JPH11217640A - Magnesium-type hydrogen storage alloy - Google Patents

Magnesium-type hydrogen storage alloy

Info

Publication number
JPH11217640A
JPH11217640A JP10016502A JP1650298A JPH11217640A JP H11217640 A JPH11217640 A JP H11217640A JP 10016502 A JP10016502 A JP 10016502A JP 1650298 A JP1650298 A JP 1650298A JP H11217640 A JPH11217640 A JP H11217640A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
present
hydrogen storage
mgni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10016502A
Other languages
Japanese (ja)
Inventor
Etsuo Akiba
悦男 秋葉
Yoshinori Taio
良則 對尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mazda Motor Corp filed Critical Agency of Industrial Science and Technology
Priority to JP10016502A priority Critical patent/JPH11217640A/en
Publication of JPH11217640A publication Critical patent/JPH11217640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Mg-type hydrogen storage alloy having high practicality by making it possible to occlude and release hydrogen in a lower temperature region. SOLUTION: This Mg alloy has a composition represented by MgNiXM1Y and also has at least either of nano-crystal structure or amorphous structure. In this case, M1 in the formula MgNiXM1Y is a transition metal element, particularly iron (Fe) or chromium(Cr), and further, M1 is chromium(Cr) and the value of Y is <=0.25 (where Y>0 is satisfied).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マグネシウム
(Mg)系水素吸蔵合金に関する。
The present invention relates to a magnesium (Mg) -based hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、環境問題やエネルギ問題に対する
関心の高まりを背景に、クリーンでかつ枯渇の心配のな
いエネルギとして水素エネルギが注目され始めている。
この水素エネルギの実用化を図るに際して、容易に水素
を貯蔵し輸送できる手段の一つとして水素吸蔵合金が考
えられている。この水素吸蔵合金に要求される重要な特
性としては、一般的に、水素吸蔵量が多いこと、並びに
使いやすい適度な温度で水素の吸蔵および放出が可能で
あることが挙げられる。
2. Description of the Related Art In recent years, attention has been paid to hydrogen energy as energy that is clean and has no fear of depletion due to increasing interest in environmental and energy problems.
In putting this hydrogen energy to practical use, a hydrogen storage alloy is considered as one of the means for easily storing and transporting hydrogen. Important characteristics required of the hydrogen storage alloy include a large amount of hydrogen storage and the ability to store and release hydrogen at an appropriate temperature that is easy to use.

【0003】従来、開発されている水素吸蔵合金として
は、LaNi系合金やTiV系合金等が知られてお
り、水素を燃料源とした、所謂、水素自動車などに用い
られている。また、特に、前者の合金の場合は、Ni−
H二次電池の電極材料としても使用されている。しかし
ながら、上記従来の水素吸蔵合金では、水素吸蔵量が少
ないという致命的な欠点を有していた。そのため、水素
自動車のエネルギ源に用いた場合には、充填1回当たり
の航続距離が短すぎ、また電池に用いた場合には容量が
不足するという問題が生じる。
Conventionally, as the hydrogen storage alloy has been developed, known LaNi 5 alloy or TiV alloy or the like, hydrogen as fuel sources, are used so-called like hydrogen vehicles. In particular, in the case of the former alloy, Ni-
It is also used as an electrode material for H secondary batteries. However, the above-mentioned conventional hydrogen storage alloy has a fatal disadvantage that the hydrogen storage amount is small. Therefore, when used as an energy source for a hydrogen vehicle, there is a problem that the cruising distance per charge is too short, and when used as a battery, the capacity becomes insufficient.

【0004】かかる問題に対して、水素吸蔵量の多いマ
グネシウム(Mg)系の水素吸蔵合金を使用することが
考えられる。このMg系水素吸蔵合金について、例えば
特開平6−81060号公報には、六方晶構造とするこ
とにより、水素の吸蔵および放出の繰り返しに伴う微粉
化現象による水素吸蔵量の低下を抑制して耐久性の向上
を図ったものが開示されている。また、例えば特公平7
−84636号公報では、Mg−Ni系合金において、
Ni超微粒子を混在させることにより、水素の吸蔵およ
び放出速度を高めるようにしたものが開示されている。
In order to solve such a problem, it is conceivable to use a magnesium (Mg) -based hydrogen storage alloy having a large hydrogen storage amount. For example, JP-A-6-81060 discloses that the Mg-based hydrogen storage alloy has a hexagonal structure, thereby suppressing a decrease in the amount of hydrogen storage due to a pulverization phenomenon caused by repetition of storage and release of hydrogen. What improved the property is disclosed. In addition, for example,
In JP-84636-A, in a Mg-Ni alloy,
There is disclosed a technique in which the absorption and release rates of hydrogen are increased by mixing ultrafine Ni particles.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
Mg合金系の場合には、水素吸蔵量は多いが水素の吸蔵
および放出を行う温度が高く、この点において実用性に
欠けるという難点があった。この問題に関して、本願発
明者は、特願平8−68661号において、水素放出圧
力を高める(換言すれば、水素の吸蔵および放出温度を
低下させる)ことができるように、水素放出特性の改善
を図ったMg系(Mg2Ni)水素吸蔵合金を提案し
た。
However, in the case of the conventional Mg alloy system, the amount of hydrogen storage is large, but the temperature at which hydrogen is stored and released is high, and there is a drawback that practicality is lacking in this point. . Regarding this problem, the present inventor has disclosed in Japanese Patent Application No. 8-68661 an improvement of the hydrogen release characteristics so that the hydrogen release pressure can be increased (in other words, the temperature for storing and releasing hydrogen can be reduced). The proposed Mg-based (Mg 2 Ni) hydrogen storage alloy was proposed.

【0006】しかしながら、この従来例に係るMg系水
素吸蔵合金の場合でも、250℃〜220℃程度以上の
温度でないと、水素を有効に吸蔵および放出しないの
で、使用可能な対象分野が限られるという難点がある。
すなわち、このMg合金系水素吸蔵合金の場合でも、少
なくとも220℃程度以上の温度を安定して得られる高
温の熱源が必要であるので、例えば、自動車への適用は
大幅に制限され、また、電池への適用は事実上不可能で
ある。
However, even in the case of the Mg-based hydrogen storage alloy according to the conventional example, hydrogen is not effectively stored and released unless the temperature is about 250 ° C. to 220 ° C. or more, so that the usable target field is limited. There are difficulties.
That is, even in the case of the Mg alloy-based hydrogen storage alloy, a high-temperature heat source capable of stably obtaining a temperature of at least about 220 ° C. or more is required. Application to is virtually impossible.

