JP2735723B2 - Method for producing high-purity oxygen and hydrogen - Google Patents

Method for producing high-purity oxygen and hydrogen

Info

Publication number
JP2735723B2
JP2735723B2 JP4001584A JP158492A JP2735723B2 JP 2735723 B2 JP2735723 B2 JP 2735723B2 JP 4001584 A JP4001584 A JP 4001584A JP 158492 A JP158492 A JP 158492A JP 2735723 B2 JP2735723 B2 JP 2735723B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
oxygen
purifier
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4001584A
Other languages
Japanese (ja)
Other versions
JPH05179474A (en
Inventor
隆 佐々木
章彦 宝月
宙幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PANTETSUKU KK
Mitsubishi Corp
Original Assignee
SHINKO PANTETSUKU KK
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PANTETSUKU KK, Mitsubishi Corp filed Critical SHINKO PANTETSUKU KK
Priority to JP4001584A priority Critical patent/JP2735723B2/en
Publication of JPH05179474A publication Critical patent/JPH05179474A/en
Priority to US08/247,670 priority patent/US5484512A/en
Application granted granted Critical
Publication of JP2735723B2 publication Critical patent/JP2735723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/005Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0051Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0068Organic compounds
    • C01B2210/007Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/90Ultra pure water, e.g. conductivity water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高純度酸素及び水素の
製造方法に関し、詳細には、半導体工業を含む電子工業
等の技術分野において必要な高純度の酸素と水素とを製
造する高純度酸素及び水素の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity oxygen and hydrogen, and more particularly to a method for producing high-purity oxygen and hydrogen required in technical fields such as the electronics industry including the semiconductor industry. The present invention relates to a method for producing oxygen and hydrogen.

【0002】[0002]

【従来の技術】電子工業等の技術分野において熱処理の
雰囲気ガス等として高純度の酸素や水素が使用される。
例えば、半導体の製造工程において、酸化膜の生成処理
の際の雰囲気ガスとして高純度の酸素が使用され、又、
熱処理や気相成長の際の雰囲気ガスとして高純度の水素
が使用される。かかる酸素や水素の純度は製品の良否に
関係しており、電子工業、特にIC製造では高純度の酸素
及び水素が必要とされている。これらのガスは下記の如
く製造され、使用に供されている。
2. Description of the Related Art High-purity oxygen or hydrogen is used as an atmosphere gas or the like for heat treatment in the technical field such as the electronics industry.
For example, in a semiconductor manufacturing process, high-purity oxygen is used as an atmosphere gas during an oxide film generation process,
High-purity hydrogen is used as an atmosphere gas during heat treatment or vapor phase growth. The purity of oxygen and hydrogen is related to the quality of products, and high purity oxygen and hydrogen are required in the electronics industry, particularly in IC manufacturing. These gases are produced and used as described below.

【0003】即ち、水素ガスについては、食塩電解又は
石油精製の際に発生する副生ガスを、先ず精留塔等の精
製装置を用いて PSA(Pressure Swing Adsorption )精
製法や触媒燃焼精製法により精製(一次精製)し、ある
程度高純度の水素を得る。これをボンベ等に高圧にして
充填し、使用者に供給され使用されている。酸素ガスに
ついては、空気をジュールトムソン法により液化し、深
冷分離法により沸点差を利用して分離し、ある程度の高
純度の酸素が作られ、これを液体酸素の状態で工場のコ
ールドエバポレータ(以降CEという)に供給され、これ
を気化してガスに使用している。しかし、上記製法によ
り供給される酸素及び水素等のガスには窒素、炭酸ガ
ス、一酸化炭素、炭化水素、水分等の不純物も含まれて
おり、これらは上記精製により完全には除去されず、そ
のため更に不純物を除去して精製するため、上記酸素や
水素を半導体工場において純化器により個別に純化処理
して精製(二次精製)し使用している。
That is, as for hydrogen gas, by-product gas generated during salt electrolysis or petroleum refining is first purified by a PSA (Pressure Swing Adsorption) refining method or a catalytic combustion refining method using a purifying apparatus such as a rectification column. Purification (primary purification) to obtain hydrogen of high purity to some extent. This is filled into a cylinder or the like at high pressure and supplied to a user for use. With respect to oxygen gas, air is liquefied by the Joule-Thomson method and separated by the cryogenic separation method using the boiling point difference to produce oxygen of a certain degree of high purity. (Hereinafter referred to as CE), which is vaporized and used as gas. However, gases such as oxygen and hydrogen supplied by the above manufacturing method also contain impurities such as nitrogen, carbon dioxide, carbon monoxide, hydrocarbons, and moisture, which are not completely removed by the above-described purification, Therefore, in order to further remove impurities and purify, the oxygen and hydrogen are separately purified by a purifier in a semiconductor factory (secondary purification) and used.

【0004】この純化処理(二次精製)は、上記酸素や
水素に含まれる不純物を吸着剤で吸着処理する方法等に
より行われる。特に、水素の場合はパラジューム膜透過
法により全ての不純物が除去可能とされているが、パラ
ジューム膜に含まれる炭素と水素が反応し、ハイドロカ
ーボンが発生し不純物源になるという問題がある。炭素
不純物は半導体製造、特に MOSデバイスの製造では酸化
膜の電気特性に悪い影響を与えるので、除去が強く望ま
れている。尚、一次精製後の酸素や水素ガスは、通常一
旦ボンベやタンク等に保管され、しかる後に二次精製に
供される。
[0004] This purification treatment (secondary purification) is performed by a method of adsorbing impurities contained in the oxygen and hydrogen with an adsorbent or the like. In particular, in the case of hydrogen, all impurities can be removed by the palladium membrane permeation method, but there is a problem that carbon and hydrogen contained in the palladium membrane react with each other to generate hydrocarbon and become an impurity source. Since carbon impurities adversely affect the electrical properties of oxide films in semiconductor manufacturing, especially in the manufacture of MOS devices, their removal is strongly desired. The oxygen or hydrogen gas after the primary purification is usually once stored in a cylinder, a tank, or the like, and then used for the secondary purification.

