JPH11217201A - Purification of oxygen gas and purification apparatus - Google Patents

Purification of oxygen gas and purification apparatus

Info

Publication number
JPH11217201A
JPH11217201A JP10034239A JP3423998A JPH11217201A JP H11217201 A JPH11217201 A JP H11217201A JP 10034239 A JP10034239 A JP 10034239A JP 3423998 A JP3423998 A JP 3423998A JP H11217201 A JPH11217201 A JP H11217201A
Authority
JP
Japan
Prior art keywords
oxygen gas
carbon dioxide
water
adsorbent
purifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10034239A
Other languages
Japanese (ja)
Other versions
JP4169820B2 (en
Inventor
Kenji Otsuka
健二 大塚
Hiroshi Waki
弘 脇
Yoshio Yamashita
義雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP03423998A priority Critical patent/JP4169820B2/en
Publication of JPH11217201A publication Critical patent/JPH11217201A/en
Application granted granted Critical
Publication of JP4169820B2 publication Critical patent/JP4169820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably supply purified oxygen gas having ultra-high purity by successively carrying out the oxidation of carbon monoxide and hydrogen generated in a pipe with noble metal catalyst at normal temperature and the adsorption of carbon dioxide and water with an adsorbent. SOLUTION: An oxygen gas containing impurities is introduced into a refiner 3 through an oxygen gas feeding line 1 and an inlet port 2 at <=80 deg.C. The oxygen gas containing carbon monoxide, carbon dioxide, hydrogen and water and introduced into the refiner 3 is brought into contact at normal temperature with a noble metal catalyst 4 packed at the inlet side of the refiner to effect the conversion of carbon monoxide and hydrogen into carbon dioxide and water. The product is brought into contact with an adsorbent 5 packed at the outlet side of the refiner to effect the adsorption of carbon dioxide and water. The purified oxygen gas is passed through the outlet 6 of the refiner and taken out of the refiner from the discharging port 7. The particle diameters of the noble metal catalyst 4 and the adsorbent 5 are selected according to the size of the refiner 3 and are usually <=1/10 of the diameter of the cylinder and not too small to cause substantial pressure drop.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素ガスの精製方
法および精製器に関し、さらに詳細には半導体製造工程
などで使用される酸素ガスをボンベあるいは液体酸素タ
ンクから半導体製造装置まで供給する間に配管などから
発生する、一酸化炭素、二酸化炭素、水、水素を極低濃
度まで除去しうる酸素ガスの精製方法および精製器に関
する。
The present invention relates to a method and a purifier for purifying oxygen gas, and more particularly, to a method for supplying oxygen gas used in a semiconductor manufacturing process from a cylinder or a liquid oxygen tank to a semiconductor manufacturing apparatus. The present invention relates to a method and a purifier for purifying an oxygen gas capable of removing carbon monoxide, carbon dioxide, water, and hydrogen generated from piping or the like to extremely low concentrations.

【0002】[0002]

【従来の技術】半導体製造工程などでは、酸素ガスが多
量に使用されているが、近年、半導体の高度集積化の急
速な進展とともに酸素ガスが極めて高純度であることが
強く要求されつつある。
2. Description of the Related Art A large amount of oxygen gas is used in a semiconductor manufacturing process or the like. In recent years, with the rapid progress of high integration of semiconductors, it has been strongly required that oxygen gas be extremely high in purity.

【0003】酸素ガスは、一般にボンベに充填されたも
のあるいは液体酸素タンクに貯蔵されたものを使用する
が、その酸素ガス中には炭化水素、一酸化炭素、水、水
素、二酸化炭素などの不純物が含まれているため、精製
装置などを用いて高純度に精製した後、半導体製造装置
に供給される。一方、半導体製造設備は高額の建設費を
要するクリーンルーム内に設置されていることから、酸
素ボンベ、液化酸素タンク、酸素の精製装置などを半導
体製造装置の近傍に設置することができない。このため
高純度に精製された酸素は通常は長距離の配管を用いて
半導体製造装置に供給されている。
[0003] Oxygen gas generally used is one filled in a cylinder or stored in a liquid oxygen tank. The oxygen gas contains impurities such as hydrocarbons, carbon monoxide, water, hydrogen and carbon dioxide. Therefore, after being purified to a high degree of purity using a refiner or the like, it is supplied to a semiconductor manufacturing apparatus. On the other hand, since the semiconductor manufacturing equipment is installed in a clean room requiring a high construction cost, an oxygen cylinder, a liquefied oxygen tank, an oxygen purification device, and the like cannot be installed near the semiconductor manufacturing equipment. For this reason, highly purified oxygen is usually supplied to a semiconductor manufacturing apparatus using a long-distance pipe.