【0007】この発明は、かかる技術的課題に鑑みてな
されたもので、より低温域での水素の吸蔵および放出を
可能にすることにより、実用性の高いMg系水素吸蔵合
金を提供することを目的とする。
[0007] The present invention has been made in view of the above technical problems, and an object of the present invention is to provide a highly practical Mg-based hydrogen storage alloy by making it possible to store and release hydrogen in a lower temperature range. Aim.

【0008】本願発明者は、上記目的を達成するため鋭
意研究を重ねた結果、水素吸蔵量は多いが水素の吸蔵お
よび放出温度が高いとされていたMg系水素吸蔵合金に
おいても、その組成および構造を工夫することにより、
従来に比べてかなり低い温度領域でも、有効に水素の吸
蔵および放出を行わしめることが可能になることを見出
し、本願発明を完成するに至ったものである。
The inventor of the present application has conducted intensive studies to achieve the above object. As a result, the composition and composition of an Mg-based hydrogen storage alloy, which is considered to have a large hydrogen storage amount but a high hydrogen storage and desorption temperature, was also investigated. By devising the structure,
The present inventors have found that it is possible to effectively store and release hydrogen even in a considerably lower temperature range than in the past, and have completed the present invention.

【0009】より具体的に説明すると、MgNiXM1Y
で示される組成を有するMg系水素吸蔵合金について、
その組織をナノクリスタル又は非晶質の少なくとも一方
の構造を有することで、従来に比べてかなりの低温域で
も、有効に水素の吸蔵および放出を行わせることができ
た。また、この場合において、上記組成式MgNiX
YのM1を遷移金属元素とすることにより、ナノクリ
スタル化またはアモルファス化を促進でき、特に、M1
を鉄(Fe)又はクロム(Cr)とすることによって、
より安定したナノクリスタルあるいは非晶質の少なくと
も一方を有する構造を得ることができ、更に、上記組成
式におけるM1をCrとし、Yの値を0.25以下(但
し、Y>0)とすることによって、有効に低温域での水
素の吸蔵および放出を行わせることが確実にできること
を見出した。
More specifically, MgNi X M1 Y
For Mg-based hydrogen storage alloy having a composition represented by
By having the structure of at least one of a nanocrystal and an amorphous structure, it was possible to effectively store and release hydrogen even in a considerably lower temperature range than before. In this case, the composition formula MgNi X M
By making M1 of 1 Y a transition metal element, nanocrystallization or amorphization can be promoted.
By iron (Fe) or chromium (Cr),
A more stable structure having at least one of nanocrystal and amorphous can be obtained. Further, M1 in the above composition formula is Cr, and the value of Y is 0.25 or less (where Y> 0). Thus, it has been found that hydrogen can be reliably stored and released effectively in a low temperature range.

【0010】[0010]

【課題を解決するための手段】本願発明は、MgNiX
M1Yで示される組成を有するとともに、ナノクリスタ
ル又は非晶質の少なくとも一方の構造を有することを特
徴としたものである。この場合において、上記組成式M
gNiXM1YにおけるM1が遷移金属元素であることが
好ましく、特に、鉄(Fe)又はクロム(Cr)である
ことが好ましい。更に、M1がクロム(Cr)であり、
Yの値が0.25以下(但し、Y>0)であることが好
ましい。ここに、Yの値を0.25以下に限定したの
は、Yの値が0.25を越えると、低温域での水素の吸
蔵および放出を有効に行わせる上で、十分な効果が得ら
れにくくなるからである。
Means for Solving the Problems The present invention relates to MgNi X
It is characterized by having a composition represented by M1 Y and having at least one of a nanocrystal structure and an amorphous structure. In this case, the composition formula M
M1 in gNi X M1 Y is preferably a transition metal element, particularly preferably iron (Fe) or chromium (Cr). Further, M1 is chromium (Cr),
It is preferable that the value of Y is 0.25 or less (however, Y> 0). Here, the reason why the value of Y is limited to 0.25 or less is that if the value of Y exceeds 0.25, a sufficient effect is obtained in that hydrogen can be efficiently absorbed and released in a low temperature range. This is because it is difficult to be performed.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、添付図面を参照しながら説明する。本実施の形態で
は、本発明実施例として、その化学組成がMgNiX
Yで示され、かつ、ナノクリスタル又は非晶質の少な
くとも一方の構造を有し、しかも、上記組成式における
M1が遷移金属元素で、Yの値が所定範囲内にあるMg
系水素吸蔵合金を用意し、その水素吸蔵特性を調べ、比
較例の合金の水素吸蔵特性と比較した。各合金の組成お
よび構造は、化学組成分析およびX線回折分析等を組み
合わせることによって調べた。なお、上記組成式におけ
るMg1原子比に対するNi量(Xの値)は、より好ま
しくは、0.8<X<1.2である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the present embodiment, as an example of the present invention, the chemical composition is MgNi X M
Mg represented by 1 Y and having at least one of a nanocrystal structure and an amorphous structure, wherein M1 in the above composition formula is a transition metal element and the value of Y is within a predetermined range.
A system-based hydrogen storage alloy was prepared, its hydrogen storage characteristics were examined, and compared with the hydrogen storage characteristics of the alloy of the comparative example. The composition and structure of each alloy were investigated by combining chemical composition analysis and X-ray diffraction analysis. The Ni content (the value of X) with respect to the Mg1 atomic ratio in the above composition formula is more preferably 0.8 <X <1.2.

【0012】本発明実施例1 まず、本発明の実施例1について説明する。この実施例
1は、MgNiXM1Yの化学組成式におけるM1を、遷
移金属元素の一種であるクロム(Cr)とし、X,Yの
値をそれぞれ次のように選択した合金の特性を調べたも
のである。 X=0.89,Y=0.02 すなわち、本発明実施例1に係る水素吸蔵合金は、Mg
Ni0.89Cr0.02の化学組成式で表されるもので、組成
式Mg2Ni、組成式MgNi1.9Cr0.1でそれぞれ示
される合金を出発原料とし、これら合金をポットに挿入
し、アルゴン等の不活性雰囲気下において0.1MPa
の圧力で、遊星型ボールミルにて24時間粉砕混合して
製造した。得られた合金の構造はX線回折より判定し
た。また、合金の水素吸蔵特性は、150℃,170
℃,190℃,200℃,215℃,230℃,250
℃及び300℃の各温度における圧力組成等温線図(P
CT(Pressure CompositionIsotherm)曲線)を測定す
ることにより評価した。
First Embodiment of the Present Invention First, a first embodiment of the present invention will be described. In Example 1, the characteristics of an alloy in which M1 in the chemical composition formula of MgNi x M1 Y was chromium (Cr), which is a kind of transition metal element, and the values of X and Y were selected as follows were examined. Things. X = 0.89, Y = 0.02 That is, the hydrogen storage alloy according to Example 1 of the present invention
Ni 0.89 Cr 0.02 is represented by the chemical composition formula. The alloys represented by the composition formulas Mg 2 Ni and MgNi 1.9 Cr 0.1 are used as starting materials, and these alloys are inserted into a pot, and inert gas such as argon is inserted. 0.1MPa under atmosphere
, And pulverized and mixed in a planetary ball mill for 24 hours. The structure of the obtained alloy was determined by X-ray diffraction. The hydrogen storage properties of the alloy are 150 ° C., 170 ° C.
° C, 190 ° C, 200 ° C, 215 ° C, 230 ° C, 250
Pressure composition isotherm at each temperature of 300 ° C and 300 ° C (P
It was evaluated by measuring a CT (Pressure Composition Isotherm) curve).