【0005】[0005]

【発明が解決しようとする課題】前記従来の高純度酸素
及び水素の製造方法では、前述の如く、純化処理(二次
精製)において窒素、炭酸ガス、一酸化炭素、炭化水
素、水分等の不純物も除去するため、吸着剤による吸着
処理やパラジューム膜透過法等の如き高度の純化処理法
を採用する必要がある。ところが、かかる純化処理法に
よっても除去が困難な窒素等の不純物があり、又、半導
体製造に所望な純度が素子の微細化、高強度化により益
々高純度化が必要な状況にあり、このため純化器や純化
システムが非常に複雑で且つ高価になるという問題点も
あって、その改善が望まれていた。又、酸素や水素は、
ボンベに高圧に充填して供給されたり、液体状態でCEで
保管されており、地震等の非常時に安全の面で多くの課
題が残されている。
As described above, in the conventional method for producing high-purity oxygen and hydrogen, impurities such as nitrogen, carbon dioxide, carbon monoxide, hydrocarbons, and moisture are used in the purification treatment (secondary purification). Therefore, it is necessary to employ a high-purification treatment method such as an adsorption treatment with an adsorbent or a permeation through a palladium membrane. However, there are impurities such as nitrogen, which are difficult to remove even by such a purification treatment method, and the purity desired for semiconductor production is in a situation where finer and higher strength elements require higher and higher purity. There is also a problem that the purifier and the purifying system are very complicated and expensive, and thus an improvement has been desired. Also, oxygen and hydrogen
It is supplied by filling it into a cylinder at high pressure or stored in CE in a liquid state, and many issues remain in terms of safety in the event of an emergency such as an earthquake.

【0006】本発明はこの様な事情に着目してなされた
ものであって、その目的は、前記従来のものが有する問
題点を解消し、純化処理が困難な窒素、炭酸ガス、一酸
化炭素、炭化水素、水分等の不純物を含まない原料ガス
を発生し、純化処理(二次精製)を簡便に且つ安価な純
化器や純化システムにより行え、望ましい純度まで純化
処理し得、又、高純度の酸素や水素を使用の都度製造で
き、ボンベやCE等のタンク等での保管の必要がなくて安
全面の向上を果たし得る高純度酸素及び水素の製造方法
を提供しようとするものである。
The present invention has been made in view of such circumstances, and has as its object to solve the above-mentioned problems of the conventional art, and to make it difficult to purify nitrogen, carbon dioxide, carbon monoxide. Generates raw material gas that does not contain impurities such as hydrocarbons and water, and can perform purification processing (secondary purification) with a simple and inexpensive purifier or purification system, and can purify to the desired purity. It is an object of the present invention to provide a method for producing high-purity oxygen and hydrogen which can be produced each time oxygen and hydrogen are used, and which does not need to be stored in a tank such as a cylinder or CE and can improve safety.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のような構成の高純度酸素及び水素の製
造方法としている。即ち、本発明に係る高純度酸素及び
水素の製造方法は、電解質を純水に溶解してなる電解液
を膜電解装置の膜電解室に供給し、該膜電解室に純水を
連続的又は断続的に供給しながら膜電解し、微量の水分
と電解質成分と水素ガスとを不純物として含む酸素ガス
を陽極から取り出し、酸化触媒を備えた純化器により、
その水分及び電解質成分と、水素ガスから酸化触媒によ
り生成された水分とを、酸素ガスから分離して酸素ガス
を精製し、微量の水分と電解質成分と酸素ガスとを不純
物として含む水素ガスを陰極から取り出し、酸化触媒を
備えた純化器により、その水分及び電解質成分と、酸素
ガスから酸化触媒により生成された水分とを、水素ガス
から分離して水素ガスを精製する高純度酸素及び水素の
製造方法である。
To achieve the above object, the present invention provides a method for producing high-purity oxygen and hydrogen having the following constitution. That is, in the method for producing high-purity oxygen and hydrogen according to the present invention, an electrolytic solution obtained by dissolving an electrolyte in pure water is supplied to a membrane electrolysis chamber of a membrane electrolysis apparatus, and pure water is continuously or continuously supplied to the membrane electrolysis chamber. Membrane electrolysis while supplying intermittently, trace amount of water
Gas containing impurities, electrolyte components and hydrogen gas as impurities
Take out from the anode, by a purifier equipped with an oxidation catalyst,
Oxidation catalysts convert the water and electrolyte components and hydrogen gas.
Is separated from oxygen gas
And purify trace amounts of water, electrolyte components and oxygen gas.
The hydrogen gas contained as a substance is taken out of the cathode and the oxidation catalyst is
With the purifier equipped, the moisture and electrolyte components and oxygen
Moisture generated by the oxidation catalyst from the gas and hydrogen gas
This is a method for producing high-purity oxygen and hydrogen in which hydrogen gas is purified by separating from hydrogen .

【0008】[0008]

【作用】本発明に係る高純度酸素及び水素の製造方法
は、前記の如く、電解質を純水に溶解してなる電解液を
膜電解装置の膜電解室に供給し、該膜電解室に純水を連
続的又は断続的に供給しながら膜電解し、陽極から発生
する酸素及び陰極から発生する水素を個別に純化器によ
り精製し、高純度の酸素及び水素を製造するようにして
いる。
According to the method for producing high-purity oxygen and hydrogen according to the present invention, as described above, an electrolytic solution obtained by dissolving an electrolyte in pure water is supplied to a membrane electrolysis chamber of a membrane electrolysis apparatus, and pure water is supplied to the membrane electrolysis chamber. Membrane electrolysis is performed while supplying water continuously or intermittently, and oxygen generated from the anode and hydrogen generated from the cathode are individually purified by a purifier to produce high-purity oxygen and hydrogen.