【0004】しかしながら、このように精製された酸素
であっても半導体製造装置の直前では、配管中に含まれ
ていた水分の脱離によって、酸素中の水の濃度が高くな
るという問題があった。また、配管が短い場合でも、供
給する酸素の流量が小さく、かつ配管中の滞留時間が長
いときにも酸素ガス中の水の濃度が高くなってしまうと
いった問題があった。
[0004] However, even with such purified oxygen, immediately before the semiconductor manufacturing apparatus, there is a problem that the concentration of water in the oxygen increases due to the desorption of water contained in the piping. . Further, even when the piping is short, there is a problem that the concentration of water in the oxygen gas becomes high even when the flow rate of supplied oxygen is small and the residence time in the piping is long.

【0005】これらの問題を解決する方法として、従来
から半導体製造装置の直前に吸着剤を充填した精製器を
設置し、酸素ガス中に含まれる水を除去する方法が用い
られてきた。
As a method for solving these problems, a method has been conventionally used in which a purifier filled with an adsorbent is installed immediately before a semiconductor manufacturing apparatus to remove water contained in oxygen gas.

【0006】[0006]

【発明が解決しようとする課題】ところが、最近の分析
技術の向上により、このように精製した後に半導体製造
装置に供給されている酸素ガス中には微量の一酸化炭素
や二酸化炭素が含まれていることがわかり、半導体の高
集積化の妨げとなることがわかってきた。これらの一酸
化炭素、二酸化炭素は、酸素で不動態化処理した配管、
あるいは電解研磨したSUS316L製の配管、さらに
は二重溶解品を電解研磨したSUS316L製の配管等
を用いても安定して1ppb以下にすることはできなか
った。以上のことから、半導体製造工程などで要求され
る超高純度の精製酸素ガスを使用条件に影響されること
なく、一酸化炭素、二酸化炭素、水素、水の濃度が常に
1ppb以下の酸素ガスを得ることのできる精製方法お
よび精製器の開発が望まれていた。
However, due to recent improvements in analysis techniques, trace amounts of carbon monoxide and carbon dioxide are contained in oxygen gas supplied to a semiconductor manufacturing apparatus after such purification. It has been found that this hinders high integration of semiconductors. These carbon monoxide and carbon dioxide are piped with oxygen passivation,
Alternatively, it was not possible to stably reduce the pressure to 1 ppb or less by using a SUS316L pipe which was electrolytically polished, or a SUS316L pipe which was obtained by electrolytically polishing a double-dissolved product. From the above, the ultra-high-purity purified oxygen gas required in the semiconductor manufacturing process and the like is not affected by the use conditions, and the concentration of carbon monoxide, carbon dioxide, hydrogen and water is always 1 ppb or less. Development of a purifying method and purifier that can be obtained has been desired.

【0007】[0007]

【課題を解決するための手段】本発明者らは、この問題
を解決するべく鋭意研究を重ねた結果、配管などの金属
材料の表面に吸着していた一酸化炭素、二酸化炭素が脱
離するばかりでなく、配管などの金属材料と酸素が接触
することによって金属材料中に含まれる炭素が酸素ガス
と反応し、微量の一酸化炭素、二酸化炭素が発生するこ
とを突き止め、さらに微量の一酸化炭素を貴金属触媒と
常温下で接触させ、次いで吸着剤と接触させることによ
り、一酸化炭素、二酸化炭素、水、水素の濃度が1pp
b以下の酸素ガスを得ることができることを見いだし、
本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies to solve this problem, and as a result, carbon monoxide and carbon dioxide adsorbed on the surface of metallic materials such as pipes are desorbed. Not only that, when oxygen comes into contact with metal materials such as piping and the like, the carbon contained in the metal materials reacts with oxygen gas, generating trace amounts of carbon monoxide and carbon dioxide. By bringing carbon into contact with a noble metal catalyst at room temperature and then with an adsorbent, the concentration of carbon monoxide, carbon dioxide, water and hydrogen is reduced to 1 pp.
b or less oxygen gas can be obtained,
The present invention has been reached.

【0008】すなわち本発明は、不純物を含む酸素ガス
を80℃以下の温度で貴金属触媒と接触させ、一酸化炭
素および/または水素を二酸化炭素および/または水に
転化した後、吸着剤と接触させて二酸化炭素および/ま
たは水を吸着除去することを特徴とする酸素ガスの精製
方法である。また本発明は酸素ガス中に含まれる不純物
を除去するための酸素ガス精製器であって、一酸化炭素
および/または水素を常温付近で二酸化炭素および/ま
たは水に転化するための貴金属触媒を入口側に、二酸化
炭素および/または水を除去するための吸着剤を出口側
に充填されてなることを特徴とする酸素ガスの精製器で
ある。
That is, according to the present invention, oxygen gas containing impurities is brought into contact with a noble metal catalyst at a temperature of 80 ° C. or less, carbon monoxide and / or hydrogen is converted into carbon dioxide and / or water, and then the adsorbent is brought into contact. This is a method for purifying oxygen gas, wherein carbon dioxide and / or water is removed by adsorption. The present invention also relates to an oxygen gas purifier for removing impurities contained in oxygen gas, which is provided with a noble metal catalyst for converting carbon monoxide and / or hydrogen to carbon dioxide and / or water at about room temperature. An oxygen gas purifier characterized in that an adsorbent for removing carbon dioxide and / or water is filled on an outlet side.