【0013】尚、本実施の形態では、試料合金のPCT
曲線は以下の手順で測定した。まず、上記のように24
時間メカニカルグラインディング゛(MG)処理した後
の合金をPCT測定装置に挿入し、室温で3時間真空引
きを行なう。その後、これを、まず150℃に加熱し、
その後、2時間真空引きした後、3MPaの圧力の水素
を印加して水素を吸蔵させる。そして、飽和吸蔵量に達
したら150℃での水素の放出曲線を測定する。測定後
そのままの状態で、温度を170℃に上昇させて2時間
真空引きした後、再び3MPaの水素を印加し、水素を
吸蔵させる。その後、170℃での水素放出曲線を測定
する。以上の操作を、更に、190℃,200℃,21
5℃,230℃,250℃及び300℃の各温度で繰り
返して行い、これら各温度での水素放出曲線を測定し
た。
In this embodiment, the PCT of the sample alloy is used.
The curve was measured according to the following procedure. First, as described above,
The alloy subjected to the time mechanical grinding (MG) treatment is inserted into the PCT measuring apparatus, and vacuuming is performed at room temperature for 3 hours. Then, this is first heated to 150 ℃,
Then, after evacuating for 2 hours, hydrogen at a pressure of 3 MPa is applied to absorb hydrogen. When the saturated occlusion amount is reached, a hydrogen release curve at 150 ° C. is measured. After the measurement, the temperature is raised to 170 ° C. and the chamber is evacuated for 2 hours. Then, 3 MPa of hydrogen is applied again to absorb the hydrogen. Thereafter, a hydrogen release curve at 170 ° C. is measured. The above operation was further performed at 190 ° C, 200 ° C, 21
The test was repeated at each of 5 ° C., 230 ° C., 250 ° C., and 300 ° C., and the hydrogen release curves at these temperatures were measured.

【0014】図1は、Mg2NiとMgNi1.9Cr0.1
を上述のように24時間メカニカルグラインディング゛
(MG)して得られた本発明実施例1に係る合金のX線
回折パターンを示すグラフである。また、図2は、30
0℃の水素放出でのPCT曲線測定後における本発明実
施例1に係る合金のX線回折パターンを示すグラフであ
る。更に、本発明実施例1に係る合金の上記各温度での
水素放出特性を示すPCT曲線を図7に示す。
FIG. 1 shows Mg 2 Ni and MgNi 1.9 Cr 0.1
Is a graph showing an X-ray diffraction pattern of the alloy according to Example 1 of the present invention obtained by subjecting the alloy to mechanical grinding (MG) for 24 hours as described above. Also, FIG.
5 is a graph showing an X-ray diffraction pattern of the alloy according to Example 1 of the present invention after PCT curve measurement with hydrogen release at 0 ° C. FIG. 7 shows a PCT curve showing the hydrogen release characteristics of the alloy according to Example 1 of the present invention at each of the above temperatures.

【0015】図1のグラフから、24時間にわたるMG
処理により、X線回折パターンにおいて、結晶質として
の明確な結晶構造に起因するピークが消滅し、試料合金
の構造がナノクリスタルあるいは非晶質の少なくとも一
方を有する構造になっていることが分かった。また、図
2のグラフから、図1と比較すればMgNi2系合金に
起因するピークも見られるが、ブロードな(幅の広い)
ピークが観察され、300℃に加熱した後でも、構造の
大部分についてナノクリスタルあるいは非晶質の少なく
とも一方を有する構造が維持されていることが分かっ
た。更に、図7のグラフから、本発明実施例1に係る合
金の場合には、150℃の低温域でも、1MPaから
0.01MPaに至る放出圧範囲で約0.5wt%の水素
を放出していることが分かった。また、この放出量は、
測定温度が上昇してもほとんど変化しないことも分かっ
た。
From the graph of FIG. 1, MG over 24 hours
By the treatment, in the X-ray diffraction pattern, the peak due to a clear crystal structure as crystalline disappeared, and it was found that the structure of the sample alloy was a structure having at least one of nanocrystal and amorphous. . Further, from the graph of FIG. 2, a peak caused by the MgNi 2 -based alloy can be seen as compared with FIG. 1, but the peak is broad (wide).
A peak was observed, and it was found that the structure having at least one of nanocrystal and amorphous was maintained for most of the structure even after heating to 300 ° C. Further, from the graph of FIG. 7, in the case of the alloy according to Example 1 of the present invention, even at a low temperature range of 150 ° C., about 0.5 wt% of hydrogen was released in a release pressure range from 1 MPa to 0.01 MPa. I knew it was there. Also, this release
It was also found that there was almost no change even when the measurement temperature increased.

