JPH0857240A - Gas purifying method and apparatus - Google Patents

Gas purifying method and apparatus

Info

Publication number
JPH0857240A
JPH0857240A JP6198273A JP19827394A JPH0857240A JP H0857240 A JPH0857240 A JP H0857240A JP 6198273 A JP6198273 A JP 6198273A JP 19827394 A JP19827394 A JP 19827394A JP H0857240 A JPH0857240 A JP H0857240A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
adsorbent
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6198273A
Other languages
Japanese (ja)
Inventor
Shoichi Hosaka
昭一 保坂
Masahito Kawai
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP6198273A priority Critical patent/JPH0857240A/en
Publication of JPH0857240A publication Critical patent/JPH0857240A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE: To extend the life of an oxidizing catalyst in purifying gas without using special equipment by removing carbon monoxide and/or hydrogen in gas by the oxidation reaction due to the oxidizing catalyst. CONSTITUTION: A treatment cylinder 13 having a gas introducing part 11 and a gas lead-out part 12 is packed with a mixture C consisting of an oxidizing catalyst for converting carbon monoxide and hydrogen to carbon dioxide and water by catalytic reaction and an adsorbent adsorbing and removing carbon dioxide and gas to be treated is brought into contact with the mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスの精製方法及び装
置に関し、特に、空気液化分離装置に原料ガスとして供
給する空気中の一酸化炭素や水素を除去するのに好適な
ガスの精製方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas refining method and apparatus, and more particularly to a gas refining method suitable for removing carbon monoxide and hydrogen in the air supplied as a raw material gas to an air liquefaction separation apparatus. And equipment.

【0002】[0002]

【従来の技術】酸素,窒素等を製造する空気液化分離装
置においては、原料空気中に含まれる水分,二酸化炭素
等の不純物を、ゼオライト等の吸着剤に吸着させて除去
しているが、大気中に含まれる1〜5ppm程度の一酸
化炭素や5〜10ppm程度の水素は、通常の水分,二
酸化炭素除去用の吸着剤では吸着除去することができ
ず、また、一酸化炭素は、その沸点が窒素の沸点に近い
ため、精留により分離することが困難であり、水素は、
精留で分離することは可能であるが、精留設備が複雑に
なるため、通常は、特に対策しないと、一酸化炭素や水
素が製品窒素中に不純物として混入してしまうという不
都合があった。
2. Description of the Related Art In an air liquefaction separation apparatus for producing oxygen, nitrogen, etc., impurities such as water and carbon dioxide contained in raw material air are adsorbed and removed by an adsorbent such as zeolite. Carbon monoxide and hydrogen of about 5 to 10 ppm contained therein cannot be adsorbed and removed by an ordinary adsorbent for removing water and carbon dioxide, and carbon monoxide has a boiling point. Is close to the boiling point of nitrogen, it is difficult to separate it by rectification, and hydrogen is
It is possible to separate by rectification, but since the rectification equipment becomes complicated, usually there is a disadvantage that carbon monoxide and hydrogen are mixed as impurities in product nitrogen unless special measures are taken. .

【0003】このため、原料空気を酸化触媒と接触させ
て、一酸化炭素を二酸化炭素に、水素を水に転化した
後、生成した二酸化炭素や水を吸着剤によって吸着除去
することが行われており、例えば、図3に示す構成の精
製装置が用いられている。
Therefore, after the raw air is brought into contact with an oxidation catalyst to convert carbon monoxide into carbon dioxide and hydrogen into water, the produced carbon dioxide and water are adsorbed and removed by an adsorbent. For example, the refining device having the configuration shown in FIG. 3 is used.

【0004】図3に示すガス(空気)精製装置は、空気
取入れ口1から吸入した原料空気を所定圧力に圧縮する
空気圧縮機2と、該圧縮後の原料空気と触媒筒3から導
出した高温の原料空気とを熱交換させて熱回収を行うた
めの熱交換器4と、原料空気を更に所定温度まで加熱す
る加熱器5と、前記触媒筒3から導出して熱交換器4で
熱回収を行った原料空気を冷却する冷却器6と、冷却後
の原料空気中の二酸化炭素や水分等の不純物を除去する
ための吸着筒7,7とを備えたものである。
The gas (air) refining apparatus shown in FIG. 3 has an air compressor 2 for compressing the raw material air sucked from the air intake port 1 to a predetermined pressure, the compressed raw material air and the high temperature discharged from the catalyst tube 3. Heat exchanger 4 for exchanging heat with the raw material air for heat recovery, heater 5 for further heating the raw material air to a predetermined temperature, and heat recovery with heat exchanger 4 derived from catalyst tube 3 The cooler 6 for cooling the raw material air subjected to the above, and the adsorption cylinders 7, 7 for removing impurities such as carbon dioxide and water in the cooled raw material air are provided.