【0009】[0009]

【発明の実施の形態】本発明は、不純物として一酸化炭
素、二酸化炭素、水または水素などを含む酸素ガスの超
高純度精製に適用される。本発明は、配管中で発生した
一酸化炭素と水素の常温下での貴金属触媒による酸化
と、吸着剤による二酸化炭素と水の吸着をこの順番で行
なう酸素ガスの精製方法である。また本発明は、貴金属
触媒を入口側に、吸着剤を出口側に充填した精製器であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is applied to ultra-high-purity purification of oxygen gas containing carbon monoxide, carbon dioxide, water or hydrogen as impurities. The present invention is a method for purifying oxygen gas in which oxidation of carbon monoxide and hydrogen generated in a pipe at a normal temperature by a noble metal catalyst and adsorption of carbon dioxide and water by an adsorbent are performed in this order. Further, the present invention is a purifier in which a noble metal catalyst is filled on an inlet side and an adsorbent is filled on an outlet side.

【0010】本発明に用いられる貴金属触媒としては酸
素ガス中に含まれる一酸化炭素、水素などの不純物を8
0℃以下の温度で二酸化炭素または水に転化させ得るも
のであればよく、パラジウム、白金、ルテニウム、ロジ
ウム、レニウム、イリジウムなどを有効成分として含む
ものが挙げられる。これらの中でもパラジウムは低温活
性が高く、かつ比較的安価であることなどから特に好ま
しい。これらの成分は単独で用いてもよいが、ガスとの
接触効率を高めるために、通常はアルミナ、チタニア、
ジルコニア、アルミナシリケートなどの触媒担体に担持
させた形で使用される。
As the noble metal catalyst used in the present invention, impurities such as carbon monoxide and hydrogen contained in oxygen gas are used.
Any substance that can be converted into carbon dioxide or water at a temperature of 0 ° C. or less may be used, and examples thereof include those containing palladium, platinum, ruthenium, rhodium, rhenium, iridium, and the like as an active ingredient. Among them, palladium is particularly preferable because of its high low-temperature activity and relatively low cost. These components may be used alone, but usually, alumina, titania,
It is used in a form supported on a catalyst carrier such as zirconia and alumina silicate.

【0011】吸着剤としては特許第2572616号や
特許第2651603号に記載されているような酸化亜
鉛を主成分とする吸着剤や、合成ゼオライトなどの水お
よび二酸化炭素の除去能力の高いもの、例えばモレキュ
ラシーブ4A、モレキュラシーブ5A(ユニオン昭和
製、ドイツ Linde社製など)およびこれらの相当
品を、単独で、または組み合わせて用いることができ
る。
As the adsorbent, an adsorbent containing zinc oxide as a main component as described in Japanese Patent No. 2572616 and Japanese Patent No. 2651603, a synthetic zeolite or the like having a high ability to remove water and carbon dioxide, for example, Molecular sieve 4A, molecular sieve 5A (manufactured by Union Showa, Linde, Germany, etc.) and their equivalents can be used alone or in combination.

【0012】本発明における貴金属触媒および吸着剤の
粒径は精製器の大きさなどによって選ばれ、一概に特定
はできないが、一般に筒径の10分の1以下で、大きな
圧力損失を生じない程度のものが用いられる。貴金属触
媒、吸着剤の精製器への充填量は、酸素ガス中に含まれ
る不純物の種類、濃度およびガス流量などに応じて設定
される。
The particle size of the noble metal catalyst and the adsorbent in the present invention is selected depending on the size of the purifier and cannot be specified unconditionally, but is generally less than 1/10 of the cylinder diameter and does not cause a large pressure loss. Is used. The amount of the noble metal catalyst and the adsorbent charged into the purifier is set according to the type and concentration of impurities contained in the oxygen gas, the gas flow rate, and the like.

【0013】次に本発明を図面によって具体的に例示し
て説明する。図1は本発明の酸素ガス精製器である。図
1において、精製器3はガスの入口2および出口6を有
し、入口側に貴金属触媒4が、出口側に吸着剤5が充填
されている。精製器3の入口2には酸素ガスの供給配管
1が、出口6には精製酸素ガスの抜き出し管7が接続さ
れている。
Next, the present invention will be described with reference to the drawings. FIG. 1 shows an oxygen gas purifier of the present invention. In FIG. 1, a purifier 3 has an inlet 2 and an outlet 6 for gas, and a noble metal catalyst 4 is filled on the inlet side and an adsorbent 5 is filled on the outlet side. An oxygen gas supply pipe 1 is connected to the inlet 2 of the purifier 3, and a purified oxygen gas extraction pipe 7 is connected to the outlet 6.