【0016】本発明実施例2 次に、本発明の実施例2について説明する。この実施例
2は、MgNiXM1Yの化学組成式におけるM1を遷移
金属元素の一種である鉄(Fe)とし、X,Yの値をそ
れぞれ次のように選択した合金の特性を調べたものであ
る。 X=0.89,Y=0.03 すなわち、本発明実施例1に係る水素吸蔵合金は、Mg
Ni0.89Fe0.03の化学組成式で表されるもので、組成
式Mg2Ni、組成式MgNi1.9Fe0.1でそれぞれ示
される合金を出発原料とし、これら合金をポットに挿入
し、本発明実施例1の場合と同じく、アルゴン圧0.1
MPaにおいて、遊星型ボールミルにて24時間粉砕混
合して製造した。得られた合金の構造は、上記本発明実
施例1の場合と同じくX線回折パターンより判定した。
また、合金の水素吸蔵特性は、本発明実施例1の場合と
同様の各温度における圧力組成等温線図(PCT曲線)
を上述の方法で測定することにより評価した。
Second Embodiment of the Present Invention Next, a second embodiment of the present invention will be described. In Example 2, the characteristics of an alloy in which M1 in the chemical composition formula of MgNi X M1 Y is iron (Fe), which is a kind of transition metal element, and the values of X and Y are selected as follows are examined. It is. X = 0.89, Y = 0.03 That is, the hydrogen storage alloy according to Example 1 of the present invention
An alloy represented by a chemical composition of Ni 0.89 Fe 0.03 represented by a composition formula Mg 2 Ni and a composition formula MgNi 1.9 Fe 0.1 was used as a starting material, and these alloys were inserted into a pot. Argon pressure 0.1
At MPa, the mixture was pulverized and mixed in a planetary ball mill for 24 hours. The structure of the obtained alloy was determined from the X-ray diffraction pattern as in Example 1 of the present invention.
In addition, the hydrogen storage characteristics of the alloy are shown by the pressure composition isotherm (PCT curve) at each temperature as in the case of Example 1 of the present invention.
Was evaluated by measuring by the method described above.

【0017】図3は、Mg2NiとMgNi1.9Fe0.1
を上述のように24時間メカニカルグラインディング゛
(MG)して得られた本発明実施例2に係る合金のX線
回折パターンを示すグラフである。また、図4は、30
0℃での水素放出におけるPCT曲線測定後における本
発明実施例2に係る合金のX線回折パターンを示すグラ
フである。更に、本発明実施例2に係る合金の上記各温
度での水素放出特性を示すPCT曲線を図8に示す。
FIG. 3 shows Mg 2 Ni and MgNi 1.9 Fe 0.1
7 is a graph showing an X-ray diffraction pattern of the alloy according to Example 2 of the present invention obtained by subjecting to a mechanical grinding (MG) for 24 hours as described above. FIG.
5 is a graph showing an X-ray diffraction pattern of the alloy according to Example 2 of the present invention after PCT curve measurement at hydrogen release at 0 ° C. FIG. 8 shows a PCT curve showing the hydrogen release characteristics of the alloy according to Example 2 of the present invention at each of the above temperatures.

【0018】図3のグラフから、24時間にわたるMG
処理により、X線回折パターンにおいて、結晶質として
の明確な結晶構造に起因するピークが消滅し、上記合金
の構造がナノクリスタルあるいは非晶質の少なくとも一
方を有する構造になっていることが分かる。また、図4
のグラフから、図3と比較すれば結晶質としての明確な
結晶構造を有するMgNi2系合金に起因するピークも
見られるが、ブロードな(幅の広い)ピークが観察さ
れ、300℃に加熱した後でも、構造の大部分がナノク
リスタルあるいは非晶質の少なくとも一方を有する構造
に維持されていることが分かった。更に、図8のグラフ
から、本発明実施例2に係る合金の場合には、300℃
の測定で、Mgに起因するプラトー域が観測されるが、
1MPaから0.01MPaに至る放出圧範囲におい
て、150℃の温度で約0.25wt%、170℃の温
度で約0.4wt%の水素を放出していることが分かっ
た。しかしながら、それ以上の温度では水素放出量は低
下し、次に述べる本発明実施例3における場合と余り差
はなかった。
From the graph of FIG. 3, MG over 24 hours
By the treatment, in the X-ray diffraction pattern, the peak caused by a clear crystal structure as crystalline disappears, and it is understood that the structure of the alloy is a structure having at least one of nanocrystal and amorphous. FIG.
From the graph of FIG. 3, when compared with FIG. 3, a peak caused by an MgNi 2 -based alloy having a clear crystal structure as a crystalline substance is also observed, but a broad (wide) peak is observed, and the sample is heated to 300 ° C. Even later, it was found that most of the structure was maintained in a structure having at least one of nanocrystal and amorphous. Further, from the graph of FIG. 8, in the case of the alloy according to Example 2 of the present invention, the temperature of 300 ° C.
In the measurement, a plateau region caused by Mg is observed,
It was found that in a release pressure range from 1 MPa to 0.01 MPa, about 0.25 wt% of hydrogen was released at a temperature of 150 ° C. and about 0.4 wt% at a temperature of 170 ° C. However, at higher temperatures, the amount of released hydrogen was reduced, and there was no significant difference from the case of Example 3 of the present invention described below.

【0019】本発明実施例3 次に、本発明実施例3について説明する。この実施例3
は、MgNiXM1Yの化学組成におけるM1を遷移金属
元素の一種であるコバルト(Co)とし、X,Yの値を
それぞれ次のように選択した合金の特性を調べたもので
ある。 X=0.89,Y=0.03 すなわち、本発明実施例3に係る水素吸蔵合金は、Mg
Ni0.89Co0.03の化学組成式で表されるもので、組成
式Mg2Ni、組成式MgNi1.9Co0.1でそれぞれ示
される合金を出発原料とし、これら合金をポットに挿入
し、本発明実施例1及び2の場合と同様のMG処理を行
って製造した。得られた合金の特性の調査方法および評
価方法は、上記本発明実施例1及び2の場合と同じであ
る。
Third Embodiment of the Present Invention Next, a third embodiment of the present invention will be described. Example 3
Is obtained by examining the properties of an alloy in which M1 in the chemical composition of MgNi X M1 Y is cobalt (Co), which is a kind of transition metal element, and the values of X and Y are selected as follows. X = 0.89, Y = 0.03 That is, the hydrogen storage alloy according to the third embodiment of the present invention
An alloy represented by a chemical composition formula of Ni 0.89 Co 0.03 , which is represented by a composition formula Mg 2 Ni and a composition formula MgNi 1.9 Co 0.1 , was used as a starting material, and these alloys were inserted into a pot. And 2 were subjected to the same MG treatment as in the case of Example 1. The methods for investigating and evaluating the properties of the obtained alloy are the same as those in Examples 1 and 2 of the present invention.

【0020】図5は、Mg2NiとMgNi1.9Co0.1
を上述のように24時間メカニカルグラインディング゛
(MG)して得られた本発明実施例3に係る合金のX線
回折パターンを示すグラフである。また、図6は、30
0℃での水素放出におけるPCT曲線測定後における本
発明実施例3に係る合金のX線回折パターンを示すグラ
フである。更に、本発明実施例3に係る合金の上記各温
度での水素放出特性を示すPCT曲線を図9に示す。
FIG. 5 shows Mg 2 Ni and MgNi 1.9 Co 0.1
7 is a graph showing an X-ray diffraction pattern of the alloy according to Example 3 of the present invention obtained by subjecting the alloy to mechanical grinding (MG) for 24 hours as described above. Also, FIG.
9 is a graph showing an X-ray diffraction pattern of the alloy according to Example 3 of the present invention after PCT curve measurement at hydrogen release at 0 ° C. Further, FIG. 9 shows a PCT curve showing the hydrogen release characteristics of the alloy according to Example 3 of the present invention at each of the above temperatures.