【0009】このように純水を膜電解するようにしてい
るので、陽極から発生するガスは酸素であり、一方陰極
から発生するガスは水素であり、これらのガスは個別に
各純化器に導入し得る。このとき、伴って純化器に導入
される不純物は、陽極発生ガス(酸素)に対しては極微
量の水素、電解質成分及び水分のみであり、一方陰極発
生ガス(水素)に対しては極微量の酸素、電解質成分及
び水分のみであって、不純物の種類が極めて少なく、炭
酸ガス、一酸化炭素、ハイドロカーボン、窒素等の不純
物は原理的にも全く含まれない。酸素中の微量水素及び
水素中の微量酸素は酸化触媒により容易に水分に変えら
れ、モレキュラシーブス等の水分吸着剤で容易に除去可
能である。又、電解質成分は水分と共に容易に除去でき
る。
As described above, pure water is subjected to membrane electrolysis, so that the gas generated from the anode is oxygen, while the gas generated from the cathode is hydrogen, and these gases are individually introduced into each purifier. I can do it. At this time, impurities introduced into the purifier are only trace amounts of hydrogen, electrolyte components, and moisture with respect to the anode generated gas (oxygen), while trace amounts of impurities are detected with respect to the cathode generated gas (hydrogen). Is only oxygen, electrolyte components and water, and the types of impurities are extremely small. In principle, impurities such as carbon dioxide, carbon monoxide, hydrocarbons and nitrogen are not contained at all. Trace amounts of hydrogen in oxygen and trace amounts of oxygen in hydrogen can be easily converted to moisture by an oxidation catalyst, and can be easily removed by a moisture adsorbent such as molecular sieves. The electrolyte component can be easily removed together with the water.

【0010】上記各純化器に導入された各ガス(酸素、
水素)は該純化器により純化処理されて精製されること
になる。このとき、導入される各ガスは前記の如く不純
物の種類が極めて少ないので、簡便且つ安価な純化器や
純化システムにより純化処理し得る。即ち、純化器に導
入されるガス中の不純物の種類が、従来法の場合(窒
素、炭酸ガス、一酸化炭素、炭化水素、水分等)に比し
て極めて少ないので、パラジューム膜透過法等の如き高
度の純化処理法を採用する必要がなく、酸化触媒や吸着
剤での処理、又は液体窒素等で冷却する程度で不純物を
容易に除去して純化し得、そのため簡便且つ安価な純化
器や純化システムにより半導体製造等電子工業等にとっ
て望ましい程度にまで純化処理し得る。そして、高純度
の酸素や水素を得ることができる。
[0010] Each gas (oxygen,
Hydrogen) is purified by the purifier by the purifier. At this time, since each type of introduced gas has very few types of impurities as described above, the gas can be purified by a simple and inexpensive purifier or a purifying system. That is, since the types of impurities in the gas introduced into the purifier are extremely small as compared with the conventional method (nitrogen, carbon dioxide, carbon monoxide, hydrocarbon, moisture, etc.), the method of the palladium membrane permeation method or the like is used. It is not necessary to adopt such a high-level purification treatment method, and it is possible to easily remove and purify impurities by treating with an oxidation catalyst or an adsorbent, or cooling with liquid nitrogen or the like, so that a simple and inexpensive purifier can be used. The purifying system can perform the purifying process to an extent desired for the electronic industry such as semiconductor manufacturing. Then, high-purity oxygen or hydrogen can be obtained.

【0011】又、純水を膜電解し、発生する酸素及び水
素を個別に純化器により精製して高純度の酸素及び水素
を製造するので、高純度の酸素や水素を使用の都度必要
に応じて製造でき、ボンベやCEタンク等での保管の必要
がなく、しかも電源を遮断することにより、酸素及び水
素の発生を直ちに停止し得るので、安全面の向上を果た
し得る。更に高純度の酸素及び水素を同時に製造し得る
という利点もある。
Further, pure water is subjected to membrane electrolysis, and the generated oxygen and hydrogen are individually purified by a purifier to produce high-purity oxygen and hydrogen. Therefore, high-purity oxygen and hydrogen may be used whenever necessary. It can be manufactured without any need for storage in cylinders or CE tanks, etc. In addition, by shutting off the power supply, the generation of oxygen and hydrogen can be stopped immediately, thereby improving safety. Another advantage is that high-purity oxygen and hydrogen can be produced simultaneously.

【0012】従って、本発明に係る高純度酸素及び水素
の製造方法によれば、従来困難であった窒素不純物の除
去が必要でなく、単純な純化処理により半導体製造に望
ましい程度に純化処理し得、又、高純度の酸素や水素を
使用の都度製造でき、ボンベやCEタンク等での保管の必
要がなく、しかも電源遮断により直ちに停止し得る等、
安全面の向上を果たし得るようになる。
Therefore, according to the method for producing high-purity oxygen and hydrogen according to the present invention, it is not necessary to remove nitrogen impurities, which has been difficult in the past, and the purifying treatment can be performed to a desirable degree for semiconductor production by a simple purifying treatment. Also, high-purity oxygen and hydrogen can be produced each time they are used, there is no need to store them in cylinders or CE tanks, etc.
It can improve safety aspects.