【0014】酸素ガスの精製に際しては、酸素ガス供給
配管1から入口2を経て精製器3内に供給される。精製
器3に入った一酸化炭素、二酸化炭素、水素、水を含む
酸素ガスは、まず入口側に充填された貴金属触媒4と常
温で接触することにより、一酸化炭素、水素が二酸化炭
素または水に転化される。次いで出口側に充填された吸
着剤5と接触することにより、二酸化炭素、水が吸着さ
れる。精製された酸素ガスは、精製器出口6を経て精製
酸素ガスの抜き出し管7から抜き出され、半導体製造装
置等に供給される。
In purifying the oxygen gas, the oxygen gas is supplied from the oxygen gas supply pipe 1 through the inlet 2 into the purifier 3. The oxygen gas containing carbon monoxide, carbon dioxide, hydrogen and water that has entered the purifier 3 first contacts the noble metal catalyst 4 filled at the inlet side at room temperature, so that carbon monoxide and hydrogen are converted into carbon dioxide or water. Is converted to Next, carbon dioxide and water are adsorbed by contacting the adsorbent 5 filled on the outlet side. The purified oxygen gas is withdrawn from a purified oxygen gas extraction pipe 7 through a purifier outlet 6, and supplied to a semiconductor manufacturing apparatus or the like.

【0015】本発明に用いられる精製器および配管の、
酸素ガスと直接接触する部分の材質としては、通常SU
S316Lが用いられ、電解研磨されたSUS316L
が特に好ましい。
[0015] The purifier and piping used in the present invention,
The material of the part that comes into direct contact with oxygen gas is usually SU
SUS316L electrolytically polished using S316L
Is particularly preferred.

【0016】精製器は、図1に示したような1つの筒に
貴金属触媒と吸着剤を充填した形態のほか、貴金属触媒
と吸着剤をそれぞれ別の筒に充填したものを直列に連結
し、一体化したものであってもよい。
The purifier has a form in which one cylinder is filled with a noble metal catalyst and an adsorbent as shown in FIG. It may be integrated.

【0017】本発明においては、一般にパーティクルの
漏洩防止のため、精製器の出口側にフィルターが取り付
けられる。フィルターは精製器と一体化してもよく、別
個に設けてもよい。フィルターの材質としては、ガス吸
着量の少ない金属製のフィルターが使用される。樹脂製
のフィルターを使用した場合には、樹脂製のフィルター
に吸着または溶解していた不純物が脱離し、酸素ガスの
純度が再び低下するため好ましくない。
In the present invention, a filter is generally mounted on the outlet side of the purifier to prevent particles from leaking. The filter may be integrated with the purifier or provided separately. As a material of the filter, a metal filter having a small gas adsorption amount is used. It is not preferable to use a resin filter because impurities adsorbed or dissolved on the resin filter are eliminated and the purity of oxygen gas is reduced again.

【0018】本発明においては、一般に精製器交換時に
配管への装脱着を容易にする目的と、外気の混入を防止
する目的で精製器の出入口にバルブや継手が設けられ
る。
In the present invention, valves and joints are generally provided at the inlet / outlet of the purifier for the purpose of facilitating attachment / detachment to / from the piping when the purifier is replaced and for the purpose of preventing outside air from being mixed.

【0019】精製器での酸素ガスと貴金属触媒との接触
温度は、触媒の種類、酸素ガスの流量、不純物の種類お
よび量に応じて設定されるので一概に特定はできない
が、通常80℃以下の温度であり、常温付近の温度(0
〜50℃)であれば加熱、冷却を必要としないので特に
好ましい。
The contact temperature between the oxygen gas and the noble metal catalyst in the purifier cannot be specified unconditionally because it is set according to the type of the catalyst, the flow rate of the oxygen gas, and the type and amount of the impurities. And a temperature near normal temperature (0
-50 ° C) is particularly preferable because heating and cooling are not required.

【0020】酸素ガスの圧力、貴金属触媒との接触時間
もまた触媒の種類、酸素ガスの流量、不純物の種類およ
び量に応じて設定され、一概に特定はできないが、通常
は圧力が10kg/cm2 以下、接触時間が0.05〜
100秒程度の条件である。精製器での酸素ガスと吸着
剤との接触温度、圧力は、貴金属触媒との接触条件と同
様の条件で設定される。また接触時間は、精製器の形
状、大きさ、吸着剤の種類により異なり、一概に特定は
できないが、通常は0.1〜1000秒程度である。ま
た、圧力損失は1.0kg/cm2 以下であることが好
ましい。
The pressure of the oxygen gas and the contact time with the noble metal catalyst are also set according to the type of the catalyst, the flow rate of the oxygen gas, the type and the amount of the impurities, and cannot be specified unconditionally, but usually the pressure is 10 kg / cm. 2 or less, contact time 0.05 ~
The condition is about 100 seconds. The contact temperature and pressure between the oxygen gas and the adsorbent in the purifier are set under the same conditions as those for contacting the noble metal catalyst. The contact time varies depending on the shape and size of the purifier and the type of adsorbent, and cannot be specified unconditionally, but is usually about 0.1 to 1000 seconds. Further, the pressure loss is preferably 1.0 kg / cm 2 or less.