【0021】図5のグラフから、24時間にわたるMG
処理により、X線回折パターンにおける結晶質としての
明確な結晶構造に起因するピークが消滅し、上記合金の
構造がナノクリスタルあるいは非晶質の少なくとも一方
を有する構造になっていることが分かる。しかし、図6
のグラフから分かるように、300℃に加熱した後で
は、X線回折パターンにおけるピークは、結晶質として
の明確な結晶構造を有するMgNi2系合金に対応して
おり、ナノクリスタルあるいは非晶質の少なくとも一方
を有する構造に起因するブロードな(幅の広い)ピーク
は、大幅に減少している。また、図9のグラフから分か
るように、本発明実施例3に係る合金の場合には、15
0℃の温度において、1MPaから0.01MPaに至
る放出圧範囲での水素放出量は約0.15wt%であっ
た。更に、図9から、測定温度の上昇による、ナノクリ
スタルあるいは非晶質の少なくとも一方を有する構造か
ら結晶質としての明確な結晶構造を有する結晶質への変
態は、各温度の吸蔵量から推定し、約230℃において
起こっていると推定される。結晶化により生じるMgに
起因するプラトー域は、230℃では0.01MPa以
下のため観察されなかったが、250℃及び300℃で
はプラトー域が認められることが分かる。
From the graph of FIG. 5, MG over 24 hours
By the treatment, the peak due to a clear crystalline structure as a crystalline in the X-ray diffraction pattern disappears, and it can be seen that the structure of the alloy is a structure having at least one of nanocrystal and amorphous. However, FIG.
As can be seen from the graph, after heating to 300 ° C., the peak in the X-ray diffraction pattern corresponds to the MgNi 2 -based alloy having a clear crystal structure as crystalline, and the nanocrystal or amorphous Broad peaks due to structures having at least one have been significantly reduced. Further, as can be seen from the graph of FIG. 9, in the case of the alloy according to Example 3 of the present invention, 15
At a temperature of 0 ° C., the amount of hydrogen released in a release pressure range from 1 MPa to 0.01 MPa was about 0.15 wt%. Further, from FIG. 9, the transformation from a structure having at least one of nanocrystals or amorphous to a crystalline material having a clear crystal structure as a crystalline material due to an increase in the measurement temperature is estimated from the amount of storage at each temperature. , About 230 ° C. Although a plateau region caused by Mg generated by crystallization was not observed at 230 ° C. because it was 0.01 MPa or less, plateau regions were observed at 250 ° C. and 300 ° C.

【0022】本発明実施例4 次に、本発明実施例4について説明する。この実施例4
は、MgNiXM1Yの化学組成におけるM1を遷移金属
元素の一種であるクロム(Cr)とし、X,Yの値をそ
れぞれ次のように選択した合金の特性を調べたものであ
る。 X=0.89,Y=0.26 すなわち、本発明実施例4に係る水素吸蔵合金は、Mg
Ni0.89Cr0.26の化学組成式で表されるもので、上述
の各実施例における場合と同様のMg処理を行って製造
した。この本発明実施例4に係る合金の150℃での水
素放出特性を図10に示す。この図10から分かるよう
に、本発明実施例4に係る水素吸蔵合金の場合には、1
50℃の温度において、1MPaから0.01MPaに
至る放出圧範囲での水素放出量は約0.1wt%であっ
た。
Fourth Embodiment of the Present Invention Next, a fourth embodiment of the present invention will be described. Example 4
Is obtained by examining the properties of an alloy in which M1 in the chemical composition of MgNi X M1 Y is chromium (Cr), which is a kind of transition metal element, and the values of X and Y are selected as follows. X = 0.89, Y = 0.26 That is, the hydrogen storage alloy according to Example 4 of the present invention
It is represented by the chemical composition formula of Ni 0.89 Cr 0.26 and manufactured by performing the same Mg treatment as in each of the above-described examples. FIG. 10 shows the hydrogen release characteristics at 150 ° C. of the alloy according to Example 4 of the present invention. As can be seen from FIG. 10, in the case of the hydrogen storage alloy according to Embodiment 4 of the present invention, 1
At a temperature of 50 ° C., the amount of hydrogen released in a release pressure range from 1 MPa to 0.01 MPa was about 0.1 wt%.

【0023】比較例 次に、比較例について説明する。この比較例は、Mg2
Niの化学組成式で示される合金の特性を調べたもので
ある。本比較例に係るMg系合金は、アルゴン雰囲気下
で溶解法によって製作したもので、結晶質としての明確
な結晶構造を有する結晶質を有している。この比較例に
係る合金の150℃での水素放出特性を図11に示す。
この図11から分かるように、本比較例に係る合金の場
合には、150℃の温度で水素の放出/吸蔵は全く進ん
でいなかった。
Comparative Example Next, a comparative example will be described. In this comparative example, Mg 2
This is a study of the characteristics of the alloy represented by the chemical composition formula of Ni. The Mg-based alloy according to this comparative example was produced by a melting method in an argon atmosphere, and has a crystalline structure having a clear crystal structure. FIG. 11 shows the hydrogen release characteristics at 150 ° C. of the alloy according to this comparative example.
As can be seen from FIG. 11, in the case of the alloy according to this comparative example, the release / occlusion of hydrogen at 150 ° C. did not proceed at all.

