としては分散媒に不溶な無機系又は有機系の高融点
物質であって、平均粒径0.001〜70μm、より好
ましくは0.001〜30μmの微粉体を用いる。そし
て、通常カオリン、タルク、マイカ、アルミナ、チタニ
ア、水酸化アルミニウム等の無機系融着防止剤が使用さ
れる。また、融着防止剤の添加量は変性粒子使用量の
0.01〜10重量%、より好ましくは2〜7重量%で
ある。
When dispersing the modified particles in a dispersion medium and impregnating the modified particles with a foaming agent under heating, it is preferable to use an anti-fusing agent to prevent mutual fusion of the modified particles. As the anti-fusing agent, a fine powder having an average particle diameter of 0.001 to 70 μm, more preferably 0.001 to 30 μm, which is an inorganic or organic high-melting substance insoluble in the dispersion medium is used. Usually, inorganic anti-fusing agents such as kaolin, talc, mica, alumina, titania, and aluminum hydroxide are used. The addition amount of the anti-fusing agent is 0.01 to 10% by weight, more preferably 2 to 7% by weight, based on the amount of the modified particles used.

【0015】前記の融着防止剤添加の際は、ドデシルベ
ンゼンスルホン酸ナトリウムやオレイン酸ナトリウム等
のアニオン系界面活性剤を分散助剤として用いることが
好ましく、その添加量は変性粒子使用量の0.001〜
5.0重量%、殊に0.1〜1.0%が望ましい。
When the anti-fusing agent is added, an anionic surfactant such as sodium dodecylbenzenesulfonate or sodium oleate is preferably used as a dispersing aid. .001-
5.0% by weight, especially 0.1 to 1.0% is desirable.

【0016】以上のごとくして製造される発泡粒子の嵩
密度の範囲は、通常0.015〜0.18g/cm3
なる。しかしながら、本発明では、その嵩密度を0.0
45g/cm3以下とするのが望ましい。なぜならば、
0.045g/cm3を越える高嵩密度の発泡粒子で
は、型内成形時の冷却時間の短縮化にさほど貢献しない
からである。低嵩密度の発泡粒子ほど前記冷却時間の短
縮化に大きく寄与するので、そのような観点からその嵩
密度は0.030g/cm3以下であることが望まし
い。また、後述する密度0.02g/cm3以下の断熱
板を製造する上では、発泡粒子の嵩密度は0.019g
/cm3以下が望ましい。但し、極度の低嵩密度発泡粒
子では得られる型内成形体に大きな収縮を生じてしまう
おそれがあるので、その下限は0.006g/cm3
とどめるとよい。なお、最初に製造される発泡粒子の嵩
密度が0.045g/cm3を越える場合や0.045
g/cm3以下でもより更なる低密度化が必要な場合
は、空気等により高められた内圧を付与してスチーム等
で加熱して更に発泡させることにより、前記嵩密度の発
泡粒子又は当初よりも低密度化された発泡粒子を得るこ
とができる。また、本発明では発泡粒子の平均気泡径は
200μm以上とするとよい。嵩密度が0.045g/
cm3以下、特に0.030g/cm3以下の発泡粒子の
場合、平均気泡径が200μm未満であると、例えば、
発泡粒子気泡内の空気圧力を2.3気圧以上に高めない
と、表面ボイドの少ない型内成形体を得ることができな
い。そうすると逆に型内成形時の冷却時間が著しく長く
なってしまい、その結果生産性が低下してしまうという
問題が発生する。そのような観点からの好ましい平均気
泡径の下限は250μmである。但し、その平均気泡径
は、外観の悪化を生じない600μmを上限とすること
が望ましい。このような比較的大きな気泡の発泡粒子
は、前記した低温でのグラフト重合による変性ポリプロ
ピレン系樹脂粒子を発泡粒子の原料として使用すること
により、容易に製造することができる。
The range of the bulk density of the expanded particles produced as described above is usually 0.015 to 0.18 g / cm 3 . However, in the present invention, the bulk density is 0.0
It is desirably 45 g / cm 3 or less. because,
This is because foamed particles having a high bulk density exceeding 0.045 g / cm 3 do not significantly contribute to shortening of the cooling time during in-mold molding. Since foamed particles having a lower bulk density contribute more to shortening the cooling time, the bulk density is desirably 0.030 g / cm 3 or less from such a viewpoint. In order to manufacture a heat insulating board having a density of 0.02 g / cm 3 or less as described later, the bulk density of the expanded particles is 0.019 g.
/ Cm 3 or less. However, since extremely low bulk density expanded particles may cause a large shrinkage in the obtained in-mold molded product, the lower limit may be limited to 0.006 g / cm 3 . In addition, when the bulk density of the foamed particles produced first exceeds 0.045 g / cm 3 ,
g / cm 3 or less, when further lowering the density is necessary, by applying an increased internal pressure with air or the like and heating with steam or the like to further expand the foamed particles of the bulk density or from the beginning In addition, foamed particles having a reduced density can be obtained. Further, in the present invention, the average cell diameter of the expanded particles is preferably 200 μm or more. The bulk density is 0.045 g /
cm 3 or less, particularly 0.030 g / cm 3 or less, when the average cell diameter is less than 200 μm, for example,
Unless the air pressure in the expanded foam cells is increased to 2.3 atmospheres or more, an in-mold molded article having few surface voids cannot be obtained. In this case, on the contrary, the cooling time during the in-mold molding becomes extremely long, and as a result, there arises a problem that the productivity is reduced. From such a viewpoint, the preferable lower limit of the average bubble diameter is 250 μm. However, the upper limit of the average bubble diameter is desirably 600 μm which does not cause deterioration of the appearance. Such expanded particles having relatively large cells can be easily produced by using the above-mentioned modified polypropylene resin particles obtained by graft polymerization at a low temperature as a raw material of the expanded particles.