【0005】空気取入れ口1から吸入された原料空気
は、空気圧縮機2における圧縮熱で約70℃に昇温した
後、熱交換器4で触媒筒3から導出した約150℃の高
温の原料空気と熱交換を行って約140℃に昇温し、さ
らに加熱器5で電気ヒーター等により所定の温度、例え
ば約150℃にまで昇温して触媒筒3に導入される。触
媒筒3に導入された原料空気中の一酸化炭素や水素は、
該筒内に充填されたパラジウム等の酸化触媒Aによる触
媒反応により、一酸化炭素が二酸化炭素に、水素が水
に、それぞれ転化する。この触媒筒4で生成した二酸化
炭素及び水は、原料空気中にもとから含まれている二酸
化炭素及び水分と共に吸着筒7内に充填されているゼオ
ライト等の吸着剤Bに吸着し、原料空気中から除去され
る。このようにして精製された空気は、管8を経て空気
液化分離装置の本体部(コールドボックス)に供給され
る。
The raw material air sucked from the air intake port 1 is heated to about 70 ° C. by the heat of compression in the air compressor 2, and is then discharged from the catalyst tube 3 in the heat exchanger 4 to have a high temperature of about 150 ° C. The heat is exchanged with air to raise the temperature to about 140 ° C., and the temperature is raised to a predetermined temperature, for example, about 150 ° C. by the heater 5 and introduced into the catalyst cylinder 3. Carbon monoxide and hydrogen in the raw material air introduced into the catalyst cylinder 3 are
Carbon monoxide is converted to carbon dioxide and hydrogen is converted to water by the catalytic reaction of the oxidation catalyst A such as palladium filled in the cylinder. The carbon dioxide and water generated in the catalyst column 4 are adsorbed on the adsorbent B such as zeolite filled in the adsorption column 7 together with the carbon dioxide and water originally contained in the raw material air, and the raw material air Removed from inside. The air thus purified is supplied to the main body (cold box) of the air liquefaction separation device through the pipe 8.

【0006】[0006]

【発明が解決しようとする課題】しかし、このように触
媒反応を利用して空気を精製する装置においては、大気
中に含まれる硫黄酸化物等の触媒毒により触媒が劣化
し、酸化触媒を頻繁に交換しなければならないという問
題がある。また、上記のように、酸化触媒を加熱下で使
用することにより、酸化触媒の活性を高めることができ
るので、寿命を延長できるという利点はあるが、空気液
化分離装置の場合は、精製対象ガスである原料空気の量
が極めて多いため、多量の原料空気を加熱するために大
量のエネルギーが必要であるし、たとえ熱回収を行って
エネルギーの削減を図るにしても、大型の熱交換器を設
置しなければならないという不都合がある。
However, in the apparatus for purifying air by utilizing the catalytic reaction as described above, the catalyst is deteriorated by the catalyst poison such as sulfur oxide contained in the atmosphere, and the oxidation catalyst is frequently used. There is a problem that it has to be replaced. Further, as described above, by using the oxidation catalyst under heating, it is possible to increase the activity of the oxidation catalyst, there is an advantage that the life can be extended, in the case of the air liquefaction separation device, the purification target gas Since the amount of raw material air is extremely large, a large amount of energy is required to heat a large amount of raw material air, and even if heat recovery is performed to reduce energy, a large heat exchanger must be used. It has the disadvantage of having to be installed.

【0007】そこで本発明は、特別な設備を用いること
なく酸化触媒の寿命を延ばすことができるガスの精製方
法及び装置を提供することを目的としている。
[0007] Therefore, an object of the present invention is to provide a method and an apparatus for purifying a gas which can extend the life of an oxidation catalyst without using special equipment.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ため、本発明のガスの精製方法は、一酸化炭素及び/又
は水素を触媒反応により二酸化炭素及び/又は水に転化
するための酸化触媒と、二酸化炭素及び水を吸着除去す
るための吸着剤とを混合した混合物にガスを接触させる
ことを特徴としている。
In order to achieve the above-mentioned object, a method for purifying a gas according to the present invention is an oxidation catalyst for converting carbon monoxide and / or hydrogen into carbon dioxide and / or water by a catalytic reaction. And a mixture of carbon dioxide and an adsorbent for adsorbing and removing carbon dioxide.

【0009】また、本発明のガスの精製装置は、ガスの
導入部と導出部とを有する処理筒内に、前記一酸化炭素
及び/又は水素を触媒反応により二酸化炭素及び/又は
水に転化するための酸化触媒と、二酸化炭素及び水を吸
着除去するための吸着剤とを混合した混合物を充填した
ことを特徴とし、さらに、本発明装置は、ガス導入部側
に乾燥剤を、ガス導出部側に吸着剤を充填配置したこと
も含むものである。
Further, in the gas purifying apparatus of the present invention, the carbon monoxide and / or hydrogen is converted into carbon dioxide and / or water by a catalytic reaction in a processing cylinder having a gas inlet and a gas outlet. And an adsorbent for adsorbing and removing carbon dioxide and water are filled with a mixture, and the device of the present invention further comprises a desiccant on the gas introduction side and a gas derivation section. This also includes filling and arranging an adsorbent on the side.