【0024】以上より、MgNiXM1Yの化学組成式に
おけるM1を遷移金属元素の一種であるクロム(Cr)
とし、X,Yの値をX=0.89,Y=0.02とした本
発明実施例1の場合には、150℃の低温域でも1MP
aから0.01MPaに至る放出圧範囲で約0.5wt%
の水素を放出しており、また、300℃に加熱した後で
も、構造の大部分がナノクリスタルあるいは非晶質の少
なくとも一方を有する構造であり、高温加熱後でも十分
に安定した上記構造が得られることが分かった。このよ
うに、Mg系水素吸蔵合金において、MgNiXM1Y
示される組成を有するとともに、ナノクリスタル又は非
晶質の少なくとも一方の構造を有することにより、15
0℃の低温域でも十分な水素放出量(つまり水素吸蔵
量)を確保することができた。これは、合金が上記構造
を有するようになって不安定なサイトが導入されること
によるものと思われる。また、M1を遷移金属元素とし
たのは、ナノクリスタル化あるいは非晶質化を促進する
ためである。
From the above, M1 in the chemical composition formula of MgNi x M1 Y is represented by chromium (Cr) which is a kind of transition metal element.
In the case of Example 1 of the present invention in which the values of X and Y were set to X = 0.89 and Y = 0.02, 1MP was obtained even at a low temperature range of 150 ° C.
0.5 wt% in the release pressure range from a to 0.01 MPa
Most of the structure is a structure having at least one of a nanocrystal and an amorphous structure even after heating to 300 ° C., and the above structure is sufficiently stable even after heating at a high temperature. I knew it could be done. As described above, the Mg-based hydrogen storage alloy has a composition represented by MgNi X M1 Y and has at least one of a nanocrystal structure and an amorphous structure.
Even in a low temperature range of 0 ° C., a sufficient amount of released hydrogen (that is, the amount of stored hydrogen) could be secured. This is considered to be due to the fact that the alloy has the above structure and unstable sites are introduced. The reason why M1 is a transition metal element is to promote the formation of nanocrystals or the formation of amorphous.

【0025】これに対して、Mg2Niの化学組成式で
示された結晶質としての明確な結晶構造を呈する比較例
の場合には、上述のように、150℃の温度で水素の放
出/吸蔵は全く行わないことが確認された。
On the other hand, in the case of the comparative example exhibiting a clear crystal structure as a crystalline material represented by the chemical composition formula of Mg 2 Ni, as described above, hydrogen release / It was confirmed that no occlusion was performed.

【0026】また、上記組成式におけるM1を遷移金属
元素の一種である鉄(Fe)とし、X,Yの値をX=
0.89,Y=0.03とした本発明実施例2の場合に
は、本発明実施例1よりも劣るものの、150℃の低温
域でも1MPaから0.01MPaに至る放出圧範囲で
約0.25wt%の水素を放出しており、また、300
℃に加熱した後でも、構造の大部分がナノクリスタルあ
るいは非晶質の少なくとも一方を有する構造であり、本
発明実施例1よりも劣るものの、高温加熱後でもかなり
安定した上記構造が得られることが分かった。
In the above composition formula, M1 is iron (Fe), which is a kind of transition metal element, and the values of X and Y are X =
In the case of Example 2 of the present invention in which 0.89 and Y = 0.03, although inferior to Example 1 of the present invention, even at a low temperature range of 150 ° C., the discharge pressure range from 1 MPa to 0.01 MPa was about 0%. .25 wt% of hydrogen is released.
Even after heating to ℃, most of the structure is a structure having at least one of nanocrystals and amorphous, which is inferior to Example 1 of the present invention, but the above structure can be obtained even after heating at a high temperature. I understood.

【0027】更に、上記組成式におけるM1を遷移金属
元素の一種であるコバルト(Co)とし、X,Yの値を
X=0.89,Y=0.03とした本発明実施例3の場合
には、150℃の温度で1MPaから0.01MPaに
至る放出圧範囲での水素放出量は約0.15wt%であ
った。また、300℃の高温に加熱した後においては構
造のかなりの部分が結晶化していた。この結晶質への変
態は、約230℃において起こっていると推定される。
以上より、合金が高温加熱後においてもナノクリスタル
又は非晶質の少なくとも一方の構造を安定して保つため
には、上記組成式におけるM1を鉄(Fe)又はクロム
(Cr)とすること、特に、Crとすることが有効であ
ることが推論できる。
Further, in the case of Example 3 of the present invention where M1 in the above composition formula is cobalt (Co), which is a kind of transition metal element, and X and Y values are X = 0.89 and Y = 0.03. According to the method, the amount of hydrogen released in a release pressure range from 1 MPa to 0.01 MPa at a temperature of 150 ° C. was about 0.15 wt%. After heating to a high temperature of 300 ° C., a considerable part of the structure had crystallized. This transformation to crystalline is presumed to have occurred at about 230 ° C.
From the above, in order for the alloy to stably maintain at least one of the nanocrystal structure and the amorphous structure even after heating at a high temperature, M1 in the above composition formula should be iron (Fe) or chromium (Cr), particularly , Cr is effective.

【0028】また更に、上記組成式におけるM1をクロ
ム(Cr)とし、X,Yの値をX=0.89,Y=0.2
6とした本発明実施例4の場合には、150℃の温度で
1MPaから0.01MPaに至る放出圧範囲での水素
放出量は約0.1wt%であった。例えば、水素吸蔵合
金をNi−H電池の電極材料として使用する場合には、
0.01MPa〜1MPaの圧力範囲において150℃
の温度で0.1wt%程度の水素放出があれば、その機
能を果たすことが知られており、本発明実施例4の場合
は、このような使用における実用上の上限を示すものと
考えられる。
Further, M1 in the above composition formula is chromium (Cr), and the values of X and Y are X = 0.89 and Y = 0.2.
In the case of Example 4 of the present invention, which was 6, the amount of released hydrogen in a release pressure range from 1 MPa to 0.01 MPa at a temperature of 150 ° C. was about 0.1 wt%. For example, when a hydrogen storage alloy is used as an electrode material of a Ni-H battery,
150 ° C. in a pressure range of 0.01 MPa to 1 MPa
It is known that the hydrogen release of about 0.1 wt% at this temperature fulfills its function. In the case of Example 4 of the present invention, it is considered that the practical upper limit in such use is exhibited. .

【0029】本発明実施例4では、上記本発明実施例1
と比較すると、MgNiXM1Yの化学組成式におけるM
1をクロム(Cr)とした場合のYの値が大きく(0.
02から0.26に)なっており、これに伴って、1M
Paから0.01MPaに至る放出圧範囲における15
0℃の温度での水素放出量は、約0.5wt%から約0.
1wt%に低下している。すなわち、MgNiXM1Y
化学組成式におけるM1を遷移金属元素の一種であるク
ロム(Cr)とした場合、Yの値が大きくなるほど低温
域での水素放出量が少なくなる傾向がある。以上より、
上記組成式におけるM1をクロム(Cr)とした場合、
低温域での実用上有効な水素放出量を確保するために
は、Yの値は0.25以下とすることが望ましい。
In the fourth embodiment of the present invention, the first embodiment of the present invention is used.
Is compared with M in the chemical composition formula of MgNi X M1 Y
The value of Y when chromium (Cr) is 1 is large (0.
02 to 0.26), and 1M
15 in the release pressure range from Pa to 0.01 MPa
The amount of hydrogen released at a temperature of 0 ° C. is from about 0.5 wt% to about 0.5 wt%.
It has dropped to 1 wt%. That is, when M1 in the chemical composition formula of MgNi X M1 Y is chromium (Cr), which is a kind of transition metal element, the larger the value of Y, the smaller the amount of hydrogen release in a low temperature region. From the above,
When M1 in the above composition formula is chromium (Cr),
In order to secure a practically effective amount of hydrogen release in a low temperature range, it is desirable that the value of Y be 0.25 or less.