【0017】更に、本発明では、発泡粒子の示差走査熱
量測定によって得られるDSC曲線(条件:発泡粒子1
〜3mgを示差走査熱量測定装置により昇温速度10℃
/分で室温から220℃まで昇温)に2以上のピークを
有し、最も高温側に存在するピークの熱量が、(1)発
泡粒子を構成する基材樹脂の融点が150℃以下の場合
には2〜25J/gであることが望ましく、(2)発泡
粒子を構成する基材樹脂の融点が150℃を越える場合
には5〜40J/gであることが望ましい。前記
(1)、(2)の両ケースともに、該ピーク熱量が下限
を下回ると型内成形体の収縮が大きくなりやすく、該ピ
ーク熱量が上限を上まわると型内成形時の過熱スチーム
圧力を高く保持しなければならなくなり、エネルギーコ
ストの面で不利を生じやすい。なお、発泡粒子を構成す
る基材樹脂の融点が150℃以下の場合には、型内成形
時の過熱スチーム圧力をいっそう低くできるので好まし
い。
Further, in the present invention, the DSC curve (condition: expanded particle 1) obtained by differential scanning calorimetry of the expanded particles is used.
Up to 3 mg with a differential scanning calorimeter
/ Min), and the peak calorie at the highest temperature is (1) the melting point of the base resin constituting the foamed particles is 150 ° C. or less. Is preferably 2 to 25 J / g, and (2) the melting point of the base resin constituting the expanded beads is preferably 5 to 40 J / g when the melting point exceeds 150 ° C. In both cases (1) and (2), if the peak calorific value is below the lower limit, the molded article in the mold tends to shrink, and if the peak caloric value exceeds the upper limit, the superheated steam pressure during molding in the mold is reduced. It has to be kept high, which tends to be disadvantageous in terms of energy costs. In addition, it is preferable that the melting point of the base resin constituting the expanded particles is 150 ° C. or less, because the superheated steam pressure during in-mold molding can be further reduced.

【0018】前記最も高温側に存在するピークは、例え
ば無機ガス系発泡剤を含有する加熱下の変性粒子と水と
を低圧部に放出させる前記発泡方法を採用した場合、放
出に先立って加熱温度を変性粒子(発泡粒子を構成する
基材樹脂)の融点とその補外融解終了温度(JIS K
7121に規定されている温度)との間の任意の温度に
5〜90分、好ましくは15〜60分保持してから放出
することにより生成させることができる。そのピークの
大きさは、主として加熱温度、加熱保持時間、発泡剤の
種類と使用量で調節される。
The peak present on the highest temperature side is, for example, when the above-mentioned foaming method in which heated modified particles containing an inorganic gas-based blowing agent and water are released to the low-pressure portion is employed, the heating temperature is determined prior to the release. Is the melting point of modified particles (base resin constituting foamed particles) and the extrapolative melting end temperature (JIS K
(Temperature specified in 7121) for 5 to 90 minutes, preferably 15 to 60 minutes, and then release. The size of the peak is adjusted mainly by the heating temperature, the heating holding time, the type and amount of the foaming agent.