【0010】[0010]

【作 用】上述の二酸化炭素及び水を吸着除去するため
の吸着剤は、極めて大きい表面積を持ち高い吸着能力を
持つため、二酸化炭素及び水だけでなく、種々の触媒毒
成分も吸着することができる。したがって、上記構成に
よれば、ガス中に含まれる硫黄酸化物,油分等の炭素含
有化合物,窒素酸化物,塩化物等の触媒毒となる成分を
吸着剤で吸着除去することができ、酸化触媒の劣化を抑
えることができる。さらに、前段で乾燥剤により含有水
分を除去しておくことにより、水分による劣化も防止す
ることができ、後段に吸着剤を充填しておくことによ
り、触媒反応で生成した二酸化炭素や水を確実に除去す
ることができる。
[Operation] The above-mentioned adsorbent for adsorbing and removing carbon dioxide and water has an extremely large surface area and a high adsorption capacity, so it can adsorb not only carbon dioxide and water but also various catalyst poison components. it can. Therefore, according to the above configuration, components that become catalyst poisons such as sulfur oxides, carbon-containing compounds such as oil, nitrogen oxides and chlorides contained in gas can be adsorbed and removed by the adsorbent, and the oxidation catalyst Can be suppressed. Furthermore, by removing the water content with a desiccant in the previous stage, deterioration due to water can be prevented, and by filling the adsorbent in the latter stage, the carbon dioxide and water generated by the catalytic reaction can be reliably Can be removed.

【0011】[0011]

【実施例】以下、本発明を空気液化分離装置の原料空気
精製用の吸着器に適用した実施例に基づいてさらに詳細
に説明する。まず、図1に示すガス精製装置は、ガス導
入部11とガス導出部12とを有する一対の処理筒13
からなる吸着器の各筒内に、一酸化炭素及び水素を触媒
反応により二酸化炭素及び水に転化するための酸化触媒
と、二酸化炭素及び水を吸着除去するための吸着剤とを
混合した混合物Cを充填するとともに、該混合物Cのガ
ス導入部11側に乾燥剤Dを充填したものである。な
お、通常の空気液化分離装置の吸着器は、上記一対の処
理筒13の一方が精製工程にあるときに他方を再生工程
とし、両筒を両工程に順次切換えることにより連続して
原料空気の精製を行えるようにように構成されている。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples in which it is applied to an adsorber for purifying raw material air of an air liquefaction separation apparatus. First, the gas purification apparatus shown in FIG. 1 has a pair of processing cylinders 13 each having a gas introduction unit 11 and a gas derivation unit 12.
A mixture C in which an oxidation catalyst for converting carbon monoxide and hydrogen into carbon dioxide and water by a catalytic reaction and an adsorbent for adsorbing and removing carbon dioxide and water are mixed in each cylinder of the adsorber consisting of And the desiccant D is filled on the gas introduction part 11 side of the mixture C. In the adsorber of a normal air liquefaction separation apparatus, when one of the pair of processing cylinders 13 is in the refining process, the other is used as a regeneration process, and both cylinders are sequentially switched to both processes to continuously supply the raw material air. It is configured to allow purification.

【0012】精製対象ガス(処理ガス)である原料空気
は、空気取入れ口21から吸入され、空気圧縮機22で
圧縮された後、冷却器23で所定温度に冷却されて精製
工程にある一方の処理筒13に導入される。ガス導入部
11から筒内に流入した原料空気は、導入部側に充填さ
れた乾燥剤Dに最初に接触して水分が除去された後、酸
化触媒と吸着剤とからなる混合物Cに接触する。
Raw material air, which is a gas to be purified (process gas), is sucked from an air intake port 21, compressed by an air compressor 22, and then cooled to a predetermined temperature by a cooler 23, which is in the purification process. It is introduced into the processing cylinder 13. The raw material air flowing into the cylinder from the gas introduction part 11 first comes into contact with the desiccant D filled in the introduction part side to remove water, and then comes into contact with the mixture C composed of the oxidation catalyst and the adsorbent. .

【0013】原料空気中に含まれる二酸化炭素及び硫黄
酸化物等の各種触媒毒成分は、混合物C中の吸着剤に吸
着して除去され、一酸化炭素及び水素は、混合物C中の
酸化触媒に接触して触媒反応を生じ、空気中の酸素と反
応して一酸化炭素が二酸化炭素に、水素が水に、それぞ
れ転化する。この触媒反応により生成した二酸化炭素及
び水は、前記二酸化炭素等と同様に、混合物C中の吸着
剤に吸着して除去される。このようにして不純物を除去
されて精製された原料空気は、ガス導出部12から導出
され、管24を経て空気液化分離装置の本体部(コール
ドボックス)に供給される。
Various catalyst poison components such as carbon dioxide and sulfur oxides contained in the raw material air are adsorbed and removed by the adsorbent in the mixture C, and carbon monoxide and hydrogen are absorbed in the oxidation catalyst in the mixture C. When they come into contact with each other to cause a catalytic reaction, they react with oxygen in the air to convert carbon monoxide into carbon dioxide and hydrogen into water. The carbon dioxide and water generated by this catalytic reaction are adsorbed and removed by the adsorbent in the mixture C, like the carbon dioxide and the like. The raw material air thus purified by removing impurities is led out from the gas lead-out portion 12 and supplied to the main body portion (cold box) of the air liquefaction separation device through the pipe 24.

【0014】このとき、他方の処理筒13は再生工程に
あり、管25から供給される再生ガスがガス導出部12
から筒内に導入され、前記混合物C中の吸着剤に吸着し
ている二酸化炭素等や、乾燥剤Dに捕捉されている水分
を脱着してガス導入部11から管26を介して排出す
る。
At this time, the other processing cylinder 13 is in the regeneration process, and the regeneration gas supplied from the pipe 25 is the gas outlet 12.
The carbon dioxide and the like adsorbed on the adsorbent in the mixture C and the water trapped in the desiccant D are desorbed and discharged from the gas introduction unit 11 through the pipe 26.