【0013】前記膜電解に際し、電極(陽極及び陰極)
としては通常Niを使用する。前記電解質としては水酸化
カリウム(KOH)を使用することが望ましい。そうする
と、膜電解の際の電流効率をより高くでき、又、電極の
溶出や電極への析出がより生じ難くなるからである。
In the membrane electrolysis, electrodes (anode and cathode)
Usually, Ni is used. It is desirable to use potassium hydroxide (KOH) as the electrolyte. Then, the current efficiency during membrane electrolysis can be further increased, and elution of the electrode and deposition on the electrode are less likely to occur.

【0014】前記純水としては純度の程度が比抵抗で1
8.25 MΩ-cm (25 ℃) 以上のものを使用することが望
ましい。そうすると、膜電解により発生し、純化器に導
入されるガスに含まれる不純物の種類及び量がより一層
少なくなり、そのため簡便且つ安価な純化器や純化シス
テムにより確実に純化処理し得る。かかる純水はイオン
交換及び膜分離処理により得られる。このような純水設
備は高価な設備であるが、今日の最先端半導体工場では
必ず設備されており、水素、酸素の使用量にもよるが、
通常の使用状況では既設の純水設備を使用できる。
As for the pure water, the degree of purity is one specific resistance.
It is desirable to use one with 8.25 MΩ-cm (25 ° C) or more. Then, the types and amounts of impurities generated by the membrane electrolysis and contained in the gas introduced into the purifier are further reduced, so that the purifying process can be surely performed by a simple and inexpensive purifier or a purifying system. Such pure water is obtained by ion exchange and membrane separation treatment. Such pure water equipment is expensive equipment, but it is always installed in today's state-of-the-art semiconductor plants, and depends on the amount of hydrogen and oxygen used.
Under normal usage conditions, the existing pure water facilities can be used.

【0015】前記膜電解装置の膜としては、従来使用の
アスベスト膜の他、イオン交換膜、無機多孔質膜、有機
多孔質膜等が使用できるが、中でもイオン交換膜を使用
することが望ましい。それは、適用可能な電流密度が、
従来使用のアスベスト膜の場合は25A/dm2 程度であり、
これに対してイオン交換膜の場合は40〜50A/dm2 であっ
て高くでき、又、膜電解により発生するガス中の不純物
ガス量がより一層少なくなり、更には膜電解装置をより
コンパクト化し得ると共に電解部をモジュール化し得る
からである。
As the membrane of the membrane electrolyzer, an ion exchange membrane, an inorganic porous membrane, an organic porous membrane and the like can be used in addition to the asbestos membrane conventionally used, and among them, it is preferable to use an ion exchange membrane. That is, the applicable current density
For asbestos film prior use was 25A / dm 2 about,
On the other hand, in the case of the ion exchange membrane, it can be as high as 40 to 50 A / dm 2 , and the amount of impurity gas in the gas generated by the membrane electrolysis is further reduced, and the membrane electrolyzer is made more compact. This is because the electrolysis section can be modularized.

【0016】前記純化器としては前述の如く簡便且つ安
価な純化器でよく、例えば冷却法による精製機構を有し
てなるものを使用できる。
As the purifier, a simple and inexpensive purifier may be used as described above. For example, a purifier having a purification mechanism by a cooling method can be used.

【0017】尚、膜電解装置から純化器に至る配管、純
化器に使用する容器等の構成材料としては、ステンレス
鋼を電解研磨した後、酸化性雰囲気中で加熱処理して着
色酸化皮膜を形成したもの、或いは加熱処理後、さらに
酸洗洗浄等によりこの着色酸化皮膜を溶解除去したもの
を使用することが望ましい。こうすると、KOH に対して
耐食性に優れ、水分が吸着し難く、パーティクルが生じ
難く、又、コンタミがなくなり、従って、より一層簡便
且つ確実に高純度の酸素及び水素を製造し得るようにな
る。
[0017] As a constituent material of the piping from the membrane electrolyzer to the purifier, the container used for the purifier, etc., stainless steel is electrolytically polished and then heat-treated in an oxidizing atmosphere to form a colored oxide film. It is desirable to use a cured product or a product obtained by dissolving and removing the colored oxide film by pickling and washing after heat treatment. By doing so, it is excellent in corrosion resistance to KOH, hardly adsorbs moisture, hardly generates particles, and has no contamination. Therefore, high-purity oxygen and hydrogen can be produced more simply and reliably.

【0018】[0018]

【実施例】本発明の実施例を以下説明する。図1に本発
明の実施例に係る高純度酸素及び水素の製造方法を示
す。電解質としては不純物量が ppbオーダ( Al:17ppb,
Zn:10ppb, As:3ppb, Cu:1.8ppb, Pb:0.9ppb, Cd:0.1p
pb等)のKOH を用い、純水としては TOC(全有機炭素
量)<1.0ppb,比抵抗:18.25 MΩ-cm, パーティクル
量<1.0 n/ml,シリカ量<1.0ppb,蒸発残留物量<1.0p
pbのものを用いた。そして、この純水にKOH を溶解して
30%KOH水溶液を作り、電解液として用いた。
Embodiments of the present invention will be described below. FIG. 1 shows a method for producing high-purity oxygen and hydrogen according to an embodiment of the present invention. As an electrolyte, the amount of impurities is on the order of ppb (Al: 17ppb,
Zn: 10ppb, As: 3ppb, Cu: 1.8ppb, Pb: 0.9ppb, Cd: 0.1p
pb, etc.) and pure water as TOC (total organic carbon) <1.0 ppb, specific resistance: 18.25 MΩ-cm, particles <1.0 n / ml, silica <1.0 ppb, evaporation residue <1.0 p
pb's were used. And dissolve KOH in this pure water
A 30% KOH aqueous solution was prepared and used as an electrolyte.