【0019】なお、前記最も高温側に存在するピーク熱
量は、発泡粒子の示差走査熱量測定によって得られる前
記DSC曲線上の80℃のところから最も高温側に位置
する吸熱ピークの融解終了温度まで直線(A)を引き、
最も高温側の吸熱ピークとその低温側に存在する吸熱ピ
ークとにより形成される谷間の中央部から前記直線に垂
直に交わるように直線(B)を引き、直線(B)以上の
DSC曲線−直線(A)−直線(B)とで囲まれる面積
に相当する熱量を意味する。また、変性粒子の融点と
は、前記示差走査熱量測定において、220℃まで昇温
した後、直ちに降温速度10℃/分で40℃まで低下さ
せ、その後もう一度昇温速度10℃/分で220℃まで
昇温したときに得られる最も高温側のピークの頂点を意
味する。この融点は、ポリプロピレン系樹脂の特長を失
わせないためには125℃以上が好ましく、130℃以
上がより好ましい。
The peak calorie existing on the highest temperature side is a straight line from 80 ° C. on the DSC curve obtained by differential scanning calorimetry of the expanded particles to the melting end temperature of the endothermic peak located on the highest temperature side. (A),
A straight line (B) is drawn from the center of the valley formed by the endothermic peak on the highest temperature side and the endothermic peak existing on the lower temperature side so as to intersect the straight line perpendicularly to the straight line, and the DSC curve minus the straight line above the straight line (B) (A) means the amount of heat corresponding to the area surrounded by the straight line (B). Further, the melting point of the modified particles means that in the above differential scanning calorimetry, after the temperature was raised to 220 ° C., the temperature was immediately lowered to 40 ° C. at a temperature lowering rate of 10 ° C./min. Means the peak of the highest temperature peak obtained when the temperature is raised to This melting point is preferably 125 ° C. or higher, more preferably 130 ° C. or higher, so as not to lose the characteristics of the polypropylene resin.

【0020】次に、前記のようにして得られた発泡粒子
を用いて、従来公知の型内成形法によって発泡粒子成形
体を製造する。即ち、発泡粒子を型内に充填し、過熱ス
チーム等の加熱媒体を導入して発泡粒子同士を加熱融着
させ発泡粒子成形体とする。
Next, using the foamed particles obtained as described above, a foamed particle molded body is produced by a conventionally known in-mold molding method. That is, the foamed particles are filled in a mold, a heating medium such as superheated steam is introduced, and the foamed particles are heated and fused to form a foamed particle molded body.

【0021】本発明の木造建築用断熱板は、以上のよう
にして得られた発泡粒子成形体それ自体、もしくはそれ
を適宜の寸法に裁断したもの、あるいはそれらを適宜接
合したものからなる。本発明においては、前記断熱板の
密度を0.02g/cm3以下(但し、0は含まない)、
より好ましくは0.009〜0.018g/cm3とし、
かつ該断熱板の熱伝導率を0.042kcal/mh℃
以下(但し、0は含まない)、より好ましくは0.02
〜0.04kcal/mh℃とすると、断熱板1枚当り
の重量を軽くすることができ、嵌め込み施工等が容易と
なるなど一層好ましい。前記断熱板の密度は、主として
使用する発泡粒子の嵩密度と型内成形時における発泡粒
子の型内での圧縮状態を調節することによって調節する
ことができる。また、前記断熱板の熱伝導率は、一般
に、断熱板の密度が小さいほど、平均気泡径が小さいほ
ど、及び独立気泡率が高いほど小さい値を示す(なお、
断熱板の密度に関しては、熱伝導率の低下はある程度の
密度低下で頭打ちとなり、更に密度が低下すると熱伝導
率は逆に高まる傾向を示す)ので、主としてこれらの点
を考慮すれば調節することができる。
The heat insulating board for a wooden building of the present invention comprises the foamed particle molded product itself obtained as described above, or a product obtained by cutting it into appropriate dimensions, or a product obtained by appropriately joining them. In the present invention, the density of the heat insulating plate is 0.02 g / cm 3 or less (however, 0 is not included),
More preferably 0.009 to 0.018 g / cm 3 ,
And the thermal conductivity of the heat insulating plate is 0.042 kcal / mh ° C.
The following (however, 0 is not included), more preferably 0.02
When the temperature is set to 0.04 kcal / mh ° C., the weight per one heat insulating plate can be reduced, and the fitting work and the like can be easily performed. The density of the heat insulating plate can be adjusted mainly by adjusting the bulk density of the foamed particles used and the state of compression of the foamed particles in the mold during in-mold molding. In addition, the thermal conductivity of the heat insulating plate generally shows a smaller value as the density of the heat insulating plate is smaller, the average cell diameter is smaller, and the closed cell ratio is higher.
Regarding the density of the heat insulating plate, the decrease in thermal conductivity reaches a plateau when the density decreases to a certain extent, and the thermal conductivity tends to increase when the density further decreases), so it should be adjusted mainly considering these points. Can be.