【0021】次に、本発明を実施例に基づいて説明する
が、本発明がこれにより限定されるものではない。 (実施例1)内径28.4mm、筒長1000mmの電
解研磨したSUS316L製の筒の入口側に粒径約2.
0mmのαアルミナにパラジウムを0.5wt%担持さ
せた触媒を100mm、出口側に直径1.6mm、長さ
3.0〜5.0mmのペレット状のモレキュラシーブ5
Aを800mm充填し、酸素ガス精製器とした。
Next, the present invention will be described based on examples, but the present invention is not limited thereto. (Example 1) An electrolytically polished SUS316L cylinder having an inner diameter of 28.4 mm and a cylinder length of 1000 mm has a particle diameter of about 2.
100 mm of a catalyst in which 0.5 wt% of palladium is supported on α-alumina of 0 mm, and a pellet-shaped molecular sieve 5 having a diameter of 1.6 mm and a length of 3.0 to 5.0 mm on the outlet side.
A was filled with 800 mm to obtain an oxygen gas purifier.

【0022】精製器中の吸着剤の活性化 吸着剤の活性化を以下のように行った。精製器を350
℃に加熱しながら精製器下部から精製酸素を2L/mi
nの流量で4時間流通させた。加熱を終了した後、5時
間酸素を流通させて精製器を室温まで冷却した。
Activation of the adsorbent in the purifier The activation of the adsorbent was carried out as follows. 350 purifiers
2 L / mi of purified oxygen from the lower part of the purifier while heating to
Flowed at a flow rate of n for 4 hours. After the heating was completed, oxygen was allowed to flow for 5 hours to cool the purifier to room temperature.

【0023】図2に示すように液化酸素タンク8、気化
器9、酸素ガス精製装置10、酸素ガス精製器3、半導
体製造装置11の順に、電解研磨したSUS316L製
で呼び径が15Aの配管12で接続した。なお、酸素ガ
ス精製装置と酸素ガス精製器を接続する配管の長さは2
30mである。また、酸素ガス精製装置出口、精製器入
口、精製器出口にはそれぞれ酸素ガス分析用のガス取り
出し口13、14、15を設けた。
As shown in FIG. 2, a liquefied oxygen tank 8, a vaporizer 9, an oxygen gas purifier 10, an oxygen gas purifier 3, and a semiconductor manufacturing apparatus 11 are arranged in this order from a pipe 12 made of electrolytically polished SUS316L and having a nominal diameter of 15 A. Connected with. The length of the pipe connecting the oxygen gas purifier and the oxygen gas purifier is 2
30m. Further, gas outlets 13, 14, and 15 for oxygen gas analysis were provided at the outlet of the oxygen gas purifier, the inlet of the purifier, and the outlet of the purifier, respectively.

【0024】酸素ガスの精製および不純物分析 精製器を25℃の室温雰囲気としながら、液化酸素タン
クから酸素ガスを圧力6kg/cm2 、流量10L/m
inの条件で供給し、酸素の精製を行った。精製開始か
ら3時間後に精製装置出口、精製器入口、精製器出口そ
れぞれの地点での酸素ガス中のメタン、水素、一酸化炭
素、水、二酸化炭素の各々の濃度を測定した。なお、精
製器出口のガス中の不純物分析は、メタンについては水
素炎イオン化検出器付ガスクロマトグラフ(島津製作所
社製、検出下限値0.5ppb)、水素、一酸化炭素に
ついては還元ガス分析装置(米国、トレースアナリテカ
ル社製、検出下限値0.5ppb)、水については大気
圧イオン化質量分析計(日立東京エレクトロニクス社
製、検出下限値0.06ppb)を用いて行なった。ま
た二酸化炭素については、アルゴンガスをキャリアガス
として用いたガスクロマトグラフにより精製酸素ガス中
の成分を分離した後、すなわちアルゴンガス中の二酸化
炭素に置換した形で、大気圧イオン化質量分析計(日立
東京エレクトロニクス社製)を用いて分析した(検出下
限値0.3ppb)。結果を表1に示す。
Purification of Oxygen Gas and Analysis of Impurities While the purifier is at room temperature of 25 ° C., oxygen gas is supplied from the liquefied oxygen tank at a pressure of 6 kg / cm 2 and a flow of 10 L / m
The mixture was supplied under the conditions of “in” to purify oxygen. Three hours after the start of the purification, the concentrations of methane, hydrogen, carbon monoxide, water, and carbon dioxide in the oxygen gas were measured at the outlet of the purifier, the inlet of the purifier, and the outlet of the purifier. In addition, impurities in the gas at the outlet of the purifier were analyzed by gas chromatography with a flame ionization detector (manufactured by Shimadzu Corporation, detection lower limit: 0.5 ppb) for methane, and a reducing gas analyzer (hydrogen and carbon monoxide: The detection was performed using an atmospheric pressure ionization mass spectrometer (manufactured by Hitachi Tokyo Electronics Co., Ltd., detection lower limit: 0.06 ppb). As for carbon dioxide, after separating the components in the purified oxygen gas by gas chromatography using argon gas as a carrier gas, that is, replacing it with carbon dioxide in argon gas, an atmospheric pressure ionization mass spectrometer (Hitachi Tokyo, Japan) (Manufactured by Electronics Co., Ltd.) (lower detection limit: 0.3 ppb). Table 1 shows the results.