【0019】上記30%KOH水溶液(電解液)を膜電解装置
1の膜電解室に供給すると共に、該膜電解室に前記純水
を連続的に供給しながら膜電解し、陽極から発生する酸
素を精製装置(純化器)2に導入して精製し、一方陰極
から発生する水素を精製装置(純化器)3に導入して精
製して、高純度の酸素及び水素の生産を行った。
The 30% KOH aqueous solution (electrolyte solution) is supplied to the membrane electrolysis chamber of the membrane electrolysis apparatus 1, and while the pure water is continuously supplied to the membrane electrolysis chamber, membrane electrolysis is carried out. Was introduced into a purifier (purifier) 2 for purification, and hydrogen generated from the cathode was introduced into a purifier (purifier) 3 for purification, thereby producing high-purity oxygen and hydrogen.

【0020】このとき、膜電解装置1の膜としてはイオ
ン交換膜を使用し、その膜面積は25cm2 である。膜電解
の電流密度は50A/dm2 、セル電圧は2.1 ボルトである。
精製装置2及び3としては液体窒素で冷却する方式のも
のを使用し、その冷却温度は−180 ℃である。高純度酸
素の生産量(速度)は30NL/hr,3bar、高純度水素のそれ
は60NL/hr,3barである。
At this time, an ion-exchange membrane is used as the membrane of the membrane electrolyzer 1, and its membrane area is 25 cm 2 . The current density of the membrane electrolysis is 50 A / dm 2 and the cell voltage is 2.1 volts.
The purifiers 2 and 3 are of the type cooled by liquid nitrogen, and the cooling temperature is -180 ° C. The production amount (rate) of high-purity oxygen is 30 NL / hr, 3 bar, and that of high-purity hydrogen is 60 NL / hr, 3 bar.

【0021】このようにして生産された高純度酸素の純
度は99.999% 以上、高純度水素の純度は99.999% 以上で
あった。これらは、従来の半導体工場での純化処理(二
次精製)により得られる高純度酸素及び水素の純度と同
等もしくはそれ以上である。
The purity of the high-purity oxygen thus produced was 99.999% or more, and the purity of the high-purity hydrogen was 99.999% or more. These are equivalent to or higher than the purity of high-purity oxygen and hydrogen obtained by the purification treatment (secondary purification) in a conventional semiconductor factory.

【0022】尚、前記純化器2、3としては、図2に示
すような冷却方式の純化器を使用することができる。こ
の純化器は容器の底部を液体窒素等で冷却し(−180
℃)、不純物のKOH と水分を凝集除去できるものであ
る。このとき、純化器の構成材料としては、ステンレス
鋼を電解研磨した後、酸化性雰囲気中で加熱処理して着
色酸化皮膜を形成したもの、或いは、加熱処理後、さら
に酸洗洗浄等によりこの着色酸化皮膜を溶解除去し、KO
H に対し耐食性がよく、水分が吸着し難く、パーティク
ル発生の少ない材料を使用することが望ましい。
As the purifiers 2 and 3, a purifier of a cooling system as shown in FIG. 2 can be used. This purifier cools the bottom of the container with liquid nitrogen or the like (-180
° C), which can coagulate and remove impurities such as KOH and water. At this time, as a constituent material of the purifier, a stainless steel is electrolytically polished, and then heat-treated in an oxidizing atmosphere to form a colored oxide film. Dissolve and remove oxide film, KO
It is desirable to use a material that has good corrosion resistance to H, hardly adsorbs moisture, and generates few particles.

【0023】図3に示す如く、膜電解装置4と冷却装置
等の純化器6との間に、純水によりガスを洗浄するガス
洗浄槽5を設け、膜電解発生ガスをガス洗浄槽5で洗浄
した後、純化器6に導入するようにすると、膜電解の際
に飛沫同伴して膜電解発生ガス中に含まれるKOH がガス
洗浄槽5で除去される。そのため純化器6はより簡単な
ものでよくなり、又は、得られるガスの純度を向上し得
る。又、ガス洗浄槽5で除去されたKOH を洗浄水(純
水)と共に膜電解装置4に導入するようにすると、KOH
を再利用できてよい。
As shown in FIG. 3, a gas cleaning tank 5 for cleaning gas with pure water is provided between the membrane electrolysis device 4 and a purifier 6 such as a cooling device. After the cleaning, the gas is introduced into the purifier 6, and KOH contained in the gas generated by the membrane electrolysis is removed by the gas cleaning tank 5 along with the droplets during the membrane electrolysis. Therefore, the purifier 6 can be simpler or the purity of the gas obtained can be improved. If the KOH removed in the gas cleaning tank 5 is introduced into the membrane electrolysis device 4 together with the cleaning water (pure water), the KOH
May be reusable.

【0024】図4に示す如く、膜電解装置4と純化器6
との間に、スチームによりガスを洗浄するガス洗浄槽8
を設けると、スチーム洗浄により、KOH を凝縮する核が
多く生成され、その結果純化器6での純化が一層し易く
なる。
As shown in FIG. 4, the membrane electrolytic device 4 and the purifier 6
Gas cleaning tank 8 for cleaning gas with steam
Is provided, many nuclei for condensing KOH are generated by steam cleaning, and as a result, purification in the purifier 6 is further facilitated.