【0022】本発明の断熱板は、軽量性、断熱性共に優
れると共に、安価で取扱い性よく、耐久性に優れてい
る。また、スチレンによって変性されているにも拘らず
防蟻剤や防腐剤それ自体又はそれらの溶剤であるトルエ
ン等の有機溶媒にも耐薬品性を示し、これらの薬剤との
接触によって実質的に減容することもないため、木造建
築物の保守、保存のための各種薬剤の散布や塗布が、断
熱板の存在によって格別制約を受けることなく容易に行
うことができる。
The heat insulating plate of the present invention is excellent in both lightness and heat insulating properties, and is inexpensive, easy to handle, and excellent in durability. In addition, despite being modified with styrene, they exhibit chemical resistance to termiticides and preservatives themselves and organic solvents such as toluene, which are their solvents, and are substantially reduced by contact with these agents. Therefore, the spraying and application of various chemicals for maintenance and preservation of the wooden building can be easily performed without any particular restrictions due to the presence of the heat insulating plate.

【0023】殊に、本発明の木造建築用断熱板が木造建
築物の床部の大引−土台間又は大引−大引間に断熱床下
材として圧挿されて用いられる場合においては、シロア
リ等の防除の際、あるいはメンテナンスで大引、土台等
に防腐処理する際に、大引や土台等の木部又は地面に散
布される薬剤が本発明の断熱板にふりかかったり、接触
したりしても該断熱板が実質的に減容することがないの
で薬剤の散布が格別制約を受けることなくスムーズに実
施できる。このことは、ひいては木造建築物の耐久性の
向上に大きく役立つものである。
In particular, in the case where the heat insulating board for a wooden building of the present invention is used by being press-fitted as a heat insulating underfloor material between the floor and the base or between the floor and the floor of the floor of the wooden building, the termite is used. At the time of pest control, etc., or at the time of preservation treatment on the base, etc., during maintenance, chemicals sprayed on the wood or the ground, such as the base or the base, sprinkle on or come into contact with the heat insulating plate of the present invention. Even if the heat insulating plate does not substantially reduce the volume, the spraying of the medicine can be performed smoothly without any particular restrictions. This greatly contributes to the improvement of the durability of the wooden building.

【0024】[0024]

【実施例】次に、本発明を製造例及び実施例により、さ
らに詳細に説明する。 製造例1〜2及び比較製造例1 エチレン成分4.1重量%、融点138℃、メルトフロ
ーレート(JIS K7210の表1の条件14)8g
/10分のプロピレン−エチレンランダム共重合体樹脂
100重量部に対し、水酸化アルミニルム(発泡核剤)
0.05重量部を押出機に供給し、220℃で溶融混練
した後、口径2mmのダイスよりストランド状に押出
し、水冷してカットし、平均粒子重量約2mgのミニペ
レットを製造した。
Next, the present invention will be described in more detail with reference to Production Examples and Examples. Production Examples 1-2 and Comparative Production Example 1 4.1% by weight of ethylene component, melting point 138 ° C., melt flow rate (condition 14 in Table 1 of JIS K7210) 8 g
Aluminum hydroxide (foaming nucleating agent) per 100 parts by weight of propylene-ethylene random copolymer resin / 10 minutes
0.05 parts by weight was supplied to an extruder, melt-kneaded at 220 ° C., extruded into a strand from a die having a diameter of 2 mm, cut with water, and cut to produce mini-pellets having an average particle weight of about 2 mg.