【0015】上述のように、原料空気中の一酸化炭素及
び水素を二酸化炭素及び水に転化する酸化触媒を、二酸
化炭素及び水を吸着する吸着剤と混合して用いることに
より、酸化触媒を劣化させる硫黄酸化物,油分等の炭素
含有化合物,窒素酸化物,塩化物等の触媒毒成分を吸着
剤で吸着除去することができ、これらの触媒毒により酸
化触媒が劣化することを防止できる。さらに、前段の乾
燥剤で水分を除去することにより、水分による酸化触媒
の劣化も防止できる。
As described above, by using an oxidation catalyst for converting carbon monoxide and hydrogen in the raw material air into carbon dioxide and water with an adsorbent for adsorbing carbon dioxide and water, the oxidation catalyst is deteriorated. It is possible to adsorb and remove the catalyst poison components such as sulfur-containing compounds, carbon-containing compounds such as oil, nitrogen oxides, chlorides, etc., which can prevent deterioration of the oxidation catalyst due to these catalyst poisons. Furthermore, by removing the water with the desiccant in the previous stage, deterioration of the oxidation catalyst due to the water can be prevented.

【0016】ここで、上記酸化触媒としては、各種のも
のを使用できるが、特に、一酸化炭素の酸化用には、白
金やパラジウム,酸化銅を活性アルミナに担持した触
媒、金微粒子を金属酸化物に固定した触媒、あるいは酸
化銅−酸化マンガンや酸化鉄−酸化マンガン等の金属酸
化物触媒が有効であり、また、水素の酸化用には、パラ
ジウムを活性アルミナに担持した触媒が有効である。一
方、二酸化炭素及び水を吸着する吸着剤としては、通常
用いられているゼオライトを使用することができ、乾燥
剤としては、活性アルミナ、シリカゲル等を用いること
ができる。
As the above-mentioned oxidation catalyst, various kinds can be used. Particularly, for the oxidation of carbon monoxide, a catalyst in which platinum, palladium, or copper oxide is supported on activated alumina, and gold fine particles are subjected to metal oxidation. A catalyst fixed to a substance or a metal oxide catalyst such as copper oxide-manganese oxide or iron oxide-manganese oxide is effective, and for oxidizing hydrogen, a catalyst in which palladium is supported on activated alumina is effective. . On the other hand, a commonly used zeolite can be used as the adsorbent that adsorbs carbon dioxide and water, and activated alumina, silica gel, or the like can be used as the desiccant.

【0017】酸化触媒と吸着剤の混合とは、両者の粒子
を完全に均一に混合することを意味するが、混合が不十
分で、触媒粒子の多いところと吸着剤粒子の多いところ
というように混合状態に分布ができた状態でもよい。但
し、ガス中の一酸化炭素及び水素が酸化触媒に接触せず
に処理筒13内を通過することがないように、また、生
成した二酸化炭素及び空気中にもとから含まれる二酸化
炭素や生成した水が吸着剤に吸着されずに通過すること
がないように、処理筒13の半径方向(ガス流れに直角
の方向)には、両者が満遍なく充填されていることが必
要である。さらに、両者の混合比率は、ガスの処理量及
びガス中の一酸化炭素,水素,二酸化炭素,水等の含有
量、混合物の充填量等により適宜に設定すればよく、特
に限定されるものではない。
The mixing of the oxidation catalyst and the adsorbent means that the particles of the both are completely and uniformly mixed, but the mixing is insufficient, and there are many catalyst particles and many adsorbent particles. It may be in a mixed state. However, in order to prevent carbon monoxide and hydrogen in the gas from passing through the processing cylinder 13 without coming into contact with the oxidation catalyst, the generated carbon dioxide and the carbon dioxide originally contained in the air and the generated carbon dioxide are also generated. It is necessary that both of them are evenly filled in the radial direction (direction perpendicular to the gas flow) of the processing cylinder 13 so that the generated water does not pass through without being adsorbed by the adsorbent. Furthermore, the mixing ratio of the two may be appropriately set depending on the treated amount of gas, the contents of carbon monoxide, hydrogen, carbon dioxide, water and the like in the gas, the filling amount of the mixture, etc., and is not particularly limited. Absent.

【0018】また、酸化触媒と吸着剤との混合物Cを充
填した部分の空間速度(ガス流量を充填容積で割った
値)は、2,000〜50,000h-1であることが望
ましく、空間速度が小さいと経済的でなく、大きいと反
応の進行が不十分になるという不都合が発生することが
ある。
The space velocity (the value obtained by dividing the gas flow rate by the filling volume) of the portion filled with the mixture C of the oxidation catalyst and the adsorbent is preferably 2,000 to 50,000 h -1. If the speed is low, it is not economical, and if it is high, the reaction may not proceed sufficiently, which may cause a problem.