【0025】又、半導体工場に純化器が既に設備されて
いる場合は、図5に示す如く、この既設純化器6と膜電
解装置4との間に、モレキュラーシーブのような簡便な
水分吸着装置9を設け、該水分吸着装置9により生成ガ
ス中に含まれる過剰の水分を取り、その他の不純物は既
設の純化器6を利用して精製すると、膜電解装置4と水
分吸着装置9(2基)の設置のみで従来の純度の酸素、
水素を得ることができる。図2の水分吸着装置9は、2
基交互に使用し、一方は水分吸着のため冷却され、一方
はその間既に吸着した水分を蒸発脱離させるため、加熱
され、蒸発、脱離を完了すると、次期水分吸着のために
待機する。
In the case where a purifier is already installed in the semiconductor factory, as shown in FIG. 5, a simple water adsorption device such as a molecular sieve is provided between the existing purifier 6 and the membrane electrolysis device 4. 9 is provided, the excess water contained in the produced gas is removed by the moisture adsorption device 9, and other impurities are purified by using the existing purifier 6 to obtain the membrane electrolysis device 4 and the moisture adsorption device 9 (two units). ) Installation only with conventional purity oxygen,
Hydrogen can be obtained. The moisture adsorption device 9 of FIG.
One group is used alternately. One is cooled to adsorb moisture, and the other is heated to evaporate and desorb the moisture already adsorbed during that time. When the evaporation and desorption are completed, the process stands by for the next moisture adsorption.

【0026】[0026]

【発明の効果】本発明に係る高純度酸素及び水素の製造
方法は、純水を膜電解し、発生する酸素及び水素を個別
に純化器により精製(純化処理)して高純度の酸素及び
水素を製造するので、純化処理においてパラジューム膜
透過法等の如き高度の純化処理法を採用する必要がな
く、簡便且つ安価な純化器や純化システム、例えば液体
窒素等で冷却する程度の純化方式により純化処理し得、
又、高純度の酸素や水素を使用の都度製造でき、ボンベ
やタンク等での保管の必要がなくて安全面の向上を果た
し得るようになるという効果を奏するものである。
According to the method for producing high-purity oxygen and hydrogen of the present invention, pure water is subjected to membrane electrolysis, and the generated oxygen and hydrogen are individually purified (purification treatment) by a purifier to obtain high-purity oxygen and hydrogen. Since there is no need to use advanced purification treatment methods such as the palladium membrane permeation method, etc. in the purification treatment, purification is carried out by a simple and inexpensive purifier or purification system, for example, a purification method of cooling with liquid nitrogen or the like. Can be processed,
In addition, high purity oxygen or hydrogen can be produced each time it is used, and there is no need to store it in a cylinder or a tank, so that it is possible to improve safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る高純度酸素及び水素の製
造状況の概要を示す図である。
FIG. 1 is a diagram showing an outline of a production state of high-purity oxygen and hydrogen according to an embodiment of the present invention.

【図2】本発明に係る高純度酸素及び水素の製造方法に
使用する装置の一例を示す図である。
FIG. 2 is a diagram showing an example of an apparatus used for the method for producing high-purity oxygen and hydrogen according to the present invention.

【図3】本発明に係る高純度酸素及び水素の製造方法に
使用する装置の一例を示す図である。
FIG. 3 is a diagram showing an example of an apparatus used in the method for producing high-purity oxygen and hydrogen according to the present invention.

【図4】本発明に係る高純度酸素及び水素の製造方法に
使用する装置の一例を示す図である。
FIG. 4 is a diagram showing an example of an apparatus used in the method for producing high-purity oxygen and hydrogen according to the present invention.

【図5】本発明に係る高純度酸素及び水素の製造方法に
使用する装置の一例を示す図である。
FIG. 5 is a diagram showing an example of an apparatus used in the method for producing high-purity oxygen and hydrogen according to the present invention.

【符号の説明】[Explanation of symbols]

1--膜電解装置 2--精製装置 3--精製装置
4--膜電解装置 5--ガス洗浄槽 6--純化器 7--気液分離
タンク 8--ガス洗浄槽 9--水分吸着装置
1—membrane electrolyzer 2—purifier 3—refiner 4—membrane electrolyzer 5—gas washing tank 6—purifier 7—gas-liquid separation tank 8—gas washing tank 9—moisture Suction device

フロントページの続き (72)発明者 原田 宙幸 東京都千代田区丸の内二丁目6番3号 三菱商事株式会社内 (56)参考文献 特開 平2−141404(JP,A) 特公 昭61−34515(JP,B2)Continuation of the front page (72) Inventor Hiroyuki Harada 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Corporation (56) References JP-A-2-141404 (JP, A) Japanese Patent Publication No. Sho 61-34515 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質を純水に溶解してなる電解液を膜
電解装置の膜電解室に供給し、該膜電解室に純水を連続
的又は断続的に供給しながら膜電解し、微量の水分と電解質成分と水素ガスとを不純物として含
む酸素ガスを陽極から取り出し、酸化触媒を備えた純化
器により、その水分及び電解質成分と、水素ガスから酸
化触媒により生成された水分とを、酸素ガスから分離し
て酸素ガスを精製し、 微量の水分と電解質成分と酸素ガスとを不純物として含
む水素ガスを陰極から取り出し、酸化触媒を備えた純化
器により、その水分及び電解質成分と、酸素ガスから酸
化触媒により生成された水分とを、水素ガスから分離し
て水素ガスを精製する 高純度酸素及び水素の製造方法。
1. A electrolyte solution obtained by dissolving an electrolyte in pure water is supplied to membrane electrolysis chamber of the membrane electrolysis apparatus, membrane electrolysis while continuously or intermittently supplying pure water to the membrane electrolysis chamber, trace Water, electrolyte components and hydrogen gas as impurities.
Oxygen gas from the anode and purification with an oxidation catalyst
From the water and electrolyte components and hydrogen gas
Water generated by the oxidation catalyst and oxygen gas
To purify oxygen gas and to contain trace amounts of water, electrolyte components, and oxygen gas as impurities.
Hydrogen gas from the cathode and purification with an oxidation catalyst
The water and electrolyte components and the oxygen gas
Water from the hydrogenation catalyst and hydrogen gas
A method for producing high-purity oxygen and hydrogen by purifying hydrogen gas by heating.
JP4001584A 1992-01-08 1992-01-08 Method for producing high-purity oxygen and hydrogen Expired - Lifetime JP2735723B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4001584A JP2735723B2 (en) 1992-01-08 1992-01-08 Method for producing high-purity oxygen and hydrogen
US08/247,670 US5484512A (en) 1992-01-08 1994-05-23 Methods and apparatuses for producing high purity oxygen and hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4001584A JP2735723B2 (en) 1992-01-08 1992-01-08 Method for producing high-purity oxygen and hydrogen
US08/247,670 US5484512A (en) 1992-01-08 1994-05-23 Methods and apparatuses for producing high purity oxygen and hydrogen