【0025】製造例1と2では、得られたミニペレット
(M)重量部、スチレンモノマー(S)重量部、水30
0重量部、三リン酸カルシウム(分散剤)の10%懸濁
液10重量部、及びドデシルベンゼンスルフォン酸ナト
リウム0.1重量部とをオートクレーブ内に仕込み、密
閉した後、かく拌しつつ2℃/分の速度で95℃まで昇
温し、その温度で2時間保持してスチレンモノマーをミ
ニペレットに含浸させ、次いで50℃まで冷却し、次に
そのオートクレーブ内に表1に示す種類と量(ミニペレ
ットとスチレンモノマーとの和を100重量部としたと
きの重量部)のラジカル重合開始剤(その種類は〈使用
ラジカル重合開始剤のリスト〉参照)を投入し、密閉し
た後、かく拌しつつ再度2℃/分の速度で[GT]℃ま
で昇温し、その温度で5時間保持した後、40℃まで冷
却し、オートクレーブ内容物を取り出し、固体成分を濾
別した後、0.1規定塩酸溶液で固体成分を洗浄し、約
60℃設定の乾燥機で24時間乾燥した。得られた変性
粒子の物性を表1に示す。
In Production Examples 1 and 2, the obtained mini-pellets (M), parts by weight of styrene monomer (S),
0 parts by weight, 10 parts by weight of a 10% suspension of calcium triphosphate (dispersant) and 0.1 part by weight of sodium dodecylbenzenesulfonate were charged in an autoclave, sealed, and then stirred at 2 ° C./min. The temperature was raised to 95 ° C at a speed of 2 hours, and the temperature was maintained for 2 hours to impregnate the styrene monomer into the mini-pellet, then cooled to 50 ° C, and then placed in the autoclave in the type and amount shown in Table 1 (mini-pellet). Of a radical polymerization initiator (refer to <List of used radical polymerization initiators> for the type thereof) when the sum of styrene monomer and styrene monomer is 100 parts by weight. The temperature was raised to [GT] ° C. at a rate of 2 ° C./min, maintained at that temperature for 5 hours, cooled to 40 ° C., taken out the contents of the autoclave, and filtered off the solid components. Washing the solid component at a constant hydrochloric acid solution, and dried 24 hours in a drier to about 60 ° C. setting. Table 1 shows the physical properties of the modified particles thus obtained.

【0026】次に、変性粒子(製造例1と2)又は変性
していない前記ミニペレット(比較製造例1)100重
量部、水300重量部、カオリン(分散剤)0.3重量
部、ドデシルベンゼンスルフォン酸ナトリウム0.02
重量部、及びドライアイス(発泡剤)8重量部とをオー
トクレーブ内に仕込み、密閉した後、かく拌しつつ2℃
/分の速度で[Ft]℃まで昇温してその温度で15分
間保持した後、次いで2℃/分の速度で[FT]℃まで
昇温してその温度で15分間保持してから、その温度で
オートクレーブ内を加圧空気の供給により45kg/c
2Gに維持しつつオートクレーブ内容物を大気下に放
出して発泡粒子(A)を製造した。得られた発泡粒子
(A)の物性は表2の通りである。
Next, 100 parts by weight of modified particles (Preparation Examples 1 and 2) or the unmodified mini-pellet (Comparative Preparation Example 1), 300 parts by weight of water, 0.3 parts by weight of kaolin (dispersant), dodecyl Sodium benzenesulfonate 0.02
Parts by weight and 8 parts by weight of dry ice (foaming agent) were charged in an autoclave, sealed, and then stirred at 2 ° C.
/ Min at a rate of 2 ° C / min and hold at that temperature for 15 minutes, then raise to [FT] ° C at a rate of 2 ° C / min and hold at that temperature for 15 minutes, At that temperature, the inside of the autoclave is supplied with pressurized air at 45 kg / c.
While maintaining the m 2 G, the contents of the autoclave were discharged into the atmosphere to produce expanded particles (A). Table 2 shows the physical properties of the obtained expanded particles (A).

【0027】次に、発泡粒子(A)を加圧空気下に室温
で保持することにより、表2に示す内圧を付与した。高
められた内圧を持つ発泡粒子(B)に対し、容器内で
0.7kg/cm2Gの過熱スチームを吹き付けて、表
2に示す物性の発泡粒子(C)を製造した。
Next, the internal pressure shown in Table 2 was given by keeping the expanded particles (A) at room temperature under pressurized air. Superheated steam of 0.7 kg / cm 2 G was sprayed on the foamed particles (B) having an increased internal pressure in a container to produce foamed particles (C) having physical properties shown in Table 2.

【0028】発泡粒子(C)を加圧空気下に室温で保持
することにより、表3に示す内圧を付与した後、成形用
金型(製造例1と比較製造例1では1867mm×84
4mm×82mmの内寸法を持つ成形用金型を使用し、
製造例2では1867mm×844mm×77mmの内
寸法を持つ成形用金型を使用した)に充填し、過熱スチ
ームにて予備加熱を行った後、表3に示す圧力の過熱ス
チームを型内に供給して本加熱を行い、次いで水冷し、
離型して発泡粒子成形体(以下、単に成形体ともいう)
を得た。なお、発泡粒子(C)に付与した内圧は成形体
表面のボイドが実質的になくなるような条件を採用し、
水冷時間は成形体に三次発泡が生じない最少の時間を採
用した。得られた成形体を60℃のオーブンで24時間
乾燥させ、その後室温で3日間放冷してから密度を測定
した。結果は表3に示す。
The foamed particles (C) were kept at room temperature under pressurized air to give an internal pressure shown in Table 3, and then a molding die (1867 mm × 84 in Production Example 1 and Comparative Production Example 1).
Using a molding die with an inner dimension of 4 mm x 82 mm,
In Production Example 2, a molding die having an inner dimension of 1867 mm x 844 mm x 77 mm was used, and preheating was performed with superheated steam, and then superheated steam having a pressure shown in Table 3 was supplied into the mold. And perform main heating, then water cooling,
Mold release and molded article of expanded particles (hereinafter simply referred to as molded article)
I got The internal pressure applied to the foamed particles (C) is set under such a condition that voids on the surface of the molded body are substantially eliminated.
As the water cooling time, the minimum time during which tertiary foaming did not occur in the molded product was adopted. The obtained molded body was dried in an oven at 60 ° C. for 24 hours, and then allowed to cool at room temperature for 3 days, and then the density was measured. The results are shown in Table 3.