【0019】さらに、酸化触媒は、処理ガスに含まれる
一酸化炭素及び水素を酸化して二酸化炭素及び水に転化
させるものであるから、処理筒の精製ガス出口部分に酸
化触媒を混合することは望ましくなく、精製ガス出口側
である吸着剤層最上部から300〜500mmより下の
部分に触媒を混合することが望ましい。すなわち、図2
に示すように、酸化触媒と吸着剤との混合物Cを充填し
た部分の後段、処理ガスの出口側には、二酸化炭素及び
水を吸着除去する吸着剤Eを充填しておくことが望まし
い。これにより、触媒反応で生成した二酸化炭素や水が
精製ガス中に混入することを確実に防止できる。なお、
図2においては、図1と同一要素のものには同一符号を
付して、その詳細な説明は省略する。
Furthermore, since the oxidation catalyst oxidizes carbon monoxide and hydrogen contained in the treatment gas and converts them into carbon dioxide and water, it is not possible to mix the oxidation catalyst with the purified gas outlet of the treatment cylinder. Undesirably, it is desirable to mix the catalyst in a portion below 300 to 500 mm from the uppermost portion of the adsorbent layer on the purified gas outlet side. That is, FIG.
As shown in (1), it is desirable to fill the adsorbent E for adsorbing and removing carbon dioxide and water in the latter part of the portion filled with the mixture C of the oxidation catalyst and the adsorbent and at the outlet side of the processing gas. As a result, it is possible to reliably prevent carbon dioxide and water generated by the catalytic reaction from mixing in the purified gas. In addition,
2, the same elements as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0020】また、空気液化分離装置の吸着器において
は、多くの場合、原料空気導入側である下段に空気に含
まれる水分を除去するための乾燥剤が適当な充填高さに
積まれ、その上に二酸化炭素除去用の吸着剤が充填され
ている。この二酸化炭素除去用の吸着剤には、通常、前
記ゼオライトが用いられており、二酸化炭素だけでな
く、触媒反応で生成した水や前記各種触媒毒成分も吸着
する能力を有しているので、本発明を空気液化分離装置
の原料空気精製用に吸着器に適用する場合は、前記二酸
化炭素除去用の吸着剤に酸化触媒を混合して充填すれば
よい。
In the adsorber of the air liquefaction separation apparatus, in many cases, a desiccant for removing water contained in the air is piled up at an appropriate filling height in the lower stage which is the raw air introduction side. It is filled with an adsorbent for removing carbon dioxide. As the adsorbent for removing carbon dioxide, usually, the zeolite is used, and not only carbon dioxide, but since it has the ability to adsorb water and various catalyst poison components produced in the catalytic reaction, When the present invention is applied to an adsorber for purifying raw material air of an air liquefaction separation apparatus, an oxidizing catalyst may be mixed and filled in the adsorbent for removing carbon dioxide.

【0021】前記吸着剤に捕捉された触媒毒成分は、原
則的には使用時間が増大するに従って吸着剤の表面を覆
うことになるが、対象とする吸着成分(主として二酸化
炭素)の濃度が触媒毒成分の濃度より非常に高いので、
吸着量に影響を及ぼすことはほとんどない。また、必ず
しも確認されたことではないが、吸着剤の再生工程にお
いて幾分かの触媒毒成分も吸着剤から脱着除去されてい
るものと思われる。
The catalyst poison component trapped in the adsorbent covers the surface of the adsorbent as the use time increases, but the concentration of the target adsorbent component (mainly carbon dioxide) is the catalyst. Since it is much higher than the concentration of poisonous components,
It hardly affects the adsorption amount. Although not always confirmed, it is considered that some of the catalyst poison components have been desorbed and removed from the adsorbent in the adsorbent regeneration step.

【0022】また、本発明を空気液化分離装置の原料空
気精製用に吸着器に適用する場合は、吸着剤層中に酸化
触媒が混合されることになるが、吸着器の運転方法とし
ては、通常の吸着器の運転方法と同様に行うことがで
き、吸着−脱着システムとしては、常温吸着−加熱脱着
法(いわゆるTSA法)、あるいは加圧吸着−減圧脱着
法(いわゆるPSA法)のいずれにも適用可能である。
さらに、用いる処理筒の数,吸着−再生の切替時間,吸
着温度・圧力,再生温度・圧力等の諸条件は、水、二酸
化炭素の吸着除去を前提として設計される条件でよい。
When the present invention is applied to an adsorber for purifying raw material air of an air liquefaction / separation apparatus, an oxidation catalyst is mixed in the adsorbent layer. The operation can be performed in the same manner as a normal adsorber, and the adsorption-desorption system can be either a room temperature adsorption-heat desorption method (so-called TSA method) or a pressure adsorption-decompression desorption method (so-called PSA method). Is also applicable.
Further, various conditions such as the number of processing cylinders to be used, adsorption-regeneration switching time, adsorption temperature / pressure, regeneration temperature / pressure, etc. may be conditions designed on the premise of adsorption / removal of water and carbon dioxide.

【0023】なお、本発明は、他の各種ガス中の一酸化
炭素や水素を除去する場合にも適用することが可能であ
るが、酸化反応を利用しているため、ガス中に一酸化炭
素や水素を二酸化炭素や水に転化するのに十分な量の酸
素が存在していることが条件であり、酸素分が少ない場
合には、酸素ガス、あるいは酸素含有ガスを予め添加す
る必要がある。
Although the present invention can be applied to the case of removing carbon monoxide and hydrogen in various other gases, since the oxidation reaction is utilized, carbon monoxide is contained in the gas. The condition is that there is a sufficient amount of oxygen to convert hydrogen or hydrogen to carbon dioxide or water, and when the oxygen content is low, it is necessary to add oxygen gas or oxygen-containing gas in advance. .