【0030】尚、本発明は、以上の実施態様に限定され
るものではなく、その要旨を逸脱しない範囲において、
種々の改良あるいは変更が可能であることは言うまでも
ない。例えば、上記実施の形態では、各実施例に係る水
素吸蔵合金は、Mg−Ni系等の化合物を出発原料とし
て、極めて長時間(24時間)のメカニカルグラインデ
ィング(MG)処理を行うことにより、ナノクリスタル
あるいは非晶質の少なくとも一方を有する構造としたも
のであったが、出発原料は元素であっても良く、また、
長時間のMG処理を行う代わりに、急冷凝固法によって
合金を製作することによって、上記と同様に、ナノクリ
スタルあるいは非晶質の少なくとも一方を有する構造の
合金を得ることができる。
The present invention is not limited to the above-described embodiment, but may be modified without departing from the scope of the invention.
It goes without saying that various improvements or changes are possible. For example, in the above embodiment, the hydrogen storage alloy according to each of the examples is obtained by performing a mechanical grinding (MG) process for an extremely long time (24 hours) using a compound such as an Mg-Ni-based compound as a starting material. Although it had a structure having at least one of nanocrystal and amorphous, the starting material may be an element,
By manufacturing the alloy by a rapid solidification method instead of performing the MG treatment for a long time, an alloy having a structure having at least one of nanocrystal and amorphous can be obtained as described above.

【0031】[0031]

【発明の効果】以上、説明したように、本願発明によれ
ば、Mg系の水素吸蔵合金において、その化学組成をM
gNiXM1Yで示される組成とするとともに、ナノクリ
スタル又は非晶質の少なくとも一方の構造とすることに
より、水素吸蔵量は多いが水素の吸蔵および放出温度が
高いとされていたMg系水素吸蔵合金において、従来に
比べてかなり低い温度領域でも、有効に水素の吸蔵およ
び放出を行わしめることが可能になり、実用性の高いM
g系水素吸蔵合金を提供することができる。また、この
場合において、上記組成式MgNiXM1YにおけるM1
を遷移金属元素としたことにより、合金のナノクリスタ
ル化あるいは非晶質化を促進することができ、更に、上
記M1を、特に、鉄(Fe)又はクロム(Cr)とする
ことにより、高温加熱後においてもナノクリスタル又は
非晶質の少なくとも一方の構造を安定して保つことがで
きる。また、更に、この場合において、上記M1をクロ
ム(Cr)とし、Yの値を0.25以下(但し、Y>
0)とすることにより、低温域での水素の吸蔵および放
出を実用上有効な範囲で確実に行わせることができる。
As described above, according to the present invention, the chemical composition of the Mg-based hydrogen storage alloy is set to M
By having a composition represented by gNi X M1 Y and having at least one of a nanocrystal structure and an amorphous structure, Mg-based hydrogen storage which has a high hydrogen storage amount but a high hydrogen storage and release temperature is considered. In an alloy, hydrogen can be efficiently absorbed and released even in a temperature range considerably lower than that of the conventional alloy, and M
A g-based hydrogen storage alloy can be provided. In this case, M1 in the above composition formula MgNi X M1 Y
Is a transition metal element, which can promote nanocrystallization or amorphization of the alloy. Further, when M1 is made of iron (Fe) or chromium (Cr), high-temperature heating can be achieved. Even afterwards, the structure of at least one of the nanocrystal and the amorphous can be stably maintained. Further, in this case, M1 is chromium (Cr), and the value of Y is 0.25 or less (where Y>
By setting the value to 0), it is possible to reliably store and release hydrogen in a low temperature range within a practically effective range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施例1に係る合金の24時間MG処
理後におけるX線回折パターンを示す図である。
FIG. 1 is a view showing an X-ray diffraction pattern of an alloy according to Example 1 of the present invention after MG treatment for 24 hours.

【図2】 本発明実施例1に係る合金の300℃加熱後
におけるX線回折パターンを示す図である。
FIG. 2 is a view showing an X-ray diffraction pattern of the alloy according to Example 1 of the present invention after heating at 300 ° C.

【図3】 本発明実施例2に係る合金の24時間MG処
理後におけるX線回折パターンを示す図である。
FIG. 3 is a view showing an X-ray diffraction pattern of an alloy according to Example 2 of the present invention after MG processing for 24 hours.

【図4】 本発明実施例2に係る合金の300℃加熱後
におけるX線回折パターンを示す図である。
FIG. 4 is a view showing an X-ray diffraction pattern of the alloy according to Example 2 of the present invention after heating at 300 ° C.

【図5】 本発明実施例3に係る合金の24時間MG処
理後におけるX線回折パターンを示す図である。
FIG. 5 is a diagram showing an X-ray diffraction pattern of the alloy according to Example 3 of the present invention after MG treatment for 24 hours.

【図6】 本発明実施例3に係る合金の300℃加熱後
におけるX線回折パターンを示す図である。
FIG. 6 is a view showing an X-ray diffraction pattern of the alloy according to Example 3 of the present invention after heating at 300 ° C.

【図7】 本発明実施例1に係る合金の各測定温度での
水素放出特性を示す図である。
FIG. 7 is a view showing hydrogen release characteristics of the alloy according to Example 1 of the present invention at each measurement temperature.

【図8】 本発明実施例2に係る合金の各測定温度での
水素放出特性を示す図である。
FIG. 8 is a view showing hydrogen release characteristics at various measurement temperatures of the alloy according to Example 2 of the present invention.

【図9】 本発明実施例3に係る合金の各測定温度での
水素放出特性を示す図である。
FIG. 9 is a diagram showing hydrogen release characteristics of the alloy according to Example 3 of the present invention at each measurement temperature.

【図10】 本発明実施例4に係る合金の温度150℃
での水素放出特性を示す図である。
FIG. 10 shows a temperature of 150 ° C. of an alloy according to Example 4 of the present invention.
FIG. 4 is a diagram showing hydrogen release characteristics in the case of FIG.

【図11】 比較例に係る合金の温度150℃での水素
放出特性を示す図である。
FIG. 11 is a diagram showing hydrogen release characteristics at a temperature of 150 ° C. of an alloy according to a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 對尾 良則 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshinori Tsuo 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 MgNiXM1Yで示される組成を有する
とともに、ナノクリスタル又は非晶質の少なくとも一方
の構造を有することを特徴とするマグネシウム系水素吸
蔵合金。
1. A magnesium-based hydrogen storage alloy having a composition represented by MgNi X M1 Y and having at least one of a nanocrystal structure and an amorphous structure.
【請求項2】 上記組成式MgNiXM1YにおけるM1
が遷移金属元素であることを特徴とする請求項1記載の
マグネシウム系水素吸蔵合金。
2. M1 in the above composition formula MgNi x M1 Y
Is a transition metal element, the magnesium-based hydrogen storage alloy according to claim 1, wherein
【請求項3】 上記組成式MgNiXM1YにおけるM1
が鉄(Fe)又はクロム(Cr)であることを特徴とす
る請求項1又は請求項2に記載のマグネシウム系水素吸
蔵合金。
3. M1 in the composition formula MgNi X M1 Y
3 is iron (Fe) or chromium (Cr). The magnesium-based hydrogen storage alloy according to claim 1 or 2, wherein
【請求項4】 上記組成式MgNiXM1YにおけるM1
がクロム(Cr)であり、Yの値が0.25以下(但
し、Y>0)であることを特徴とする請求項3記載のマ
グネシウム系水素吸蔵合金。
4. M1 in the above composition formula MgNi X M1 Y
Is chromium (Cr), and the value of Y is 0.25 or less (where Y> 0). The magnesium-based hydrogen storage alloy according to claim 3, wherein
JP10016502A 1998-01-29 1998-01-29 Magnesium-type hydrogen storage alloy Pending JPH11217640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10016502A JPH11217640A (en) 1998-01-29 1998-01-29 Magnesium-type hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10016502A JPH11217640A (en) 1998-01-29 1998-01-29 Magnesium-type hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH11217640A true JPH11217640A (en) 1999-08-10

Family

ID=11918059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10016502A Pending JPH11217640A (en) 1998-01-29 1998-01-29 Magnesium-type hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH11217640A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791736A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Hydrogen occluding material
JPH07268403A (en) * 1994-03-07 1995-10-17 Hydro Quebec Method of transportation and storage of nanocrystalline powder and hydrogen
WO1995034918A1 (en) * 1994-06-14 1995-12-21 Ovonic Battery Company, Inc. ELECTROCHEMICAL HYDROGEN STORAGE ALLOYS AND BATTERIES FABRICATED FROM Mg CONTAINING BASE ALLOYS
WO1996023906A1 (en) * 1995-02-02 1996-08-08 Hydro-Quebec NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
WO1996036084A1 (en) * 1995-04-17 1996-11-14 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from mg containing base alloys
JPH10147827A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd Hydrogen storage alloy and its production
JPH10226836A (en) * 1997-02-14 1998-08-25 Matsushita Electric Ind Co Ltd Hydrogen storage alloy and its production
JPH1161313A (en) * 1997-08-25 1999-03-05 Hiroshima Pref Gov Sangyo Gijutsu Shinko Kiko Magnesium-base hydrogen storage composite material and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791736A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Hydrogen occluding material
JPH07268403A (en) * 1994-03-07 1995-10-17 Hydro Quebec Method of transportation and storage of nanocrystalline powder and hydrogen
WO1995034918A1 (en) * 1994-06-14 1995-12-21 Ovonic Battery Company, Inc. ELECTROCHEMICAL HYDROGEN STORAGE ALLOYS AND BATTERIES FABRICATED FROM Mg CONTAINING BASE ALLOYS
WO1996023906A1 (en) * 1995-02-02 1996-08-08 Hydro-Quebec NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
WO1996036084A1 (en) * 1995-04-17 1996-11-14 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries fabricated from mg containing base alloys
JPH10147827A (en) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd Hydrogen storage alloy and its production
JPH10226836A (en) * 1997-02-14 1998-08-25 Matsushita Electric Ind Co Ltd Hydrogen storage alloy and its production
JPH1161313A (en) * 1997-08-25 1999-03-05 Hiroshima Pref Gov Sangyo Gijutsu Shinko Kiko Magnesium-base hydrogen storage composite material and its production

Similar Documents

Publication Publication Date Title
Lass Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification
Spassov et al. Nanocrystallization and hydrogen storage in rapidly solidified Mg–Ni–RE alloys
JP6747989B2 (en) Metal hydride alloys with improved activity and high speed performance
Huang et al. Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1− xMnx (x= 0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying
Liu et al. Effect of crystal transformation on electrochemical characteristics of La–Mg–Ni-based alloys with A2B7-type super-stacking structures
Jurczyk et al. Hydrogen storage by Mg-based nanocomposites
Guo et al. Effect of Sm on the cyclic stability of La–Y–Ni-based alloys and their comparison with RE–Mg–Ni-based hydrogen storage alloy
Zhang et al. Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
Gutfleisch et al. Hydrogenation properties of nanocrystalline Mg-and Mg2Ni-based compounds modified with platinum group metals (PGMs)
Jurczyk et al. Nanocrystalline LaNi5-type electrode materials for Ni-MHx batteries
Liu et al. Hydrogen storage properties of Mg100− xNix (x= 5, 11.3, 20, 25) composites prepared by hydriding combustion synthesis followed by mechanical milling (HCS+ MM)
Majchrzycki et al. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound
Jurczyk et al. Nanocrystalline LaNi4. 2Al0. 8 prepared by mechanical alloying and annealing and its hydride formation
Lenain et al. Electrochemical properties of AB5-type hydride-forming compounds prepared by mechanical alloying
JP2007084883A (en) Method for manufacturing hydrogen occlusion alloy
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JPH11217640A (en) Magnesium-type hydrogen storage alloy
ZHANG et al. Electrochemical hydrogen storage performances of the nanocrystalline and amorphous (Mg24Ni10Cu2) 100–xNdx (x= 0–20) alloys applied to Ni-MH battery
JP7175372B1 (en) Low Co hydrogen storage alloy
WO2002042507A1 (en) Hydrogen-occluding alloy and method for production thereof
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
Chang et al. Effects of lithium addition in AB2 metal hydride alloy by solid-state diffusion
JP7439316B1 (en) Hydrogen storage alloy powder for nickel metal hydride battery negative electrode
Zhang et al. Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg 2 Ni-type alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212