【0029】実施例1〜2、比較例1〜2 前記製造例1及び2及び比較製造例1によって得られた
成形体並びに市販のHIPS(ハイインパクトポリスチ
レン)製の型内発泡成形体を木造建築物用断熱板とし
た。その物性値及び評価結果を表4に示す。
Examples 1 and 2, Comparative Examples 1 and 2 The molded articles obtained in the above Production Examples 1 and 2 and Comparative Production Example 1 and a commercially available in-mold foam molded article made of HIPS (high impact polystyrene) were used for wooden building. Insulation board for goods. Table 4 shows the physical property values and the evaluation results.

【0030】なお、表1〜4において、各種物性値の測
定及び断熱板の評価は次のようにして行った。 (1)発泡粒子の嵩密度(D)の測定 発泡粒子をメスシリンダーに入れて見掛けの体積(V)
cm3を測定する。次に、その時の発泡粒子の重量
(W)gを測定する。嵩密度(D)g/cm3は、次の
式より求める。 D = W/V
In Tables 1 to 4, the measurement of various physical properties and the evaluation of the heat insulating plate were performed as follows. (1) Measurement of Bulk Density (D) of Expanded Particles The apparent volume (V) of the expanded particles placed in a measuring cylinder
Measure cm 3 . Next, the weight (W) g of the expanded particles at that time is measured. The bulk density (D) g / cm 3 is determined by the following equation. D = W / V

【0031】(2)発泡粒子の平均気泡径(D)の測定 無作為に選んだ発泡粒子をほぼ中心部で切断し、その切
断面を顕微鏡に写し出した画面上又は顕微鏡写真上に
て、直線上の任意の気泡壁から別の任意の気泡壁までの
任意の長さ(L)の直線上に存在する気泡数(N)を数
え、次の式により求める。但し、該直線の始点は任意の
気泡壁とし、終点は別の任意の気泡壁とし、始点と終点
との間には少なくとも10個の気泡が存在するようにす
る。 D=1.62×(L÷N)
(2) Measurement of Average Cell Diameter (D) of Expanded Particles A randomly selected expanded particle is cut at almost the center, and the cut surface is straightened on a screen or a micrograph taken by a microscope. The number (N) of bubbles existing on a straight line having an arbitrary length (L) from an arbitrary arbitrary bubble wall to another arbitrary bubble wall is counted, and is calculated by the following equation. However, the start point of the straight line is an arbitrary bubble wall, and the end point is another arbitrary bubble wall, so that at least 10 bubbles exist between the start point and the end point. D = 1.62 × (L ÷ N)

【0032】(3)断熱板の密度の測定 断熱板1枚の体積と重量を測定して計算して求めた。(3) Measurement of Density of Insulating Board The volume and weight of one insulating board were measured and calculated.

【0033】(4)断熱板の熱抵抗値と熱伝導率の測定 断熱板の熱抵抗値は、JIS A1412−1994記
載の平板熱流計法にて測定した。また、熱伝導率は、断
熱板の厚みと熱抵抗値より算出した。
(4) Measurement of Thermal Resistance and Thermal Conductivity of Insulating Plate The thermal resistance of the insulating plate was measured by a flat plate heat flow method described in JIS A1412-1994. The thermal conductivity was calculated from the thickness of the heat insulating plate and the thermal resistance value.

【0034】(5)断熱板の厚みの測定 測定子面積10cm2、測定子圧2g/cm2で0.1m
m以上の精度のダイヤルゲージを使用して断熱板の中央
部の厚みを測定した。
(5) Measurement of Thickness of Insulating Plate 0.1 m at a measuring element area of 10 cm 2 and a measuring element pressure of 2 g / cm 2
The thickness of the central part of the heat insulating plate was measured using a dial gauge having an accuracy of m or more.