【0024】また、本発明では、一酸化炭素及び水素の
両方を同時に除去することが可能であるが、精製後のガ
スの品質要求に応じて、いずれか一方のみを除去対象と
することもできる。この場合は、酸化触媒の種類を適宜
に選定すればよい。さらに、上記実施例は、前段に乾燥
剤を充填した空気液化分離装置の吸着器に本発明を適用
したものであるが、酸化触媒を混合する吸着剤で十分に
水分を除去できる場合は、前段の乾燥剤を省略すること
ができ、ガス導入側やガス導出側と中間部とで酸化触媒
の混合比率を変えることもできる。また、上記実施例で
は、連続的に精製処理を行う切換え式の吸着器を例示し
て説明したが、処理筒を1個としたバッチ処理にも適用
可能である。
Further, according to the present invention, both carbon monoxide and hydrogen can be removed at the same time, but only one of them can be removed depending on the quality requirement of the gas after purification. . In this case, the type of oxidation catalyst may be selected appropriately. Further, in the above-mentioned example, the present invention is applied to the adsorber of the air liquefaction separation device in which the desiccant is filled in the former stage, but if the adsorbent mixed with the oxidation catalyst can sufficiently remove water, the former stage The desiccant can be omitted, and the mixing ratio of the oxidation catalyst can be changed between the gas introduction side or the gas derivation side and the intermediate portion. Further, in the above-mentioned embodiment, the switching type adsorber which continuously performs the refining process has been described as an example, but it is also applicable to the batch process in which one processing cylinder is used.

【0025】次に、本発明の実験例を説明する。 実験例1 乾燥剤として活性アルミナを10kg、二酸化炭素吸着
剤としてモレキュラーシーブス13Xを15kg用意
し、モレキュラーシーブス13Xに、白金を活性アルミ
ナに担持した酸化触媒を重量比5:1で均一に混合し
た。そして、図1に示すように、処理筒のガス導入側に
活性アルミナを、ガス導出側に酸化触媒を混合したモレ
キュラーシーブスを充填した。
Next, an experimental example of the present invention will be described. Experimental Example 1 10 kg of activated alumina as a desiccant and 15 kg of molecular sieves 13X as a carbon dioxide adsorbent were prepared, and an oxidation catalyst having platinum supported on activated alumina was uniformly mixed with the molecular sieves 13X at a weight ratio of 5: 1. Then, as shown in FIG. 1, activated alumina was filled in the gas introduction side of the processing cylinder, and molecular sieves mixed with an oxidation catalyst were filled in the gas discharge side.

【0026】上記処理筒2本を図1に示すように配置
し、4時間切換えで交互に精製(吸着)工程と再生工程
とを繰り返した。吸着工程では、空間速度を約1000
0h-1として、5ppmの一酸化炭素を含む空気を常温
で処理し、再生工程では、原料とした空気の20%に当
たる精製空気を再生用パージガスとして用い、温度15
0℃で流した。その結果、精製空気中の一酸化炭素は、
測定計器の検出限界0.5ppm以下であった。また、
二酸化炭素は1ppm以下、水分は露点−75℃以下で
あった。
The two processing cylinders were arranged as shown in FIG. 1, and the purification (adsorption) step and the regeneration step were repeated alternately by switching for 4 hours. In the adsorption process, the space velocity is about 1000.
At 0 h -1 , air containing 5 ppm of carbon monoxide was treated at room temperature, and in the regeneration step, purified air equivalent to 20% of the raw material air was used as the purge gas for regeneration, and the temperature was 15
Flowed at 0 ° C. As a result, the carbon monoxide in the purified air is
The detection limit of the measuring instrument was 0.5 ppm or less. Also,
Carbon dioxide was 1 ppm or less, and water was dew point −75 ° C. or less.

【0027】実験例2 乾燥剤として活性アルミナを10kg、二酸化炭素吸着
剤としてモレキュラーシーブス13Xを15kg用意
し、モレキュラーシーブス13Xを重量として二等分
し、その半量に白金を活性アルミナに担持した酸化触媒
を重量比5:2で均一に混合した。そして、図2に示す
ように、処理筒のガス導入側から、活性アルミナ、酸化
触媒を混合したモレキュラーシーブス、モレキュラーシ
ーブス単独の順で充填した。
Experimental Example 2 10 kg of activated alumina was prepared as a desiccant and 15 kg of molecular sieves 13X was prepared as a carbon dioxide adsorbent. The molecular sieves 13X were divided into two equal parts by weight, and an oxidation catalyst in which platinum was supported on activated alumina in a half amount thereof. Were uniformly mixed in a weight ratio of 5: 2. Then, as shown in FIG. 2, from the gas introduction side of the processing cylinder, the activated alumina, the molecular sieves mixed with the oxidation catalyst, and the molecular sieves alone were filled in this order.