Publications (2)

Publication Number Publication Date
JPH05179474A JPH05179474A (en) 1993-07-20
JP2735723B2 true JP2735723B2 (en) 1998-04-02

Family

ID=26334833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4001584A Expired - Lifetime JP2735723B2 (en) 1992-01-08 1992-01-08 Method for producing high-purity oxygen and hydrogen

Country Status (2)

Country Link
US (1) US5484512A (en)
JP (1) JP2735723B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946226A (en) * 2017-03-17 2017-07-14 苏州思美特表面材料科技有限公司 A kind of reciprocating molecular sieve making oxygen by air separation system for vehicle maintenance service
WO2020095664A1 (en) 2018-11-05 2020-05-14 旭化成株式会社 Method for manufacturing hydrogen

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2905705B2 (en) * 1994-10-25 1999-06-14 神鋼パンテツク株式会社 Reactor water oxygen concentration control device
CH692299A5 (en) * 1996-12-19 2002-04-30 Dirk Schulze Apparatus for producing oxygen or oxygen-ozone mixture.
WO1998051842A1 (en) * 1997-05-12 1998-11-19 Satoru Miyata Separate-type hydrogen gas and oxygen gas generator
JP3662111B2 (en) * 1997-06-24 2005-06-22 アルプス電気株式会社 Cleaning liquid manufacturing method and apparatus therefor
US6117287A (en) * 1998-05-26 2000-09-12 Proton Energy Systems, Inc. Electrochemical cell frame
US6401445B1 (en) 1999-12-07 2002-06-11 Northern Research & Engineering Corp. Electrolysis system and method for improving fuel atomization and combustion
TW542886B (en) * 2000-08-22 2003-07-21 Ebara Corp Method and device for combustion type exhaust gas treatment
JP2002155386A (en) * 2000-11-14 2002-05-31 Honda Motor Co Ltd Hydrogen station and working method for the same
JP4156884B2 (en) * 2002-09-06 2008-09-24 本田技研工業株式会社 Water electrolysis hydrogen gas production equipment
US6939449B2 (en) * 2002-12-24 2005-09-06 General Atomics Water electrolyzer and system
WO2009149327A2 (en) * 2008-06-05 2009-12-10 Global Opportunities Investment Group, Llc Fuel combustion method and system
US20100038257A1 (en) * 2008-08-16 2010-02-18 Chester Sohn Method and apparatus for electolysis-assisted generation of hydrogen
JP5361325B2 (en) * 2008-10-17 2013-12-04 有限会社スプリング Dissolved hydrogen drinking water manufacturing apparatus and manufacturing method thereof
US20110233069A1 (en) * 2010-03-24 2011-09-29 Rasirc Method and system for electrochemical hydrogen generation
JP2012180554A (en) * 2011-03-01 2012-09-20 Honda Motor Co Ltd High-pressure hydrogen producing apparatus
CA2835727C (en) * 2011-06-06 2020-07-21 Axine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cell
EP2554713A1 (en) * 2011-08-01 2013-02-06 Siemens Aktiengesellschaft Device for processing a product flow of an electrolysis assembly
CN102965686A (en) 2011-08-31 2013-03-13 本田技研工业株式会社 Water electrolysis system and method for operating the same
ITTO20111014A1 (en) * 2011-11-04 2013-05-05 Idroenergy Spa ELECTROLYTIC GENERATOR AND RELATIVE PURIFICATION TOWER
FI20110409L (en) * 2011-12-05 2013-06-06 Outotec Oyj Method and apparatus for producing hydrogen
US9267428B2 (en) * 2012-02-27 2016-02-23 Deec, Inc. Oxygen-rich plasma generators for boosting internal combustion engines
CN104428450B (en) * 2012-06-25 2017-05-24 日产自动车株式会社 Water electrolysis system
US10266429B2 (en) 2012-12-03 2019-04-23 Axine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cell
CN103305860B (en) * 2013-05-09 2016-01-13 郝建华 Water electrolytic oxygen generating device
EP3020090B1 (en) * 2013-07-08 2022-12-14 Phinergy Ltd. Electrolyte regeneration
US20150096884A1 (en) * 2013-10-07 2015-04-09 W. L. Gore & Associates, Inc. Humidification Control Device
SG11201608524TA (en) 2014-04-13 2016-11-29 Alcoa Inc Systems and methods for regeneration of aqueous alkaline solution
CA2949279C (en) * 2014-05-26 2021-10-12 Hongjian Liu Method and system for producing deuterium depleted water
US20170211516A1 (en) * 2016-01-27 2017-07-27 Serge V. Monros On-demand oxy-hydrogen fuel system
KR102437648B1 (en) 2016-03-07 2022-08-29 하이테크 파워, 인크. A method of generating and dispensing a secondary fuel for an internal combustion engine
EP3489389A1 (en) * 2017-11-24 2019-05-29 Siemens Aktiengesellschaft Electrolytic unit and electrolyzer
CN108060430A (en) * 2018-01-08 2018-05-22 上海纳诺巴伯纳米科技有限公司 A kind of device and method that hydrogen and oxygen are generated using membrane electrode for inhaling hydrogen machine
US20190234348A1 (en) 2018-01-29 2019-08-01 Hytech Power, Llc Ultra Low HHO Injection
CN110965069B (en) 2019-12-25 2022-07-12 乔治洛德方法研究和开发液化空气有限公司 Apparatus and method for producing high-purity hydrogen and/or oxygen by electrolyzing water
CN113460964B (en) * 2021-07-02 2023-07-07 西北工业大学 Method for obtaining high-purity hydrogen by deep removal of oxygen in hydrogen through electrocatalytic action at normal temperature and normal pressure
GB2608805A (en) * 2021-07-09 2023-01-18 Enapter S R L Gas block
DE102022200590A1 (en) * 2022-01-19 2023-07-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Integrated water treatment for water electrolysis using osmotic membrane distillation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106683A (en) * 1975-03-17 1976-09-21 Kogyo Gijutsuin
US4369102A (en) * 1980-11-25 1983-01-18 Hydor Corporation Electrolysis apparatus for decomposing water into hydrogen gas and oxygen gas
JPS5847471B2 (en) * 1981-02-13 1983-10-22 工業技術院長 Manufacturing method of electrolytic assembly
JPS59162284A (en) * 1983-03-07 1984-09-13 Japan Storage Battery Co Ltd Method for generating hydrogen, oxygen and inert gas
JPS6134515A (en) * 1984-07-26 1986-02-18 Canon Inc Camera
JPS6213563A (en) * 1985-07-11 1987-01-22 Shinko Fuaudoraa Kk Method for coloring stainless steel
JPS6217184A (en) * 1985-07-12 1987-01-26 Shinko Fuaudoraa Kk Surface treatment of stainless steel
JPH01247591A (en) * 1988-03-30 1989-10-03 Mitsubishi Heavy Ind Ltd Hydrogen producing device
JP2862546B2 (en) * 1988-11-21 1999-03-03 神鋼パンテック株式会社 Equipment piping materials for ultrapure water production and supply equipment
JPH02179474A (en) * 1988-12-29 1990-07-12 Shimadzu Corp Method for analyzing ethylenediaminetetraacetic acid
US4950371A (en) * 1989-03-24 1990-08-21 United Technologies Corporation Electrochemical hydrogen separator system for zero gravity water electrolysis
JP2768732B2 (en) * 1989-05-01 1998-06-25 神鋼パンテック株式会社 Heat degassing ultrapure water equipment
US5037518A (en) * 1989-09-08 1991-08-06 Packard Instrument Company Apparatus and method for generating hydrogen and oxygen by electrolytic dissociation of water
JPH0641639B2 (en) * 1989-09-22 1994-06-01 ペルメレック電極株式会社 Water electrolysis device for space life support device
JP2631571B2 (en) * 1990-04-26 1997-07-16 義郎 中松 High efficiency electrolysis energy equipment
JP3132594B2 (en) * 1992-04-07 2001-02-05 神鋼パンテツク株式会社 High-purity oxygen and hydrogen production equipment
JPH06151386A (en) * 1992-11-04 1994-05-31 Shinko Pantec Co Ltd Semiconductor manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946226A (en) * 2017-03-17 2017-07-14 苏州思美特表面材料科技有限公司 A kind of reciprocating molecular sieve making oxygen by air separation system for vehicle maintenance service
WO2020095664A1 (en) 2018-11-05 2020-05-14 旭化成株式会社 Method for manufacturing hydrogen
US11643741B2 (en) 2018-11-05 2023-05-09 Asahi Kasei Kabushiki Kaisha Method of producing hydrogen