【0035】(6)断熱板重量の測定 断熱板1枚の重量を測定した。(6) Measurement of Weight of Insulating Board The weight of one insulating board was measured.

【0036】(7)断熱板のトルエン抵抗性評価 100mm×10mm×10mmの断熱板からのカット
サンプルを使用し、23℃のトルエン中に60分間浸漬
した後取り出し、サンプルの表面を観察し、次の基準で
評価した。 ○ 変化無し △ 膨潤、変形の少なくともいずれかが認められた × 溶解が認められた
(7) Evaluation of Toluene Resistance of Insulating Plate Using a cut sample from a 100 mm × 10 mm × 10 mm insulating plate, the sample was immersed in toluene at 23 ° C. for 60 minutes, taken out, and the surface of the sample was observed. The evaluation was based on the following criteria. ○ No change △ At least one of swelling and deformation was observed × Dissolution was observed

【0037】(8)断熱板の防蟻剤塗布抵抗性評価 100mm×10mm×10mmの断熱板からのカット
サンプルを使用し、防蟻薬剤(三共株式会社製「三共レ
ントレク油剤」)の原液を刷毛を使用してカットサンプ
ルの片側表面の全面を観察して次の基準で評価した。 ○ 変化無し △ 膨潤、変形の少なくともいずれかが認められた × 溶解が認められた
(8) Evaluation of resistance to termite-proofing agent application to heat-insulating plate Using a cut sample from a heat-insulating plate of 100 mm × 10 mm × 10 mm, a stock solution of a termite-proofing agent (“Sankyo Lentrec oil” manufactured by Sankyo Co., Ltd.) was brushed. Was used to observe the entire surface of one side surface of the cut sample, and evaluated according to the following criteria. ○ No change △ At least one of swelling and deformation was observed × Dissolution was observed

【0038】 〈使用ラジカル重合開始剤のリスト〉 パーロイルL ・・・日本油脂(株)の「ラウロイルパーオキサイド (10時間半減期温度61.6℃)」の商品名 パーロイルTCP・・・日本油脂(株)の「ビス(4−t−ブチルシクロヘキシ ル)パーオキシジカーボネート (10時間半減期温度40.8℃)」の商品名<List of Radical Polymerization Initiators Used> Parloyl L: trade name of “Lauroyl peroxide (10-hour half-life temperature: 61.6 ° C.)” of Nippon Yushi Co., Ltd. "Bis (4-t-butylcyclohexyl) peroxydicarbonate (10 hour half-life temperature 40.8 ° C)"

【0039】[0039]

【表1】 *1 〈使用ラジカル重合開始剤のリスト〉参照[Table 1] * 1 See <List of used radical polymerization initiators>

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】実施例及び比較例の結果より次のことが分
かる。 (1)同じ熱抵抗値を有する実施例1の断熱板と実施例
2の断熱板と比較例1の断熱板との対比より、本発明の
断熱板(実施例断熱板)の方が厚みを薄くできるし、軽
量化も達成できる。 (2)比較例2の断熱板は、断熱性能には優れるもの
の、防蟻剤や溶剤には耐えられず、一方、実施例断熱板
は防蟻剤や溶剤に対して優れた抵抗性を示す。
The following can be seen from the results of the examples and comparative examples. (1) Compared with the heat insulating plate of Example 1, the heat insulating plate of Example 2, and the heat insulating plate of Comparative Example 1 having the same thermal resistance value, the heat insulating plate of the present invention (the heat insulating plate of the present invention) has a larger thickness. It can be made thinner and lighter. (2) Although the heat insulating plate of Comparative Example 2 is excellent in heat insulating performance, it cannot withstand a termiticide or a solvent, while the heat insulating plate of the example shows excellent resistance to a termiticide or a solvent. .

【0044】[0044]

【発明の効果】本発明の木造建築物用断熱板は、軽量性
と断熱性が共に優れ、耐薬品性がよく、安価で取扱い性
に優れ、かつ長時間の使用に耐えることができる。殊
に、前記断熱板は、木造建築物の大引−土台間又は大引
−大引間において使用されると、防蟻剤や防腐剤等薬剤
の散布や接触に対し優れた耐薬品性を示すことから、木
造建築物の該薬剤等によるメンテナンスが随時可能とな
り、ひいては木造建築物の耐久性の向上に寄与すること
ができる。
The heat insulating board for a wooden building according to the present invention is excellent in both lightness and heat insulating property, has good chemical resistance, is inexpensive, has excellent handleability, and can be used for a long time. In particular, when the heat insulating board is used between a barbecue and a base or a barbecue and a barge of a wooden building, the heat insulating board has excellent chemical resistance against spraying or contact of chemicals such as termiticides and preservatives. As shown, maintenance of the wooden building with the chemicals or the like can be performed at any time, which can contribute to improvement of the durability of the wooden building.