【0028】上記処理筒2本を図2に示すように配置
し、4時間切換えで交互に精製(吸着)工程と再生工程
とを繰り返した。吸着工程では、空間速度を約1000
0h-1として、5ppmの一酸化炭素を含む空気を常温
で処理し、再生工程では、原料とした空気の20%に当
たる精製空気を再生用パージガスとして用い、温度15
0℃で流した。その結果、精製空気中の一酸化炭素は、
測定計器の検出限界0.5ppm以下であった。また、
二酸化炭素は1ppm以下、水分は露点−75℃以下で
あった。
The two processing cylinders were arranged as shown in FIG. 2, and the purification (adsorption) step and the regeneration step were repeated alternately by switching for 4 hours. In the adsorption process, the space velocity is about 1000.
At 0 h -1 , air containing 5 ppm of carbon monoxide was treated at room temperature, and in the regeneration step, purified air equivalent to 20% of the raw material air was used as the purge gas for regeneration, and the temperature was 15
Flowed at 0 ° C. As a result, the carbon monoxide in the purified air is
The detection limit of the measuring instrument was 0.5 ppm or less. Also,
Carbon dioxide was 1 ppm or less, and water was dew point −75 ° C. or less.

【0029】実験例3 乾燥剤として活性アルミナを10kg、二酸化炭素吸着
剤としてモレキュラーシーブス13Xを15kgを用意
し、モレキュラーシーブス13Xを重量として二等分
し、その半量にパラジウムを活性アルミナに担持した酸
化触媒を重量比5:2で均一に混合した。そして、図2
に示すように、処理筒のガス導入側から、活性アルミ
ナ、酸化触媒を混合したモレキュラーシーブス、モレキ
ュラーシーブス単独の順で充填した。
Experimental Example 3 10 kg of activated alumina was prepared as a desiccant, and 15 kg of molecular sieves 13X was prepared as a carbon dioxide adsorbent. The molecular sieves 13X were divided into two equal parts by weight, and half of them were oxidized with palladium supported on activated alumina. The catalyst was uniformly mixed in a weight ratio of 5: 2. And FIG.
As shown in FIG. 5, from the gas introduction side of the treatment cylinder, activated alumina, molecular sieves mixed with an oxidation catalyst, and molecular sieves alone were filled in this order.

【0030】上記処理筒2本を図2に示すように配置
し、4時間切換えで交互に精製(吸着)工程と再生工程
とを繰り返した。吸着工程では、空間速度を約1000
0h-1として、5ppmの一酸化炭素及び5ppmの水
素を含む空気を常温で処理し、再生工程では、原料とし
た空気の20%に当たる精製空気を再生用パージガスと
して用い、温度150℃で流した。その結果、精製空気
中の一酸化炭素及び水素は、それぞれ測定計器の検出限
界0.5ppm以下であった。また、二酸化炭素は1p
pm以下、水分は露点−75℃以下であった。
The two processing cylinders were arranged as shown in FIG. 2, and the purification (adsorption) step and the regeneration step were alternately repeated by switching for 4 hours. In the adsorption process, the space velocity is about 1000.
At 0 h -1 , air containing 5 ppm of carbon monoxide and 5 ppm of hydrogen was treated at room temperature, and in the regeneration step, purified air equivalent to 20% of the raw material air was used as a purge gas for regeneration, and flowed at a temperature of 150 ° C. . As a result, carbon monoxide and hydrogen in the purified air each had a detection limit of 0.5 ppm or less of the measuring instrument. Also, carbon dioxide is 1p
pm or less, and the water content was −75 ° C. or less.

【0031】[0031]

【発明の効果】以上説明したように、本発明のガスの精
製方法及び装置は、酸化触媒を吸着剤に混合して用いる
ので、触媒毒となる成分を吸着剤で吸着除去することが
できる。また、前段に乾燥剤を配置して水分を予め除去
することによっても酸化触媒の劣化を抑えることがで
き、後段に吸着剤を配置することにより、精製後のガス
中に二酸化炭素や水分が混入することを確実に防止でき
る。これにより、酸化触媒の劣化を抑えて寿命を大幅に
延長することが可能となるだけでなく、酸化触媒を加熱
して活性を高める必要がなくなるので、装置コストやエ
ネルギーコストを大幅に低減することができ、半導体工
業等で用いられる極めて高純度の窒素ガスを製造するた
めの空気液化分離装置の原料空気精製装置として最適で
ある。
As described above, according to the gas purification method and apparatus of the present invention, the oxidation catalyst is mixed with the adsorbent and used, so that the component which becomes the catalyst poison can be adsorbed and removed by the adsorbent. Deterioration of the oxidation catalyst can also be suppressed by placing a desiccant in the previous stage to remove water beforehand, and by placing an adsorbent in the latter stage, carbon dioxide and water are mixed in the gas after purification. Can be surely prevented. This not only makes it possible to suppress deterioration of the oxidation catalyst and prolong its life significantly, but it also eliminates the need to heat the oxidation catalyst to increase its activity, thus significantly reducing equipment costs and energy costs. Therefore, it is optimal as a raw material air purification device for an air liquefaction separation device for producing extremely high-purity nitrogen gas used in the semiconductor industry and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を空気液化分離装置の原料空気精製用
の吸着器に適用した一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment in which the present invention is applied to an adsorber for purifying raw material air of an air liquefaction separation device.

【図2】 他の実施例を示す系統図である。FIG. 2 is a system diagram showing another embodiment.

【図3】 空気液化分離装置における従来の原料空気精
製装置の一例を示す系統図である。
FIG. 3 is a system diagram showing an example of a conventional raw material air purification device in an air liquefaction separation device.