Also Published As

Publication number Publication date
JPH05179474A (en) 1993-07-20
US5484512A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
JP2735723B2 (en) Method for producing high-purity oxygen and hydrogen
US6190436B1 (en) Ozone purification process
EP0962425B1 (en) Method and apparatus for purifying ammonia
CN105858606B (en) A kind of full temperature journey pressure varying adsorption of purified method of ultra-pure hydrogen
US9815707B2 (en) Method of processing discharge gas discharged from production process
WO1995006146A1 (en) Argon purification (system two)
JP2010042381A (en) Xenon sorbent, method for enriching xenon, xenon concentrator, and air liquefaction separation apparatus
JPH09278418A (en) Purification of hydrogen peroxide solution
KR950017732A (en) High Purity Liquid Nitrogen Manufacturing Method And Apparatus
JP3132594B2 (en) High-purity oxygen and hydrogen production equipment
JPH07109109A (en) Purification system of hydrogen peroxide water and purification of hydrogen peroxide water
JP2851544B2 (en) Method and apparatus for removing residual voltage from water electrolysis cell
US4055625A (en) Method of treatment of a mixture of air and at least partially radioactive rare gases
JPH08152262A (en) Circulating and adsorbing apparatus for rare gas separating process
CA2328952A1 (en) Highly pure aqueous hydrogen peroxide solutions, method for producing same and their use
JP4074379B2 (en) Recycling apparatus and recycling method
JP4783173B2 (en) Hydrogen production method
RU2010890C1 (en) Process for producing oxygen and hydrogen
CN1393405A (en) Process for purifying and recovering ammonia gas
JPH04310509A (en) Removal of impurity in nitrogen gas
JP3026103B2 (en) Argon recovery method
CN109160491A (en) A kind of purification process of hydrogen peroxide
JPH10311674A (en) Helium collection method
US20220349069A1 (en) Argon stripping from water for high purity hydrogen and oxygen production
JPH08170189A (en) Hydrogen and oxygen generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

EXPY Cancellation because of completion of term