フロントページの続き (72)発明者 所 寿男 栃木県宇都宮市砥上町282−1 ブランシ ョール砥上103号室Continuing on the front page (72) Inventor Toshio 282-1 Togami-cho, Utsunomiya-city, Tochigi Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 木造建築物の支持枠体間に嵌め込まれて
使用される断熱板であって、該断熱板はポリプロピレン
系樹脂にスチレン系単量体をグラフト重合させて得られ
る、〔ポリプロピレン系樹脂含有量〕/〔スチレン系樹
脂含有量〕の比が95〜65重量%/5〜35重量%で
あるポリプロピレン系樹脂/スチレングラフト共重合体
を基材樹脂とする発泡粒子型内成形体からなることを特
徴とする木造建築物用断熱板。
1. A heat insulating plate used by being fitted between support frames of a wooden building, wherein the heat insulating plate is obtained by graft-polymerizing a styrene monomer to a polypropylene resin. Resin content] / [styrene resin content] ratio is 95 to 65% by weight / 5 to 35% by weight from a molded article in a foamed particle mold using a polypropylene resin / styrene graft copolymer as a base resin. A heat insulating board for a wooden building, comprising:
【請求項2】 密度が0.02g/cm3以下であり、か
つ熱伝導率が0.042kcal/mh℃以下である請
求項1記載の木造建築物用断熱板。
2. The heat insulating board for a wooden building according to claim 1, which has a density of 0.02 g / cm 3 or less and a thermal conductivity of 0.042 kcal / mh ° C. or less.
【請求項3】 木造建築物の大引一土台間又は大引−大
引間に用いられるものである請求項1記載の木造建築物
用断熱板。
3. The heat insulating board for a wooden building according to claim 1, which is used between a base and a base of a wooden building.
JP3968298A 1998-02-05 1998-02-05 Heat insulating plate for wooden building Pending JPH11222950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3968298A JPH11222950A (en) 1998-02-05 1998-02-05 Heat insulating plate for wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3968298A JPH11222950A (en) 1998-02-05 1998-02-05 Heat insulating plate for wooden building

Publications (1)

Publication Number Publication Date
JPH11222950A true JPH11222950A (en) 1999-08-17

Family

ID=12559866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3968298A Pending JPH11222950A (en) 1998-02-05 1998-02-05 Heat insulating plate for wooden building

Country Status (1)

Country Link
JP (1) JPH11222950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219873B1 (en) * 2010-12-16 2013-01-08 권오태 The Architecture Method Featured Expandedform Stuffing Framework

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219873B1 (en) * 2010-12-16 2013-01-08 권오태 The Architecture Method Featured Expandedform Stuffing Framework

Similar Documents

Publication Publication Date Title
JPH0386736A (en) Production of foamed polyolefin resin particle
JP3732418B2 (en) Expandable styrene resin particles
JP3418081B2 (en) Expanded resin particles
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP5528002B2 (en) Polypropylene resin pre-expanded particles
JP2009114432A (en) Styrene modified polyethylene based resin particle, and prefoamed particle obtained from resin particle thereof
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JP5585072B2 (en) Method for producing mixed resin foam particles
JP5493606B2 (en) Styrene-modified polyethylene resin foamed molded article and method for producing styrene-modified polyethylene resin pre-expanded particles
JP3949775B2 (en) Modified propylene resin expanded particles
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPH11222950A (en) Heat insulating plate for wooden building
JP4761414B2 (en) Method for producing thermoplastic resin foam molding
JP2001302837A (en) Foamed particle for molding
JPS6259642A (en) Pre-expanded particle of modified polyethylene resin and production thereof
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JPH061874A (en) Preexpanded polyethylene resin particle
JP2000129028A (en) Polypropylene resin foamed particle and molded product thereof
JPS5858372B2 (en) Method for producing foamable self-extinguishing thermoplastic resin particles
JP3653319B2 (en) Foamed particles, in-mold molded product thereof, laminate of the molded product and thermosetting resin, and method for producing the laminate
JP4289524B2 (en) Method for producing molded polypropylene resin foam particles
JP6799388B2 (en) Method for manufacturing foamable polystyrene resin particles
JPH07116314B2 (en) Method for producing foamed polymer molded article
JP2000129027A (en) Polypropylene resin foamable particles for in-mold molding, in-mold molding, and insulation material for construction

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20040510

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061201