【0025】(比較例1)実施例1で用いた筒と同様の
筒に、実施例1と同様の吸着剤を800mm充填し、酸
素ガス精製器とした。この精製器を用い、実施例1と同
様の方法で吸着剤の活性化を行なった後、実施例1と同
様にして酸素ガスの精製および精製ガス中に含まれる不
純物の分析を行なった。結果を表1に示す。
Comparative Example 1 The same cylinder as that used in Example 1 was filled with the same adsorbent as in Example 1 by 800 mm to obtain an oxygen gas purifier. Using this purifier, the adsorbent was activated in the same manner as in Example 1, and then oxygen gas was purified and impurities contained in the purified gas were analyzed in the same manner as in Example 1. Table 1 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例2)実施例1で用いた精製器と同
様の精製器を用い、実施例1と同様の方法で吸着剤の活
性化を行なった後、これに水素、一酸化炭素、二酸化炭
素、水を100ppbずつ含む酸素ガスを精製器の入口
側から圧力3kg/cm2 、流量10L/minの条件
で供給し、酸素の精製を行なった。精製開始から3時間
後に精製器出口のガス中の水素、一酸化炭素、二酸化炭
素、水の濃度を実施例1と同様の方法で測定した。結果
を表2に示す。
(Example 2) Using a purifier similar to that used in Example 1, the adsorbent was activated in the same manner as in Example 1, and then hydrogen, carbon monoxide, Oxygen gas containing 100 ppb of carbon dioxide and water was supplied from the inlet side of the purifier at a pressure of 3 kg / cm 2 and a flow rate of 10 L / min to purify oxygen. Three hours after the start of purification, the concentrations of hydrogen, carbon monoxide, carbon dioxide, and water in the gas at the outlet of the purifier were measured in the same manner as in Example 1. Table 2 shows the results.

【0028】(比較例2)比較例1で用いた精製器と同
様のものを用い、実施例1と同様の方法で吸着剤の活性
化を行なった後、これに水素、一酸化炭素、二酸化炭
素、水を100ppbずつ含む酸素ガスを精製器の入口
側から圧力3kg/cm2 、流量10L/minの条件
で供給し、酸素の精製を行なった。精製開始から3時間
後に精製器出口のガス中の水素、一酸化炭素、二酸化炭
素、水の濃度を実施例1と同様の方法で測定した。結果
を表2に示す。
(Comparative Example 2) Using the same purifier as used in Comparative Example 1, the adsorbent was activated in the same manner as in Example 1, and then hydrogen, carbon monoxide, and carbon dioxide were added. Oxygen gas containing 100 ppb of carbon and water was supplied from the inlet side of the purifier at a pressure of 3 kg / cm 2 and a flow rate of 10 L / min to purify oxygen. Three hours after the start of purification, the concentrations of hydrogen, carbon monoxide, carbon dioxide, and water in the gas at the outlet of the purifier were measured in the same manner as in Example 1. Table 2 shows the results.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明により、配管中で発生する一酸化
炭素、二酸化炭素、水素および水を極低濃度まで除去す
ることができるようになった。このため、半導体製造装
置へ酸素ガスを供給するときなどの高純度のガスが要求
される場合においても、安定して超高純度の精製酸素ガ
スを供給することができるようになった。
According to the present invention, it has become possible to remove carbon monoxide, carbon dioxide, hydrogen and water generated in pipes to extremely low concentrations. For this reason, even when high-purity gas is required, such as when supplying oxygen gas to a semiconductor manufacturing apparatus, it has become possible to stably supply ultra-high-purity purified oxygen gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸素ガス精製器。FIG. 1 is an oxygen gas purifier of the present invention.