【符号の説明】[Explanation of symbols]

11…ガス導入部、12…ガス導出部、13…処理筒 C…酸化触媒と吸着剤との混合物、D…乾燥剤、E…吸
着剤
11 ... Gas introduction part, 12 ... Gas derivation part, 13 ... Processing cylinder C ... Mixture of oxidation catalyst and adsorbent, D ... Desiccant, E ... Adsorbent

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガス中に含まれる一酸化炭素及び/又は
水素を除去するガスの精製方法において、前記一酸化炭
素及び/又は水素を触媒反応により二酸化炭素及び/又
は水に転化するための酸化触媒と、二酸化炭素及び水を
吸着除去するための吸着剤とを混合した混合物に、ガス
を接触させることを特徴とするガスの精製方法。
1. A method for purifying a gas for removing carbon monoxide and / or hydrogen contained in the gas, the oxidation for converting the carbon monoxide and / or hydrogen into carbon dioxide and / or water by a catalytic reaction. A method for purifying gas, which comprises bringing a gas into contact with a mixture of a catalyst and an adsorbent for adsorbing and removing carbon dioxide and water.
【請求項2】 ガス中に含まれる一酸化炭素及び/又は
水素を除去するガスの精製装置において、前記ガスの導
入部と導出部とを有する処理筒内に、前記一酸化炭素及
び/又は水素を触媒反応により二酸化炭素及び/又は水
に転化するための酸化触媒と、二酸化炭素及び水を吸着
除去するための吸着剤とを混合した混合物を充填したこ
とを特徴とするガスの精製装置。
2. A gas purification apparatus for removing carbon monoxide and / or hydrogen contained in a gas, wherein the carbon monoxide and / or hydrogen is contained in a processing cylinder having an inlet and an outlet for the gas. An apparatus for purifying gas, comprising a mixture of an oxidation catalyst for converting carbon dioxide into carbon dioxide and / or water by a catalytic reaction and an adsorbent for adsorbing and removing carbon dioxide and water.
【請求項3】 前記酸化触媒と吸着剤との混合物の前段
に、ガス中の水分を除去する乾燥剤を充填したことを特
徴とする請求項2記載のガスの精製装置。
3. The gas purifying apparatus according to claim 2, wherein a desiccant for removing water in the gas is filled in a preceding stage of the mixture of the oxidation catalyst and the adsorbent.
【請求項4】 前記酸化触媒と吸着剤との混合物の後段
に、二酸化炭素及び水を吸着除去するための吸着剤を充
填したことを特徴とする請求項2又は3記載のガスの精
製装置。
4. The gas purifying apparatus according to claim 2, wherein an adsorbent for adsorbing and removing carbon dioxide and water is filled in the latter stage of the mixture of the oxidation catalyst and the adsorbent.
JP6198273A 1994-08-23 1994-08-23 Gas purifying method and apparatus Pending JPH0857240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6198273A JPH0857240A (en) 1994-08-23 1994-08-23 Gas purifying method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6198273A JPH0857240A (en) 1994-08-23 1994-08-23 Gas purifying method and apparatus

Publications (1)

Publication Number Publication Date
JPH0857240A true JPH0857240A (en) 1996-03-05

Family

ID=16388392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6198273A Pending JPH0857240A (en) 1994-08-23 1994-08-23 Gas purifying method and apparatus

Country Status (1)

Country Link
JP (1) JPH0857240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323527A (en) * 1997-05-23 1998-12-08 Nippon Sanso Kk Gas purity device and method
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPH11217201A (en) * 1998-01-30 1999-08-10 Japan Pionics Co Ltd Purification of oxygen gas and purification apparatus
US6589493B2 (en) 1996-09-18 2003-07-08 Nippon Sanso Corporation Gas purification-treating agents and gas purifying apparatuses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589493B2 (en) 1996-09-18 2003-07-08 Nippon Sanso Corporation Gas purification-treating agents and gas purifying apparatuses
JPH10323527A (en) * 1997-05-23 1998-12-08 Nippon Sanso Kk Gas purity device and method
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPH11217201A (en) * 1998-01-30 1999-08-10 Japan Pionics Co Ltd Purification of oxygen gas and purification apparatus

Similar Documents

Publication Publication Date Title
JP3634115B2 (en) Gas purification method and apparatus
JP4315666B2 (en) Syngas purification method
CA2214557C (en) Process for argon purification
EP2789376A1 (en) Removal of hydrogen and carbon monoxide impurities from gas streams using a copper and manganese based catalyst
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
JPH11179137A (en) Method for removing steam and carbon dioxide from gas
JP2010029855A (en) Process and apparatus for nitrous oxide removal
US6660240B1 (en) Gas processing agent and manufacturing method therefor, gas purification method, gas purifier and gas purification apparatus
JPH11100203A (en) Treatment of gas flow and device therefor
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JP2003103132A (en) Gas refining by pressure swing adsorption
JPH0857240A (en) Gas purifying method and apparatus
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
EP1060774A1 (en) Purification of gases
JP4845334B2 (en) Purification method of raw material air in air liquefaction separation device
JP2000211904A (en) Purification of gas
JPS634824A (en) Impure gas adsorption bed
JPH1015331A (en) Heat regeneration type pressure swing adsorbing apparatus
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JPH05177115A (en) Method for removing carbon monoxide and hydrogen and apparatus therefor
JP3191113B2 (en) Argon recovery method
CN117241874A (en) Method for regenerating a prepurification vessel
JPH0780233A (en) Pressure variation-type adsorption refining method
JPH1076128A (en) Purification of gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810