【図2】本発明の実施例1における各設備の配置図。FIG. 2 is a layout diagram of each facility according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 酸素ガス供給配管 2 精製器入口 3 酸素ガス精製器 4 貴金属触媒 5 吸着剤 6 精製器出口 7 精製酸素ガスの抜き出し管 8 液化酸素タンク 9 気化器 10 酸素ガス精製装置 11 半導体製造装置 12 配管 13 精製装置出口地点の酸素ガス分析用ガス取り
出し口 14 精製器入口地点の酸素ガス分析用ガス取り出
し口 15 精製器出口地点の酸素ガス分析用ガス取り出
し口
DESCRIPTION OF SYMBOLS 1 Oxygen gas supply pipe 2 Purifier inlet 3 Oxygen gas purifier 4 Noble metal catalyst 5 Adsorbent 6 Purifier outlet 7 Purified oxygen gas extraction pipe 8 Liquefied oxygen tank 9 Vaporizer 10 Oxygen gas purifier 11 Semiconductor manufacturing equipment 12 Piping 13 Gas outlet for oxygen gas analysis at the outlet of the purifier 14 Gas outlet for oxygen gas analysis at the inlet of the purifier 15 Gas outlet for oxygen gas analysis at the outlet of the purifier

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 不純物を含む酸素ガスを80℃以下の温
度で貴金属触媒と接触させ、一酸化炭素および/または
水素を二酸化炭素および/または水に転化した後、吸着
剤と接触させて二酸化炭素および/または水を吸着除去
することを特徴とする酸素ガスの精製方法。
1. An oxygen gas containing impurities is brought into contact with a noble metal catalyst at a temperature of 80 ° C. or lower to convert carbon monoxide and / or hydrogen into carbon dioxide and / or water, and then brought into contact with an adsorbent to produce carbon dioxide. And / or adsorbing and removing water.
【請求項2】 不純物が一酸化炭素、二酸化炭素、水ま
たは水素から選ばれる少なくとも1種である請求項1に
記載の酸素ガスの精製方法。
2. The method for purifying oxygen gas according to claim 1, wherein the impurities are at least one selected from carbon monoxide, carbon dioxide, water and hydrogen.
【請求項3】 貴金属触媒がパラジウム、白金、ルテニ
ウム、ロジウム、レニウム、イリジウムから選ばれる少
なくとも1種を有効成分として含むものである請求項1
に記載の酸素ガスの精製方法。
3. The noble metal catalyst contains at least one selected from palladium, platinum, ruthenium, rhodium, rhenium and iridium as an active ingredient.
The method for purifying oxygen gas according to the above.
【請求項4】 吸着剤が、酸化亜鉛を主成分とする吸着
剤、モレキュラシーブ4A相当の合成ゼオライトまたは
モレキュラシーブ5A相当の合成ゼオライトから選ばれ
る少なくとも1種である請求項1に記載の酸素ガスの精
製方法。
4. The purification of oxygen gas according to claim 1, wherein the adsorbent is at least one selected from an adsorbent containing zinc oxide as a main component, a synthetic zeolite corresponding to molecular sieve 4A, and a synthetic zeolite corresponding to molecular sieve 5A. Method.
【請求項5】 酸素ガス中に含まれる不純物を除去する
ための酸素ガス精製器であって、一酸化炭素および/ま
たは水素を常温付近で二酸化炭素および/または水に転
化するための貴金属触媒を入口側に、二酸化炭素および
/または水を除去するための吸着剤を出口側に充填され
てなることを特徴とする酸素ガスの精製器。
5. An oxygen gas purifier for removing impurities contained in oxygen gas, comprising a noble metal catalyst for converting carbon monoxide and / or hydrogen to carbon dioxide and / or water at around normal temperature. An oxygen gas purifier characterized in that an inlet side is filled with an adsorbent for removing carbon dioxide and / or water at an outlet side.
【請求項6】 不純物が一酸化炭素、二酸化炭素、水ま
たは水素から選ばれる少なくとも1種である請求項5に
記載の酸素ガスの精製器。
6. The oxygen gas purifier according to claim 5, wherein the impurities are at least one selected from carbon monoxide, carbon dioxide, water and hydrogen.
【請求項7】 貴金属触媒がパラジウム、白金、ルテニ
ウム、ロジウム、レニウム、イリジウムから選ばれる少
なくとも1種を有効成分として含むものである請求項5
に記載の酸素ガスの精製器。
7. The noble metal catalyst contains at least one selected from palladium, platinum, ruthenium, rhodium, rhenium and iridium as an active ingredient.
An oxygen gas purifier according to item 1.
【請求項8】 吸着剤が、酸化亜鉛を主成分とする吸着
剤、モレキュラシーブ4A相当の合成ゼオライトまたは
モレキュラシーブ5A相当の合成ゼオライトから選ばれ
る少なくとも1種である請求項5に記載の酸素ガスの精
製器。
8. The purification of oxygen gas according to claim 5, wherein the adsorbent is at least one selected from an adsorbent containing zinc oxide as a main component, a synthetic zeolite corresponding to molecular sieve 4A, and a synthetic zeolite corresponding to molecular sieve 5A. vessel.
JP03423998A 1998-01-30 1998-01-30 Method for removing impurities in oxygen gas Expired - Fee Related JP4169820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03423998A JP4169820B2 (en) 1998-01-30 1998-01-30 Method for removing impurities in oxygen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03423998A JP4169820B2 (en) 1998-01-30 1998-01-30 Method for removing impurities in oxygen gas

Publications (2)

Publication Number Publication Date
JPH11217201A true JPH11217201A (en) 1999-08-10
JP4169820B2 JP4169820B2 (en) 2008-10-22

Family

ID=12408618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03423998A Expired - Fee Related JP4169820B2 (en) 1998-01-30 1998-01-30 Method for removing impurities in oxygen gas

Country Status (1)

Country Link
JP (1) JP4169820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140178274A1 (en) * 2012-12-22 2014-06-26 Morningmoving Technology Co., Ltd. Method For Adjusting Temperature By Increasing Gas Molecular Density
JP2017000923A (en) * 2015-06-05 2017-01-05 株式会社東芝 Purified oxygen production apparatus and purified oxygen production method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115802A (en) * 1987-10-29 1989-05-09 Japan Pionics Co Ltd Purification of hydrogen gas and device therefor
JPH04219111A (en) * 1990-01-19 1992-08-10 Boc Group Inc:The Manufacture of high purity gas
JPH06234511A (en) * 1993-01-06 1994-08-23 Praxair Technol Inc Method and apparatus for purification using compression heat
JPH06304432A (en) * 1993-04-22 1994-11-01 Nippon Sanso Kk Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
JPH0857240A (en) * 1994-08-23 1996-03-05 Nippon Sanso Kk Gas purifying method and apparatus
JPH08291967A (en) * 1995-04-20 1996-11-05 Daido Hoxan Inc Method and apparatus for separating the air
JP2572616B2 (en) * 1987-12-18 1997-01-16 日本パイオニクス株式会社 How to remove carbon dioxide
JP2651603B2 (en) * 1988-08-02 1997-09-10 日本パイオニクス株式会社 How to remove carbon dioxide
JPH11199206A (en) * 1997-12-26 1999-07-27 Japan Pionics Co Ltd Purification of gaseous oxygen and apparatus for purification therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115802A (en) * 1987-10-29 1989-05-09 Japan Pionics Co Ltd Purification of hydrogen gas and device therefor
JP2572616B2 (en) * 1987-12-18 1997-01-16 日本パイオニクス株式会社 How to remove carbon dioxide
JP2651603B2 (en) * 1988-08-02 1997-09-10 日本パイオニクス株式会社 How to remove carbon dioxide
JPH04219111A (en) * 1990-01-19 1992-08-10 Boc Group Inc:The Manufacture of high purity gas
JPH06234511A (en) * 1993-01-06 1994-08-23 Praxair Technol Inc Method and apparatus for purification using compression heat
JPH06304432A (en) * 1993-04-22 1994-11-01 Nippon Sanso Kk Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
JPH0857240A (en) * 1994-08-23 1996-03-05 Nippon Sanso Kk Gas purifying method and apparatus
JPH08291967A (en) * 1995-04-20 1996-11-05 Daido Hoxan Inc Method and apparatus for separating the air
JPH11199206A (en) * 1997-12-26 1999-07-27 Japan Pionics Co Ltd Purification of gaseous oxygen and apparatus for purification therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140178274A1 (en) * 2012-12-22 2014-06-26 Morningmoving Technology Co., Ltd. Method For Adjusting Temperature By Increasing Gas Molecular Density
JP2017000923A (en) * 2015-06-05 2017-01-05 株式会社東芝 Purified oxygen production apparatus and purified oxygen production method

Also Published As

Publication number Publication date
JP4169820B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP3351815B2 (en) Purification method of inert gas
JP2735723B2 (en) Method for producing high-purity oxygen and hydrogen
TWI460003B (en) Gas purifying method and gas purifying device
CN105858606B (en) A kind of full temperature journey pressure varying adsorption of purified method of ultra-pure hydrogen
JP2007069209A (en) Gas purification method
JP2009512612A (en) Method to enable supply of purified carbon dioxide
JP2017226562A (en) Hydrogen gas manufacturing method and hydrogen gas manufacturing device
WO1997014648A1 (en) Hydrogen purification using metal hydride getter material
US20100290977A1 (en) Method of removing hydrocarbon impurities from a gas
JPH11217201A (en) Purification of oxygen gas and purification apparatus
KR100937769B1 (en) Ultra-high purity nitrogen supplying apparatus
US5955044A (en) Method and apparatus for making ultra-pure hydrogen
JP4031293B2 (en) Nitrous oxide recovery and purification method and recovery and purification equipment
EP1060774A1 (en) Purification of gases
JP3977501B2 (en) Method and apparatus for purifying oxygen gas
CN108211542A (en) A kind of novel separated type gas purifier
JP3639087B2 (en) Helium recovery method
EP1005895A1 (en) Purification of gases
JP4162713B2 (en) Method for removing impurities contained in a gaseous composition
JPH0230607A (en) Production of highly pure nitrogen
JP2000044228A (en) Method for purifying ammonia
JP2587334B2 (en) Method of separating CO gas not containing CH4
JP2001149731A (en) Gas purifying device
EP4227263A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
JP2023061365A (en) Gas refining method, and gas refining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees