JPH1121368A - Foamed polyolefinic resin molding and its preparation - Google Patents

Foamed polyolefinic resin molding and its preparation

Info

Publication number
JPH1121368A
JPH1121368A JP17727297A JP17727297A JPH1121368A JP H1121368 A JPH1121368 A JP H1121368A JP 17727297 A JP17727297 A JP 17727297A JP 17727297 A JP17727297 A JP 17727297A JP H1121368 A JPH1121368 A JP H1121368A
Authority
JP
Japan
Prior art keywords
density
expanded particles
molded article
surface layer
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17727297A
Other languages
Japanese (ja)
Inventor
Takeshi Obayashi
毅 御林
Kenji Mogami
健二 最上
Yasumitsu Munakata
康充 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP17727297A priority Critical patent/JPH1121368A/en
Publication of JPH1121368A publication Critical patent/JPH1121368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a foamed polyolefinic resin molding having a small difference between the density of the surface part and that of the central part and being excellent in properties such as a rate of fusion, mechanical strengths and appearance. SOLUTION: Pre-expanded particles which have such a crystal structure that two melting points appear in the measurement with a differential scanning calorimeter and in which the heat of the endothermic peak of the high- temperature side melting point is 0.3-6.0 cal/g, at least 300, per mm<2> , fine cells having a diameter of 0.5-50 μm are present on the surface part of the pre- expanded particles, and the mean cell diameter in the central part is 100-1,000 μm are subjected to in-mold molding to obtain an expanded polyolefin resin molding having a rate of fusion of at least 50%, having such a crystal structure that two melting points appear in the measurement with a differential scanning calorimetry and having a ratio of the density on the surface part to that of the central part of 0.8-1.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断熱材、緩衝包装
材、通函、バンパー用芯材、ピラー、プラットフォー
ム、側突材などの自動車部材、パレット材、ツールボッ
クスなどに用いられるポリオレフィン系樹脂の型内発泡
成形体およびその製法に関する。さらに詳しくは、えら
れた成形体の表層部と中心部との密度の差が小さく、融
着率、機械的強度、外観などの特性にすぐれたポリオレ
フィン系樹脂発泡成形体および良好な型内成形サイクル
で前記発泡成形体を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin resin used for automobile parts such as heat insulating materials, cushioning packaging materials, boxes, core materials for bumpers, pillars, platforms, side impact materials, pallet materials, tool boxes and the like. And a method for producing the same. More specifically, the obtained molded article has a small difference in density between the surface layer portion and the central portion, and has excellent properties such as a fusion rate, mechanical strength, and appearance, and a polyolefin resin foam molded article and excellent in-mold molding. The present invention relates to a method for producing the foamed molded article in a cycle.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂型内発泡成形体
は、ポリスチレン系樹脂型内発泡成形体に比べて、耐薬
品性、耐熱性、圧縮後の歪み回復性などにすぐれてお
り、緩衝包装材、通函、バンパ用芯材、ピラー、プラッ
トフォーム、側突材などの自動車部材、パレット材、ツ
ールボックスなどに広く用いられている。
2. Description of the Related Art Polyolefin-based resin-molded foams are superior to polystyrene-based resin-molded foams in chemical resistance, heat resistance, and strain recovery after compression. Widely used for automobile parts such as mail boxes, bumper core materials, pillars, platforms, side impact materials, pallet materials, tool boxes, etc.

【0003】また、前記ポリオレフィン系樹脂型内発泡
成形体の製法としてはつぎの方法が知られている。
The following method is known as a method for producing the above-mentioned polyolefin-based resin-molded in-mold foam.

【0004】(イ)ポリオレフィン予備発泡粒子を無機
ガスで加圧処理して該粒子の内圧が1.18気圧以上で
ある間に閉鎖しうるが密閉しえない金型に充填し、蒸気
などで加熱融着し、型通りの成形体とする方法(特公昭
51−22951号公報) (ロ)ポリオレフィン予備発泡粒子を閉鎖しうるが密閉
しえない金型に充填し、蒸気などで加熱融着して型から
取り出し、その体積が金型の容積の70〜110%であ
る間に加熱養生して、型通りの成形体とする方法(特開
昭60−166442号公報) (ハ)架橋ポリオレフィン予備発泡粒子をもとの見かけ
の嵩容積の80%以下にガス圧力で圧縮して成形用金型
に充填し、加熱融着して型通りの成形体とする方法(特
公昭53−33996号公報) (ニ)ポリプロピレン系樹脂予備発泡粒子の示差走査熱
量計法による測定で2つの融解ピークを有し、該2つの
融解ピークのうち高温側の融解ピークに基づく融解ピー
ク熱量QHが0.5〜2.3cal/gである予備発泡
粒子を、閉鎖しうるが密閉しえない金型内に充填し、蒸
気などで加熱融着し、型通りの成形体とする方法(特開
昭63−107516号公報)。
(A) Polyolefin pre-expanded particles are pressurized with an inorganic gas and filled into a mold which can be closed but cannot be closed while the internal pressure of the particles is 1.18 atm or more, and is steamed. (2) Fill polyolefin pre-expanded particles into a mold that can be closed but not hermetically sealed, and heat-fused with steam or the like. (C) Crosslinked polyolefin by heating and curing while the volume is 70% to 110% of the volume of the mold to obtain a molded article according to the mold. A method in which the pre-expanded particles are compressed by gas pressure to 80% or less of the original apparent bulk volume, filled into a molding die, and heat-fused to form a molded product according to the mold (JP-B-53-33996). Gazette) (d) Pre-foaming of polypropylene resin Prefoaming having two melting peaks as measured by differential scanning calorimetry of the polymer, and having a melting peak calorific value QH based on the melting peak on the higher temperature side of the two melting peaks of 0.5 to 2.3 cal / g. A method in which the particles are filled in a mold that can be closed but cannot be sealed, and heated and fused with steam or the like to form a shaped product (Japanese Patent Application Laid-Open No. 63-107516).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、(イ)
〜(ニ)の方法は、いずれも成形サイクル、成形体の表
面性・外観性や寸法精度、機械的強度などの1つ以上に
課題を残すものである。
However, (A)
Each of the methods (1) to (4) leaves a problem in at least one of the molding cycle, the surface properties and appearance of the molded article, the dimensional accuracy, the mechanical strength, and the like.

【0006】また、成形に用いる予備発泡粒子をうるた
めにジクロロジフルオロメタン、ジフロロテトラフルオ
ロエタン、1,1−ジフルオロ−1−クロロエタン、
1,1−ジフルオロエタン、1,1,1,2−テトラフ
ルオロエタン、ペンタフルオロエタンなどのハロゲン化
炭化水素類;プロパン−ブタン−ペンタンなどの脂肪族
炭化水素類;シクロブタン、シクロペンタンなどの環式
脂肪族炭化水素類;二酸化炭素などの無機類などの揮発
性発泡剤を用いているために、可燃性を有するために取
り扱いが難しい、オゾン層の破壊や地球温暖化を進行さ
せる、非常に高価であるなどの問題の1つ以上を有する
ものである。
In order to obtain pre-expanded particles used for molding, dichlorodifluoromethane, difluorotetrafluoroethane, 1,1-difluoro-1-chloroethane,
Halogenated hydrocarbons such as 1,1-difluoroethane, 1,1,1,2-tetrafluoroethane and pentafluoroethane; aliphatic hydrocarbons such as propane-butane-pentane; cyclic compounds such as cyclobutane and cyclopentane Aliphatic hydrocarbons; difficult to handle due to flammability due to use of volatile blowing agents such as inorganics such as carbon dioxide, destruction of ozone layer and global warming, very expensive Have one or more of the following problems:

【0007】さらに、前記揮発性発泡剤を用いて製造さ
れた予備発泡粒子は、発泡時の粒子の内部の冷却速度に
比べ、表層部の冷却速度が大きい状態で急速に外部から
冷却されるため、予備発泡粒子の表層部に密度の高い、
いわゆる粒子スキン層が形成され、これを型内成形した
ばあいには、この粒子スキン層が金型壁面に圧着される
ため、さらに密度の高い成形体スキン層が形成され、成
形体密度の表芯差が大きくなり、見かけ上、機械的強度
が低下する。また、従来の成形方法によりこの成形体密
度の表芯差を小さくしようとすると、金型内面圧を低く
する以外に方法がなく、内部融着に必要な圧力を確保す
ることが困難となり、成形体の融着率が低下し、やはり
機械的強度特性の低下を防ぐことができない。
Further, the pre-expanded particles produced by using the volatile foaming agent are rapidly cooled from the outside in a state where the cooling speed of the surface layer is higher than the cooling speed of the inside of the particles at the time of foaming. , High density on the surface layer of the pre-expanded particles,
When a so-called particle skin layer is formed and molded in a mold, the particle skin layer is pressed against the wall surface of the mold, so that a higher-density molded body skin layer is formed. The center difference becomes large, and the mechanical strength apparently decreases. In addition, if it is attempted to reduce the difference in surface density of the compact by the conventional molding method, there is no other method than reducing the inner pressure of the mold, and it is difficult to secure the pressure required for internal fusion. The fusion rate of the body is reduced, and the reduction of the mechanical strength characteristics cannot be prevented.

【0008】また、このような密度の表芯差の大きい成
形体では、たとえば表層部をスライス、廃棄して用いる
ばあいには、単位成形体重量あたりの廃棄重量が大きく
なるため、収率が低下する。
[0008] Further, in the case of such a molded article having a large difference between the surface and the core, for example, when the surface layer is sliced and discarded, the waste weight per unit molded article becomes large, and the yield is low. descend.

【0009】さらに、成形時においても、粒子同士の融
着面に存在する粒子スキン層における水蒸気などの透過
時間が長くなり、結果的に金型冷却時間も長くなり、成
形サイクルが長くなり、成形性が低下するという欠点も
有している。
Further, even during molding, the permeation time of water vapor and the like in the particle skin layer present on the fusion surface of the particles becomes longer, resulting in a longer mold cooling time, a longer molding cycle, and a longer molding cycle. It also has the disadvantage that the properties are reduced.

【0010】[0010]

【課題を解決するための手段】本発明は、従来技術の前
記欠点を解消し、密度の表芯差が小さく、機械的強度特
性にすぐれ、外観美麗なポリオレフィン系樹脂発泡成形
体、および成形融着性にすぐれ、成形サイクルを短縮化
しうる前記成形体の製法を提供することを目的としてな
されたものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned disadvantages of the prior art, has a small difference in surface density between cores, has excellent mechanical strength characteristics, and has a beautiful appearance. An object of the present invention is to provide a method for producing the molded article which has excellent adhesion and can shorten a molding cycle.

【0011】すなわち、本発明は、ポリオレフィン系樹
脂予備発泡粒子を型内成形してえられる融着率が50%
以上の成形体であって、示差走査熱量計測定により2つ
の融点を示すような結晶構造を有し、かつ前記成形体の
表層部密度に対する中心部密度の比が0.8以上、1.
0以下であることを特徴とするポリオレフィン系樹脂発
泡成形体(請求項1)、表層部に直径0.5〜50μm
の微細気泡が1mm2あたり300個以上存在する請求
項1記載のポリオレフィン系樹脂発泡成形体(請求項
2)、密度が45〜200g/Lである請求項1または
2記載のポリオレフィン系樹脂発泡成形体(請求項
3)、ポリオレフィン系樹脂がポリプロピレン系樹脂で
ある請求項1、2または3記載のポリオレフィン系樹脂
発泡成形体(請求項4)、ポリオレフィン系樹脂予備発
泡粒子を閉鎖しうるが密閉しえない金型内に充填し、加
熱融着させ、型通りのポリオレフィン系樹脂発泡成形体
を製造する方法であて、前記予備発泡粒子が示差走査熱
量計測定において2つの融点を示すような結晶構造を有
し、高温側融点の吸熱ピーク熱量が0.3〜6.0ca
l/gであり、かつ前記予備発泡粒子の表層部に直径
0.5〜50μmの微細気泡が1mm2あたり300個
以上存在し、かつ中心部の平均気泡径が100μm以
上、1000μm以下であることを特徴とするポリオレ
フィン系樹脂発泡成形体の製法(請求項5)、および加
熱融着が水蒸気による加熱融着である請求項5記載の製
法(請求項6)に関する。
That is, according to the present invention, the fusion rate obtained by molding the pre-expanded polyolefin resin particles in a mold is 50%.
The above-mentioned compact has a crystal structure exhibiting two melting points as measured by a differential scanning calorimeter, and the ratio of the center density to the surface layer density of the compact is 0.8 or more.
0 or less, wherein the polyolefin-based resin foam molded article (Claim 1) has a diameter of 0.5 to 50 μm on the surface layer.
The polyolefin-based resin foam molded article according to claim 1, wherein 300 or more fine bubbles per 1 mm 2 are present, and the density is 45 to 200 g / L. The polyolefin resin foam molded article according to claim 1, 2 or 3, wherein the polyolefin resin is a polypropylene resin (claim 3), the polyolefin resin pre-expanded particles can be closed but sealed. A method for producing a polyolefin-based resin foam molded article according to a mold, wherein the pre-foamed particles show two melting points in a differential scanning calorimeter measurement. Having an endothermic peak calorie at the high-temperature side melting point of 0.3 to 6.0 ca.
1 / g, and at least 300 fine bubbles having a diameter of 0.5 to 50 μm are present per 1 mm 2 in the surface layer of the pre-expanded particles, and the average bubble diameter at the center is 100 μm or more and 1000 μm or less. The present invention also relates to a method for producing a polyolefin resin foam molded article characterized by the following (claim 5), and the method for producing according to claim 5 (claim 6), wherein the heat fusion is heat fusion with steam.

【0012】[0012]

【発明の実施の形態】一般に、発泡成形体の密度と機械
的強度との間には正の相関関係があることが知られてい
るが、本発明の成形体と、密度の表芯差の大きい従来の
成形体とを、表層部を含む成形体全体の密度を同一とし
てその圧縮強度特性を比較すると、従来の成形体では、
密度の大きい表層を密度の小さい芯層が支えているた
め、歪み量の小さい弾性変形領域では表層強度により高
強度を維持できるものの、歪み量が大きくなるにつれ
て、芯層の気泡膜の座屈が急速に進行し、表層を支えき
れなくなるため、塑性変形領域においては、歪み量の増
大に対する圧縮強度の増大量が小さくなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is generally known that there is a positive correlation between the density and the mechanical strength of a foamed molded product. When comparing the compressive strength characteristics of a conventional compact with a large conventional compact with the same density of the entire compact including the surface layer, the conventional compact shows that
Since the core layer with low density supports the surface layer with high density, high strength can be maintained by the surface layer strength in the elastic deformation region where the strain amount is small, but as the strain amount increases, the buckling of the bubble film of the core layer becomes large. Since it progresses rapidly and cannot support the surface layer, the amount of increase in the compressive strength with respect to the amount of strain in the plastic deformation region becomes small.

【0013】これに対し、本発明の成形体では、成形体
の表芯密度差が小さいため、弾性変形領域と塑性変形領
域との特性の差が小さくなる。また、粒子スキン層が集
まりやすい表層部中に直径0.5〜50μmの微細気泡
が多数存在するために、従来の発泡成形体に比べ、表層
部密度が小さいにも係わらず、従来品と同等程度の弾性
変形領域強度を維持することができる。さらに、前記表
芯密度差が小さいため、塑性変形領域の歪み量の増大に
対する圧縮強度の増大量が従来の発泡成形体に比べて大
きく、この相加効果により、同一密度において、歪みの
大きい塑性変形領域における強度の向上が達成されるう
え、外観も真珠光沢を有する美麗なものとなる。
On the other hand, in the molded article of the present invention, since the difference in the surface core density of the molded article is small, the difference in characteristics between the elastic deformation region and the plastic deformation region is small. In addition, because there are many fine bubbles having a diameter of 0.5 to 50 μm in the surface layer where the particle skin layer is likely to gather, it is equivalent to the conventional product despite the low surface layer density compared to the conventional foamed molded product. A degree of elastic deformation region strength can be maintained. Further, since the difference in the surface core density is small, the increase in the compressive strength with respect to the increase in the amount of strain in the plastic deformation region is larger than that of the conventional foamed molded body. The strength in the deformation region is improved, and the appearance is beautiful with pearl luster.

【0014】前記表層微細気泡の存在による圧縮強度の
向上は、全く驚くべきことではあるが、たとえばジェイ
・エス・コルトン、プラスチック エンジニアリング
(J. S. COLTON, Plastic Engineering), August, 88
(1988), pp53-55あるいは新保、高分子加工、Vol. 45,N
o.7(1996),pp13-18などに示されている、通称マイクロ
セルラーフォームまたはミューセルプラスチックなどと
呼ばれている発泡体の機械的強度特性と同様の、微細セ
ル近傍のポリオレフィン系樹脂の延伸配向と関連するも
のではないかと考えられる。
The improvement in compressive strength due to the presence of the surface fine bubbles is quite surprising. For example, JS Colton, Plastics Engineering, August, 88
(1988), pp53-55 or Shinbo, Polymer Processing, Vol. 45, N
o.7 (1996), pp13-18, etc., similar to the mechanical strength characteristics of foams commonly called microcellular foam or mucellular plastic, etc. It is thought to be related to the stretch orientation.

【0015】また、熱可塑性樹脂の発泡成形体は、直方
体形状だけでなく、複雑な形状であることも多く、その
ばあい、圧縮強度を測定する際には、密度が高く、加熱
融着の際の成形条件により物性が左右されやすい表層部
を除いて、測定用の試験片を切削し、採取後測定を実施
し、えられた測定値をもって当該成形体の圧縮強度値と
することが一般に行なわれている。
[0015] Further, the foamed molded article of the thermoplastic resin is often not only a rectangular parallelepiped shape but also a complicated shape. In such a case, when measuring the compressive strength, the density is high and the heat-sealing property is high. Except for the surface layer portion whose physical properties are easily affected by the molding conditions at the time, it is common to cut a test specimen for measurement, perform measurement after sampling, and use the obtained measurement value as the compressive strength value of the molded body in general. Is being done.

【0016】したがって、密度同一の成形体のばあい、
表層部の密度が高い従来の成形体では、この圧縮強度測
定用の試験片の密度が低くなるため、該試験片を用いた
圧縮強度値は、本発明の表層部の密度が低く、測定用の
試験片の密度が比較的高い成形体の圧縮強度値と比較し
て低い結果となる。すなわち、発泡成形体の表芯密度差
を小さくすることにより、見かけ上、同一密度の成形体
の圧縮強度値が向上することになり、このような測定法
により発泡成形体の機械的強度を測定するばあいにも、
本発明の発泡成形体のすぐれた効果が発揮される。
Therefore, in the case of a compact having the same density,
Since the density of the test piece for measuring the compressive strength is low in the conventional molded body having a high density of the surface layer, the compressive strength value using the test piece is such that the density of the surface layer of the present invention is low, The result of the test is that the density of the test piece is relatively low as compared with the compressive strength value of the formed body. That is, by reducing the difference in surface core density of the foamed molded article, apparently, the compressive strength value of the molded article having the same density is improved, and the mechanical strength of the foamed molded article is measured by such a measuring method. If you want,
The excellent effects of the foamed molded article of the present invention are exhibited.

【0017】本発明のポリオレフィン系樹脂発泡成形体
は、ポリオレフィン系樹脂予備発泡粒子を型内成形して
えられる融着率が50%以上の成形体である。
The polyolefin resin foam molded article of the present invention is a molded article having a fusion rate of 50% or more obtained by molding the polyolefin resin pre-expanded particles in a mold.

【0018】本発明で用いられるポリオレフィン系樹脂
は、オレフィン単量体単位を50%以上、さらには70
%以上で100%以下含有し、オレフィン単量体と共重
合可能な単量体単位を50%以下、さらには30%以下
で0%以上含有する樹脂である。オレフィン単量体単位
を50%以上含有するため、軽量で機械的強度、加工
性、電気絶縁性、耐水性、耐薬品性にすぐれる成形体が
えられる。オレフィン単量体と共重合可能な単量体単位
は、接着性、透明性、耐衝撃性、ガスバリア性、帯電防
止性などの改質、成形性の改良、成形サイクルの短縮な
どのために使用される成分であり、使用することによる
効果をうるためには、2%以上、さらには5%以上使用
するのが好ましい。
The polyolefin resin used in the present invention has an olefin monomer unit content of 50% or more, more preferably 70% or more.
% Or more and 100% or less, and a resin containing 50% or less, and more preferably 30% or less and 0% or more of a monomer unit copolymerizable with an olefin monomer. Since the olefin monomer unit is contained in an amount of 50% or more, a molded article that is lightweight and has excellent mechanical strength, workability, electrical insulation, water resistance, and chemical resistance can be obtained. Monomers that can be copolymerized with olefin monomers are used to modify adhesiveness, transparency, impact resistance, gas barrier properties, antistatic properties, improve moldability, shorten molding cycles, etc. It is a component to be used, and in order to obtain the effect of using it, it is preferable to use 2% or more, more preferably 5% or more.

【0019】前記オレフィン単量体の具体例としては、
エチレン、プロピレン、ブテン、ペンテン、ヘキセン、
ヘプテン、オクテンなどの炭素数2〜8のαオレフィン
単量体やノルボルネン系モノマーなどの環状オレフィン
などがあげられる。これらのうちでは、エチレン、プロ
ピレンが安価であり、えられる重合体の物性が良好にな
る点から好ましい。これらは単独で用いてもよく、2種
以上を併用してもよい。
Specific examples of the olefin monomer include:
Ethylene, propylene, butene, pentene, hexene,
Examples thereof include α-olefin monomers having 2 to 8 carbon atoms such as heptene and octene, and cyclic olefins such as norbornene-based monomers. Of these, ethylene and propylene are preferred because they are inexpensive and the physical properties of the obtained polymer are improved. These may be used alone or in combination of two or more.

【0020】前記オレフィン単量体と共重合可能な単量
体の具体例としては、酢酸ビニルなどのビニルアルコー
ルエステル、メチルメタクリレート、エチルアクリレー
ト、ヘキシルアクリレートなどのアルキル基の炭素数が
1〜6の(メタ)アクリル酸アルキルエステル、ビニル
アルコール、メタクリル酸、塩化ビニルなどがあげられ
る。これらのうちでは、酢酸ビニルが接着性、柔軟性、
低温特性の点から好ましく、メチルメタクリレートが接
着性、柔軟性、低温特性、熱安定性の点から好ましい。
これらは単独で用いてもよく、2種以上を併用してもよ
い。
Specific examples of the monomer copolymerizable with the olefin monomer include vinyl alcohol esters such as vinyl acetate, and alkyl groups having 1 to 6 carbon atoms such as methyl methacrylate, ethyl acrylate and hexyl acrylate. Examples thereof include (meth) acrylic acid alkyl esters, vinyl alcohol, methacrylic acid, and vinyl chloride. Of these, vinyl acetate is adhesive, flexible,
Methyl methacrylate is preferred in terms of low-temperature properties, and methyl methacrylate is preferred in terms of adhesiveness, flexibility, low-temperature properties, and thermal stability.
These may be used alone or in combination of two or more.

【0021】前記ポリオレフィン系樹脂のメルトインデ
ックス(MI)としては、たとえばポリプロピレン系樹
脂では0.5〜30g/10分、さらには1〜10g/
10分のものが好ましく、また曲げ弾性率(JIS K
7203)としては5000〜20000kgf/c
2、さらには6000〜16000kgf/cm2、融
点としては125〜165℃、さらには130〜165
℃のものが好ましい。前記MIが0.5g/10分未満
のばあい、溶融粘度が高すぎて高発泡倍率の予備発泡粒
子がえられにくく、30g/10分をこえるばあい、発
泡時の樹脂の伸びに対する溶融粘度が低く破泡しやすく
なり、予備発泡粒子の連泡率が高くなる傾向にある。
The melt index (MI) of the polyolefin resin is, for example, 0.5 to 30 g / 10 min for a polypropylene resin, and more preferably 1 to 10 g / min.
10 minutes is preferable, and the flexural modulus (JIS K
7203) as 5000 to 20000 kgf / c
m 2 , further 6000-16000 kgf / cm 2 , melting point 125-165 ° C., further 130-165
° C is preferred. When the MI is less than 0.5 g / 10 min, the melt viscosity is too high to obtain pre-expanded particles having a high expansion ratio, and when the MI is more than 30 g / 10 min, the melt viscosity with respect to the elongation of the resin during foaming. Of the pre-expanded particles tends to increase.

【0022】前記ポリオレフィン系樹脂の具体例として
は、たとえばエチレン−プロピレンランダム共重合体、
エチレン−プロピレン−ブテンランダム3元共重合体、
ポリエチレン−ポリプロピレンブロック共重合体、ホモ
ポリプロピレンなどのポリプロピレン系樹脂;低密度ポ
リエチレン、中密度ポリエチレン、直鎖低密度ポリエチ
レン、エチレン−酢酸ビニル共重合体、エチレン−メチ
ルメタクリレート共重合体などのポリエチレン系樹脂;
ポリブテン、ポリペンテンなどがあげられる。これらの
ポリマーは単独で用いてもよく、2種以上を併用しても
よい。また、該ポリオレフィン系樹脂は、無架橋の状態
で用いてもよいが、パーオキサイドや放射線などにより
架橋させて用いてもよい。これらのうちでは、えられる
発泡成形体の耐熱性、強度、コストのバランスが良好で
ある点から、ポリプロピレン系樹脂であるのが好まし
い。
Specific examples of the polyolefin resin include, for example, an ethylene-propylene random copolymer,
Ethylene-propylene-butene random terpolymer,
Polypropylene resins such as polyethylene-polypropylene block copolymer and homopolypropylene; polyethylene resins such as low density polyethylene, medium density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer ;
Examples include polybutene and polypentene. These polymers may be used alone or in combination of two or more. Further, the polyolefin-based resin may be used in a non-crosslinked state, or may be used after being crosslinked by peroxide or radiation. Among these, a polypropylene resin is preferable because the obtained foamed molded article has a good balance of heat resistance, strength, and cost.

【0023】また、前記ポリオレフィン系樹脂には、ポ
リオレフィン系樹脂95〜99.99%(重量%、以下
同様)に対し、合計量が100%になるように親水性ポ
リマー0.01〜5%を含有させてもよい。前記親水性
ポリマーを添加することにより、予備発泡粒子、ひいて
は発泡成形体の表層部の微細気泡を安定的に発生させる
ことができ、型内成形時の成形サイクルを短縮し、さら
にえられる成形体の密度の表芯差を小さくすることがで
きる。
The polyolefin resin is prepared by adding 0.01 to 5% of a hydrophilic polymer so that the total amount is 100% with respect to 95 to 99.99% (% by weight, hereinafter the same) of the polyolefin resin. You may make it contain. By adding the hydrophilic polymer, the pre-expanded particles, and thus the fine bubbles in the surface layer of the expanded molded article, can be generated stably, shortening the molding cycle during in-mold molding, and further obtaining the molded article. Can be reduced.

【0024】前記親水性ポリマーとは、分子内にカルボ
キシル基、水酸基、アミノ基、アミド基、エステル基な
どの親水性基を有するポリマーであり、親水性のちがい
により吸湿性ポリマー、吸水性ポリマーおよび水溶性ポ
リマーに分類される。
The above-mentioned hydrophilic polymer is a polymer having a hydrophilic group such as a carboxyl group, a hydroxyl group, an amino group, an amide group and an ester group in the molecule. Classified as water-soluble polymer.

【0025】前記吸湿性ポリマーとは、ASTM D5
70に準拠して測定された吸水率が0.5%以上で上限
が100%のポリマーをいう。
The hygroscopic polymer is ASTM D5
A polymer having a water absorption of 0.5% or more and an upper limit of 100% as measured according to No. 70.

【0026】前記吸湿性ポリマーの代表例としては、た
とえばカルボキシル基含有ポリマー、ポリアミド、熱可
塑性ポリエステル系エラストマー、セルロース誘導体な
どがあげられる。
Representative examples of the hygroscopic polymer include a carboxyl group-containing polymer, a polyamide, a thermoplastic polyester elastomer, and a cellulose derivative.

【0027】前記カルボキシル基含有ポリマーの具体例
としては、たとえばエチレン−アクリル酸−無水マレイ
ン酸三元共重合体、エチレン−(メタ)アクリル酸共重
合体の分子間をナトリウムイオン、カリウムイオンなど
のアルカリ金属イオンをはじめ、亜鉛イオンなどの遷移
金属イオンで架橋させたエチレン系アイオノマー、エチ
レン−(メタ)アクリル酸共重合体などがあげられる。
これらは単独で用いてもよく2種以上を併用してもよ
い。これらのカルボキシル基含有ポリマーのなかでは、
エチレン−(メタ)アクリル酸共重合体の分子間をナト
リウムイオン、カリウムイオンなどのアルカリ金属イオ
ンで架橋させたエチレン系アイオノマーがポリオレフィ
ン系樹脂中での分散性にすぐれ、比較的少量でポリオレ
フィン系樹脂予備発泡粒子の表層部に前記微細気泡を安
定的に多数生成させ、前記発泡成形体の表芯密度差を小
さくさせうるので本発明においてとくに好ましく使用し
うるものである。
Specific examples of the carboxyl group-containing polymer include, for example, a terpolymer of ethylene-acrylic acid-maleic anhydride and a copolymer of ethylene- (meth) acrylic acid with sodium ions and potassium ions. Examples include an alkali ion, an ethylene ionomer crosslinked with a transition metal ion such as a zinc ion, and an ethylene- (meth) acrylic acid copolymer.
These may be used alone or in combination of two or more. Among these carboxyl group-containing polymers,
Ethylene ionomer in which ethylene- (meth) acrylic acid copolymer is cross-linked with alkali metal ions such as sodium ion and potassium ion is excellent in dispersibility in polyolefin resin, and polyolefin resin in relatively small amount. It is particularly preferably used in the present invention because it can stably generate a large number of the fine cells in the surface layer portion of the pre-expanded particles and reduce the difference in the surface core density of the expanded molded article.

【0028】前記ポリアミドの具体例としては、たとえ
ばナイロン−6、ナイロン−6,6、共重合ナイロン
(イーエムエス ヘミー社(EMS−CHEMIE A
G)製、商品名グリルテックスなど)などがあげられ
る。これらは単独で用いてもよく2種以上を併用しても
よい。
Specific examples of the polyamide include, for example, nylon-6, nylon-6,6, and copolymerized nylon (EMS-CHEMIE A
G), trade name Grilltex, etc.). These may be used alone or in combination of two or more.

【0029】前記熱可塑性ポリエステル系エラストマー
の具体例としては、たとえばポリブチレンテレフタレー
トとポリテトラメチレングリコールとのブロック共重合
体などがあげられる。これらは単独で用いてもよく2種
以上を併用してもよい。
Specific examples of the thermoplastic polyester elastomer include, for example, a block copolymer of polybutylene terephthalate and polytetramethylene glycol. These may be used alone or in combination of two or more.

【0030】前記セルロース誘導体の具体例としては、
たとえば酢酸セルロース、プロピオン酸セルロースなど
があげられる。これらは単独で用いてもよく2種以上を
併用してもよい。
Specific examples of the cellulose derivative include:
For example, cellulose acetate, cellulose propionate and the like can be mentioned. These may be used alone or in combination of two or more.

【0031】前記吸水性ポリマーとは、水に溶けること
なく自重の数倍から数百倍の水を吸収し、圧力がかかっ
ても脱水されがたいポリマーをいう。
The water-absorbing polymer refers to a polymer that absorbs water several times to several hundred times its own weight without being dissolved in water, and is hardly dehydrated even when pressure is applied.

【0032】前記吸水性ポリマーの具体例としては、た
とえば澱粉−アクリル酸グラフト共重合体、架橋ポリビ
ニルアルコール系重合体、架橋ポリエチレンオキサイド
系重合体、イソブチレン−マレイン酸系共重合体などが
あげられる。これらは、単独で用いてもよく、2種以上
を併用してもよい。
Specific examples of the water-absorbing polymer include a starch-acrylic acid graft copolymer, a cross-linked polyvinyl alcohol-based polymer, a cross-linked polyethylene oxide-based polymer, and an isobutylene-maleic acid-based copolymer. These may be used alone or in combination of two or more.

【0033】前記架橋ポリビニルアルコール系重合体の
具体例としては、たとえば日本合成化学工業(株)製、
商品名アクアリザーブGPなどで代表される種々の架橋
ポリビニルアルコール系重合体があげられる。これらは
単独で用いてもよく2種以上を併用してもよい。
Specific examples of the crosslinked polyvinyl alcohol-based polymer include, for example, Nippon Synthetic Chemical Industry Co., Ltd.
Various crosslinked polyvinyl alcohol-based polymers represented by the trade name Aqua Reserve GP and the like can be mentioned. These may be used alone or in combination of two or more.

【0034】前記架橋ポリエチレンオキサイド系重合体
の具体例としては、たとえば住友精化(株)製、商品名
アクアコークなどで代表される種々の架橋ポリエチレン
オキサイド系重合体があげられる。これらは単独で用い
てもよく2種以上を併用してもよい。
Specific examples of the crosslinked polyethylene oxide polymer include various crosslinked polyethylene oxide polymers represented by Aquacork (trade name, manufactured by Sumitomo Seika Co., Ltd.). These may be used alone or in combination of two or more.

【0035】前記イソブチレン−マレイン酸系共重合体
の具体例としては、たとえば(株)クラレ製、商品名K
Iゲルなどで代表される種々のイソブチレン−マレイン
酸系共重合体があげられる。これらは単独で用いてもよ
く2種以上を併用してもよい。
Specific examples of the isobutylene-maleic acid copolymer include Kuraray Co., Ltd., trade name K
Various isobutylene-maleic acid copolymers represented by I-gel and the like can be mentioned. These may be used alone or in combination of two or more.

【0036】前記水溶性ポリマーとは、常温ないし高温
状態で水に溶解するポリマーをいう。
The water-soluble polymer is a polymer that is soluble in water at normal or high temperature.

【0037】前記水溶性ポリマーの具体例としては、た
とえばポリ(メタ)アクリル酸系重合体、ポリ(メタ)
アクリル酸塩系重合体、ポリビニルアルコール系重合
体、ポリエチレンオキサイド系重合体、水溶性セルロー
ス誘導体などがあげられる。これらは単独で用いてもよ
く2種以上を併用してもよい。
Specific examples of the water-soluble polymer include, for example, poly (meth) acrylic acid-based polymer, poly (meth)
Examples include acrylate polymers, polyvinyl alcohol polymers, polyethylene oxide polymers, and water-soluble cellulose derivatives. These may be used alone or in combination of two or more.

【0038】前記ポリ(メタ)アクリル酸系重合体とし
ては、たとえばポリアクリル酸、アクリル酸−アクリル
酸エチル共重合体、ポリメタクリル酸2−ヒドロキシエ
チルなどがあげられる。これらは単独で用いてもよく2
種以上を併用してもよい。
Examples of the poly (meth) acrylic acid-based polymer include polyacrylic acid, acrylic acid-ethyl acrylate copolymer, polyhydroxyethyl methacrylate and the like. These may be used alone.
More than one species may be used in combination.

【0039】前記ポリ(メタ)アクリル酸塩系重合体と
しては、たとえばポリアクリル酸ナトリウム、ポリメタ
クリル酸ナトリウム、ポリアクリル酸カリウム、ポリメ
タクリル酸カリウムなどがあげられる。これらは単独で
用いてもよく2種以上を併用してもよい。
Examples of the poly (meth) acrylate polymer include sodium polyacrylate, sodium polymethacrylate, potassium polyacrylate, potassium polymethacrylate and the like. These may be used alone or in combination of two or more.

【0040】前記ポリビニルアルコール系重合体として
は、たとえばポリビニルアルコール、ビニルアルコール
−酢酸ビニル共重合体などがあげられる。これらは単独
で用いてもよく2種以上を併用してもよい。
Examples of the polyvinyl alcohol-based polymer include polyvinyl alcohol and a vinyl alcohol-vinyl acetate copolymer. These may be used alone or in combination of two or more.

【0041】前記ポリエチレンオキサイド系重合体とし
ては、たとえば分子量数万〜数百万のポリエチレンオキ
サイドなどがあげられる。これらは単独で用いてもよく
2種以上を併用してもよい。
Examples of the polyethylene oxide polymer include polyethylene oxide having a molecular weight of tens of thousands to several millions. These may be used alone or in combination of two or more.

【0042】前記水溶性セルロース誘導体としては、た
とえばカルボキシメチルセルロース、ヒドロキシエチル
セルロースなどがあげられる。これらは単独で用いても
よく2種以上を併用してもよい。
Examples of the water-soluble cellulose derivative include carboxymethyl cellulose and hydroxyethyl cellulose. These may be used alone or in combination of two or more.

【0043】前記吸湿性ポリマー、吸水性ポリマーおよ
び水溶性ポリマーは単独で用いてもよく、2種以上を併
用してもよい。
The above-mentioned hygroscopic polymer, water-absorbing polymer and water-soluble polymer may be used alone or in combination of two or more.

【0044】さらに、前記ポリオレフィン系樹脂には、
ポリオレフィン系樹脂および要すれば添加される親水性
ポリマーの合計量に対し、タルク、カオリン、クレー、
マイカ、炭酸ナトリウム、炭酸カルシウム、ホウ酸ナト
リウム、水酸化カルシウムなどからなる平均粒径が0.
1〜50μm、さらには0.1〜20μmの充填剤を
0.001〜10%、さらには0.001〜5%の範囲
で添加してもよい。充填剤を添加するばあいには、予備
発泡粒子の中心部の平均気泡径を均一にし、これにより
えられる発泡成形体の機械的強度、耐熱性などが向上す
る点から好ましい。
Further, the polyolefin resin includes:
Based on the total amount of the polyolefin resin and the hydrophilic polymer added if necessary, talc, kaolin, clay,
Mica, sodium carbonate, calcium carbonate, sodium borate, calcium hydroxide, etc. have an average particle size of 0.1.
A filler of 1 to 50 μm, furthermore 0.1 to 20 μm, may be added in a range of 0.001 to 10%, more preferably 0.001 to 5%. When a filler is added, the average cell diameter at the center of the pre-expanded particles is made uniform, which is preferable in that the mechanical strength, heat resistance and the like of the obtained foamed molded article are improved.

【0045】前記ポリオレフィン系樹脂予備発泡粒子
は、前記のごとき成分からなる0.1〜5mg/粒子の
粒子であり、たとえば示差走査熱量計測定により2つの
融点を示す結晶構造を有し、高温側融点を示す吸熱ピー
ク熱量が0.3〜6.0cal/g、さらには1.0〜
6.0cal/gであり、かつ、表層部に直径0.5〜
50μm、さらには0.5〜30μmの微細気泡が1m
2あたり300個以上、さらには500個以上存在
し、発泡倍率1.5〜30倍、さらには2〜20倍、独
立気泡率60〜100%、さらには70〜100%、表
層部以外(中心部)の平均気泡径100〜1000μ
m、さらには100〜600μmのものである。
The polyolefin-based resin pre-expanded particles are particles of the above components at a concentration of 0.1 to 5 mg / particle, for example, have a crystal structure showing two melting points as measured by a differential scanning calorimeter, and The endothermic peak calorie indicating the melting point is 0.3 to 6.0 cal / g, and more preferably 1.0 to
6.0 cal / g, and a diameter of 0.5 to
50 μm, and fine bubbles of 0.5 to 30 μm are 1 m
m 2 per 300 or more, more present than 500, expansion ratio 1.5 to 30 times, more 2-20 times, 60% to 100% closed cell ratio, and further 70% to 100%, except the surface layer portion ( (Central part) average cell diameter 100-1000μ
m, and more preferably 100 to 600 μm.

【0046】前記のように予備発泡粒子が示差走査熱量
計測定により2つの融点、好ましくは5℃以上、さらに
は5〜30℃はなれた融点を示す結晶構造を有するた
め、融着成形時、水蒸気などにより予備発泡粒子が加熱
された際、適度な2次発泡性と、破泡収縮しないだけの
樹脂膜強度とを同時に有し、融着成形性の良好な温度範
囲(成形条件幅)の広い予備発泡粒子となる。
As described above, since the pre-expanded particles have a crystal structure exhibiting two melting points, preferably 5 ° C. or more, and more preferably 5 to 30 ° C. separated by differential scanning calorimetry, water vapor is generated during fusion molding. When the pre-expanded particles are heated by, for example, it has an appropriate secondary expandability and a resin film strength enough not to cause foam shrinkage, and has a wide temperature range (width of molding conditions) in which good fusion moldability is obtained. It becomes pre-expanded particles.

【0047】前記2つの融点は、ポリプロピレン系樹脂
のばあい、通常、110〜155℃と120〜170℃
に存在し、ポリエチレン系樹脂のばあい、通常、70〜
110℃と90〜130℃に存在する。
The two melting points are usually 110 to 155 ° C. and 120 to 170 ° C. for a polypropylene resin.
In the case of polyethylene resin, usually 70 to
Located at 110 ° C and 90-130 ° C.

【0048】また、前記高温側融点を示す吸熱ピーク熱
量が0.3cal/g未満のばあいには予備発泡粒子の
強度が不足し、えられる発泡成形体の強度特性が低下
し、6.0cal/gをこえて大きいばあいには、融着
成形時の予備発泡粒子の2次発泡性が低下するため、融
着率を50%以上で、発泡成形体の表層部の密度に対す
る中心部密度の比を0.8以上1.0以下とするための
成形条件幅が著しく狭くなるため好ましくない。
When the endothermic peak calorific value indicating the high-temperature side melting point is less than 0.3 cal / g, the strength of the pre-expanded particles is insufficient, and the strength characteristics of the obtained foamed molded article are reduced, and 6.0 cal. / G, the secondary foamability of the pre-expanded particles at the time of fusion molding is reduced, so that the fusion ratio is 50% or more, and the density of the central portion with respect to the density of the surface layer portion of the foamed molded product. Is not preferable because the range of molding conditions for setting the ratio of 0.8 to 1.0 or less is extremely narrow.

【0049】なお、前記2つの融点のうち低温側融点の
吸熱ピーク熱量はポリオレフィン系樹脂の結晶化度によ
るが、通常2.0〜20.0cal/gである。
The endothermic peak calorie of the lower melting point of the two melting points depends on the crystallinity of the polyolefin resin, but is usually 2.0 to 20.0 cal / g.

【0050】前記融点および吸熱ピーク熱量は示差走査
熱量計(セイコー電子工業(株)製のSSC5200)
を使用して、ポリオレフィン系樹脂予備発泡粒子を約5
〜10mg採取し、40℃から220℃まで、昇温速度
10℃/分の測定条件で測定したときにえられる2つの
融点を有するDSC曲線が、2つの融点を示す各ピーク
間で、ベースラインに最も近接する、あるいは一致する
点から高温側にDSC曲線に対する接線をひき、該接線
とDSC曲線のなす部分の面積である。
The melting point and endothermic peak calorific value were measured by a differential scanning calorimeter (SSC5200 manufactured by Seiko Instruments Inc.).
Using a pre-expanded polyolefin resin particle of about 5
A DSC curve having two melting points obtained when 10 mg was collected and measured at a heating rate of 10 ° C./min from 40 ° C. to 220 ° C. showed a baseline between each peak indicating the two melting points. , A tangent to the DSC curve is drawn from the point closest or coincident to the high-temperature side, and this is the area of the portion between the tangent and the DSC curve.

【0051】前記予備発泡粒子の表層部の微細気泡径が
50μmをこえて大きいばあいには、中心部における気
泡と表層部における微細気泡の区別が明確でなくなるば
あいがあり、0.5μm未満のばあい、可視光の波長が
0.4〜0.7μm程度であるため、光学的に気泡の存
在を確認できなくなる(気泡が透明になる)ため、本発
明では気泡として考えない。
When the diameter of the fine bubbles in the surface layer of the pre-expanded particles is larger than 50 μm, there is a case where the distinction between the bubbles in the center and the fine bubbles in the surface layer is not clear, and it is less than 0.5 μm. In this case, since the wavelength of visible light is about 0.4 to 0.7 μm, the presence of bubbles cannot be confirmed optically (the bubbles become transparent), and therefore, they are not considered as bubbles in the present invention.

【0052】また、1mm2あたりの微細気泡の個数が
少なすぎるばあいには、表層微細気泡の分布が疎とな
り、予備発泡粒子表面のスキン層密度が大きくなり、成
形サイクルの短縮化効果が薄れるばかりか、えられる発
泡成形体表層部の密度が大きく、中心部の密度が小さく
なり、結果的に表層部密度に対する中心部密度の比が
0.8未満となり、機械的強度特性が低下し、真珠光沢
を有するすぐれた外観が損なわれるため好ましくない。
なお、1mm2あたりの微細気泡の個数の上限は該範囲
内に直径0.5μmの微細気泡が単層に密に配置された
ばあいを考えると、約100万個である。
If the number of fine bubbles per 1 mm 2 is too small, the distribution of fine bubbles in the surface layer becomes sparse, the density of the skin layer on the surface of the pre-expanded particles increases, and the effect of shortening the molding cycle is diminished. Not only that, the density of the obtained foamed molded product surface layer portion is large, the density of the central portion is small, and as a result, the ratio of the central portion density to the surface layer portion density is less than 0.8, and the mechanical strength characteristics are reduced, It is not preferable because excellent appearance with pearl luster is impaired.
The upper limit of the number of microbubbles per 1 mm 2 is about 1,000,000 considering that microbubbles having a diameter of 0.5 μm are densely arranged in a single layer within the above range.

【0053】さらに、前記中心部の平均気泡径が100
μm未満になると機械的強度特性が低下するうえ、加熱
融着成形時に破泡しやすくなり、1000μmをこえる
とこれも機械的強度が低下する。
Further, the average bubble diameter at the center is 100
When the thickness is less than μm, the mechanical strength characteristics are reduced, and the foam is easily broken at the time of heat fusion molding. When the thickness exceeds 1000 μm, the mechanical strength is also reduced.

【0054】前記ポリオレフィン系樹脂予備発泡粒子の
表層部とは、予備発泡粒子の表面から50μmまでの部
分のことであり、予備発泡粒子の最外層に位置する単層
の微細気泡はすべてこの表層部に含まれ、中心部とは、
予備発泡粒子の表層部を除いた部分のことである。
The surface layer portion of the polyolefin resin pre-expanded particles refers to a portion extending from the surface of the pre-expanded particles to 50 μm, and all the single-layer fine bubbles located at the outermost layer of the pre-expanded particles are covered by this surface layer portion. Is included in the heart
This is the part of the pre-expanded particles excluding the surface layer.

【0055】また、前記表層部の微細気泡の直径とは、
前記予備発泡粒子表面の拡大顕微鏡写真において観察さ
れる気泡断面積を求め、これを円と仮定した際に面積同
等となるように求めた直径(いわゆる相当径)のことで
ある。また、前記中心部の平均気泡径とは、前記予備発
泡粒子断面の拡大顕微鏡写真において、表層部を除く部
分に、長さ1mmに相当する線分を引き、該線分が通る
気泡数を求めたのち、ASTM D 3576記載の手
順に基づいて求めた平均気泡径のことである。
The diameter of the fine bubbles in the surface layer is defined as
This is the diameter (so-called equivalent diameter) obtained by determining the cross-sectional area of the cells observed in an enlarged micrograph of the surface of the pre-expanded particles and assuming that the cross-sectional area is equivalent to a circular area. Further, the average cell diameter at the central portion is obtained by drawing a line corresponding to a length of 1 mm on a portion excluding the surface layer in the enlarged micrograph of the cross section of the pre-expanded particles, and calculating the number of cells passing through the line. Afterwards, it is the average bubble diameter determined based on the procedure described in ASTM D3576.

【0056】本発明のポリオレフィン系樹脂成形体は、
前記のごとき予備発泡粒子を型内成形法、具体的には予
備発泡粒子を閉鎖しうるが、密閉しえない金型内に充填
し、たとえば水蒸気(0.1〜6.0kg/cm2Gの
水蒸気)などによって加熱融着させるなどの従来から行
なわれているいずれの成形法によっても、融着率が50
%以上、さらには70%以上の型通りのポリオレフィン
系樹脂成形体を製造することができる。前記融着率が5
0%未満のばあい、発泡成形体の引張強度、曲げ強度な
どの機械的強度が低下する他、はなはだしいばあいには
予備発泡粒子が剥離、欠落し、形状をとどめなくなる。
The polyolefin resin molded article of the present invention comprises:
The pre-expanded particles as described above are molded in a mold, specifically, filled in a mold that can close the pre-expanded particles but cannot seal them, and for example, steam (0.1 to 6.0 kg / cm 2 G). The fusion rate is 50% by any conventional molding method such as heat fusion with water vapor or the like.
% Or more, and more preferably 70% or more of a shaped polyolefin-based resin molded article. The fusion rate is 5
If the amount is less than 0%, the mechanical strength such as the tensile strength and the bending strength of the foamed molded article is reduced, and in extreme cases, the pre-expanded particles are peeled off or missing, and the shape cannot be maintained.

【0057】なお、前記融着率は、後述する実施例1に
記載の方法により測定される。
The fusion rate is measured by the method described in Example 1 described later.

【0058】本発明のポリオレフィン系樹脂成形体は、
示差走査熱量計測定により2つの融点を示すような結晶
構造を有し、かつ前記成形体の表層部密度に対する中心
部密度の比が0.8以上、さらには0.85以上、とく
には0.88以上、1.0以下のポリオレフィン系樹脂
発泡成形体である。前記示差走査熱量計測定により2つ
の融点を示すような結晶構造を有するものから形成され
ているため、融解ピークがブロードとなり、加熱時の結
晶融解によるステップ的な強度低下が抑制され、耐熱性
が向上するという特徴が生じ、また、表層部密度に対す
る中心部密度の比が0.8以上、1.0以下であるた
め、表層部を含めた成形体全体の密閉分布が均一にな
り、見かけ上、機械的強度が向上するという特徴が生じ
る。また、密度比が0.80未満のばあい、機械的強度
の向上効果が小さくなり、型内成形法を用いて中心部密
度の均一な発泡成形体をえたばあいには、原理的に表層
部密度は中心部密度以上となるため、1.0をこえるば
あいはない。
The polyolefin resin molded article of the present invention comprises:
It has a crystal structure exhibiting two melting points as measured by differential scanning calorimetry, and the ratio of the density of the center part to the density of the surface layer part of the molded product is 0.8 or more, more preferably 0.85 or more, and particularly 0.1 or more. It is a polyolefin-based resin foam molded article of 88 or more and 1.0 or less. Because it is formed from a material having a crystal structure showing two melting points by the differential scanning calorimeter measurement, the melting peak becomes broad, and a stepwise decrease in strength due to crystal melting during heating is suppressed, and heat resistance is reduced. Since the ratio of the density of the central portion to the density of the surface layer is 0.8 or more and 1.0 or less, the hermetic distribution of the entire molded body including the surface layer becomes uniform, and the apparent appearance is improved. This leads to a feature that the mechanical strength is improved. In addition, when the density ratio is less than 0.80, the effect of improving the mechanical strength is small, and when a foam molded article having a uniform central portion density is obtained by using the in-mold molding method, the surface layer is in principle required. Since the partial density is equal to or higher than the central density, it is not necessary to exceed 1.0.

【0059】従来の成形法により、前記密度の表芯差が
小さく、機械的強度特性にすぐれた発泡成形体を製造し
ようとすると、前記発泡成形体の融着率が低下してしま
い、好ましくない。
If it is attempted to produce a foamed molded article having a small difference in surface density and excellent mechanical strength characteristics by the conventional molding method, the fusion rate of the foamed molded article is reduced, which is not preferable. .

【0060】すなわち、示差走査熱量計法により、2つ
の融点を示すような結晶構造を有し、かつその高温側吸
熱ピーク熱量が0.3〜6.0cal/gであり、表層
部に微細気泡が存在しない従来の予備発泡粒子を使用し
て型内成形を行なうばあい、前記密度の大きい表層部を
形成させず、成形体密度の表芯比を0.8以上、1.0
以下とするためには、型内成形中、金型壁面に予備発泡
粒子を強く押しつけない、すなわち最高金型内面圧をあ
げないことが必要であり、そのためには、たとえば充填
量を少なくしたり、圧縮率を小さくしたり、成形温度を
低くしたりといった成形条件の変更をしなければならな
い。しかし、このばあい、いずれも成形体の融着率が低
下し、50%未満となってしまうため、機械的強度特性
が低下する他、著しいばあいには発泡成形体断面を指で
こする程度の表面摩耗によってさえも、粒子が剥離、欠
落してしまう。
That is, according to the differential scanning calorimeter method, it has a crystal structure exhibiting two melting points, has a high-temperature endothermic peak calorie of 0.3 to 6.0 cal / g, and has fine bubbles in the surface layer. When the in-mold molding is performed using the conventional pre-expanded particles having no, the surface layer portion having the large density is not formed, and the surface-to-core ratio of the molded body density is 0.8 or more, and 1.0 or more.
In order to make the following, it is necessary not to strongly press the pre-expanded particles against the mold wall surface during the in-mold molding, that is, not to increase the maximum mold inner surface pressure. It is necessary to change the molding conditions such as reducing the compression ratio and decreasing the molding temperature. However, in this case, the fusion rate of the molded article is reduced to less than 50% in any case, so that the mechanical strength characteristics are reduced. In a remarkable case, the cross section of the foam molded article is rubbed with a finger. Even with a certain degree of surface wear, the particles can detach and drop.

【0061】これに対し、本発明のように、表層部に微
細気泡を有する予備発泡粒子を用いて型内成形を行なう
ばあいには、前記のごとき成形条件を変更させなくて
も、予備発泡粒子の表層部の微細気泡が加熱により膨張
するため、容易に前記密度差の小さい発泡成形体がえら
れる。
On the other hand, when in-mold molding is performed using pre-expanded particles having fine cells in the surface layer as in the present invention, the pre-expansion can be performed without changing the molding conditions as described above. Since the fine bubbles in the surface layer of the particles expand due to heating, a foam molded article having a small density difference can be easily obtained.

【0062】さらに、本発明のように、表層部の微細気
泡を多数有するような予備発泡粒子を用いて型内成形を
行なうと、予備発泡粒子表面に密度の大きい粒子スキン
層が形成されず、予備発泡粒子、ひいては発泡成形体内
の水蒸気が成形体外部に透過しやすくなるためか、金型
冷却時の除圧が迅速に進行し、型内成形サイクルが短縮
化される。
Further, when in-mold molding is performed using pre-expanded particles having a large number of fine bubbles in the surface layer as in the present invention, a high-density particle skin layer is not formed on the surface of the pre-expanded particles, Perhaps because the pre-expanded particles, and eventually the water vapor in the expanded molded article, easily permeates to the outside of the molded article, the depressurization at the time of cooling the mold proceeds rapidly, and the in-mold molding cycle is shortened.

【0063】本発明のポリオレフィン系樹脂発泡成形体
は、前記のごとき表層部に直径0.5〜50μmの微細
気泡が1mm2あたり300個以上、好ましくは500
個以上存在する予備発泡粒子を型内成形してえられる成
形体であるため、予備発泡粒子のばあいと同様に、その
表層部に直径0.5〜50μm、さらには1.0〜30
μmの微細気泡が1mm2あたり300個以上、さらに
は500個以上、上限は100万個以下有する成形体と
なる。なお、成形体の中心部には粒子スキン層が含まれ
るため、平均気泡径を求めることは困難であるが、予備
発泡粒子中心部に対応する部分の平均気泡径は、通常、
100〜1000μm、さらには150〜800μm、
粒子スキン層部に対応する部分の平均気泡径は、0.5
〜50μm、さらには1.0〜50μmになる。
[0063] Polyolefin type resin foamed molded product of the present invention, the fine bubbles having a diameter 0.5~50μm said such a surface layer portion 1 mm 2 per 300 or more, preferably 500
Since it is a molded product obtained by molding the pre-expanded particles present in the mold in a mold, similarly to the case of the pre-expanded particles, the surface layer portion has a diameter of 0.5 to 50 μm, and more preferably 1.0 to 30 μm.
The molded product has 300 or more, more preferably 500 or more, and an upper limit of 1,000,000 or less micrometer microbubbles per 1 mm 2 . In addition, since the particle skin layer is included in the center of the molded body, it is difficult to determine the average cell diameter.However, the average cell diameter of the portion corresponding to the center of the pre-expanded particles is usually
100-1000 μm, further 150-800 μm,
The average cell diameter of the portion corresponding to the particle skin layer portion is 0.5
5050 μm, and more preferably 1.0-50 μm.

【0064】なお、成形体における表層部とは、表面か
ら50μmまでの厚さの部分をいい、微細気泡の個数の
かぞえ方、気泡径の求め方などは予備発泡粒子のばあい
と同様である。
The surface layer portion of the molded body refers to a portion having a thickness of up to 50 μm from the surface. The method of determining the number of fine bubbles and the method of determining the bubble diameter are the same as in the case of the pre-expanded particles. .

【0065】このようにしてえらえる本発明のポリオレ
フィン系樹脂発泡成形体の密度は、好ましくは45〜2
00g/L、さらには45〜150g/Lのものであ
る。
The density of the polyolefin resin foam molded article of the present invention thus obtained is preferably 45 to 2
00 g / L, and more preferably 45 to 150 g / L.

【0066】つぎに、本発明に用いるポリオレフィン系
樹脂予備発泡粒子の製法について説明する。
Next, a method for producing the pre-expanded polyolefin resin particles used in the present invention will be described.

【0067】前記ポリオレフィン系樹脂予備発泡粒子を
うるためには、たとえば原料となるポリオレフィン系樹
脂粒子、好ましくは親水性ポリマーを含むポリオレフィ
ン系樹脂粒子を密閉容器内の水系分散媒に分散させ、前
記ポリオレフィン系樹脂粒子の融点以上、融解終了温度
以下の温度に加熱したのち、容器の一端を開放すること
によりポリオレフィン系樹脂予備発泡粒子を製造する方
法において、揮発性発泡剤を用いず、実質的に水系分散
媒、通常は水を発泡剤として用いることにより製造され
る。
In order to obtain the pre-expanded polyolefin-based resin particles, for example, polyolefin-based resin particles as a raw material, preferably polyolefin-based resin particles containing a hydrophilic polymer, are dispersed in an aqueous dispersion medium in a closed container. After heating to a temperature equal to or higher than the melting point of the system resin particles and equal to or lower than the melting end temperature, in a method of producing polyolefin resin pre-expanded particles by opening one end of a container, a volatile foaming agent is not used, and a substantially aqueous system is used. It is produced by using a dispersion medium, usually water, as a blowing agent.

【0068】前記密閉容器、ポリオレフィン系樹脂粒子
を分散させる水系分散媒、ポリオレフィン系樹脂粒子と
水系分散媒との割合などについて特別な限定はなく、通
常使用される密閉容器、水系分散媒、粒子と水系分散媒
との割合などであるかぎり採用されうる。
There are no particular restrictions on the closed container, the aqueous dispersion medium in which the polyolefin resin particles are dispersed, the ratio of the polyolefin resin particles to the aqueous dispersion medium, and the like. It can be adopted as long as the ratio with the aqueous dispersion medium is used.

【0069】ただし、使用される発泡剤は、通常の揮発
性発泡剤ではなく、実質的に分散媒として使用される水
である。前記ポリオレフィン系樹脂組成物予備発泡粒子
を製造する際に、発泡剤としてハロゲン化炭化水素、低
級脂肪族炭化水素、炭酸ガス、チッ素、空気などの揮発
性発泡剤を使用したばあいには、前記予備発泡粒子の表
層部の微細気泡の直径が50μmをこえるか、あるいは
0.5μm以上、50μm以下の微細気泡の数が300
個未満しか生成しないかのいずれかになり、ポリオレフ
ィン系樹脂予備発泡粒子の表層部に前記微細気泡がほと
んどまたはまったく見られなくなる。
However, the foaming agent used is not a usual volatile foaming agent but water which is substantially used as a dispersion medium. When producing the polyolefin resin composition pre-expanded particles, when using a volatile blowing agent such as a halogenated hydrocarbon, a lower aliphatic hydrocarbon, carbon dioxide, nitrogen, air as a blowing agent, The diameter of the fine bubbles in the surface layer portion of the pre-expanded particles exceeds 50 μm, or the number of fine bubbles of 0.5 μm or more and 50 μm or less is 300
Either less than less than one piece is generated, and little or no microbubbles are seen in the surface layer of the pre-expanded polyolefin resin particles.

【0070】一方、通常の揮発性発泡剤と比べて極端に
沸点が高く、また蒸発時の潜熱冷却の大きい水を発泡剤
として用いると、発泡途中で粒子が100℃未満になる
と気泡の成長が停止し、予備発泡粒子表層部に微細気泡
が生成すると考えられる。
On the other hand, if water having an extremely high boiling point and a large latent heat cooling during evaporation is used as a foaming agent as compared with a normal volatile foaming agent, the growth of bubbles will occur when the particles become less than 100 ° C. during foaming. It is considered that the suspension stops and fine bubbles are generated on the surface layer of the pre-expanded particles.

【0071】また、前記予備発泡粒子の表層部の微細気
泡は、前記製法によって発泡を行なったのち、空気やチ
ッ素などの気体を発泡粒子内に含有されることにより発
泡能を付与したのち、加熱空気や水蒸気などにより2段
目以降の発泡(多段発泡)を行なっても消滅しない。
The microbubbles in the surface layer portion of the pre-expanded particles are foamed by the above-described method, and then, the foamed particles are provided with a gas such as air or nitrogen to impart foaming ability. It does not disappear even if foaming in the second and subsequent stages (multi-stage foaming) is performed with heated air or steam.

【0072】従来の揮発性発泡剤を用いる方法に比べ、
実質的に水を発泡剤として用いるため、本発明において
は、1段目の発泡法だけでは発泡倍率が比較的出にくい
傾向にあるが、こうした2段目の発泡法を併用すること
により、この欠点を克服することが可能である。前記2
段目以降の発泡についても、従来公知の方法がいずれも
適用可能であるが、多段発泡法を用いるばあいには、え
られる予備発泡粒子の独立気泡率の低下を招かないよう
に、単位セル膜厚さあたりにはたらく同応力の最大値を
ある一定位置以下とするよう、配慮することが好まし
い。
As compared with the conventional method using a volatile foaming agent,
Since water is used substantially as a foaming agent, in the present invention, the expansion ratio tends to be relatively difficult to be obtained only by the first-stage foaming method. The disadvantages can be overcome. 2 above
For foaming after the stage, any of the conventionally known methods can be applied.However, when the multistage foaming method is used, a unit cell is required so as not to lower the closed cell rate of the obtained pre-expanded particles. It is preferable to take care that the maximum value of the same stress acting per film thickness is not more than a certain fixed position.

【0073】本発明におけるポリオレフィン系樹脂粒子
の融点および融解終了温度は、以下のようにして測定さ
れる。すなわち、ポリオレフィン系樹脂粒子(5〜10
mg)の示差走査熱量計測定において、40〜220℃
の間で、10℃/分で昇降温させたのち、10℃/分の
昇温速度で再度昇温を行なった際に現れる最大の吸熱ピ
ークの頂点を融点、同ピークが融点よりも高温側でベー
スラインと一致した点を融解終了温度とする。
The melting point and melting end temperature of the polyolefin resin particles in the present invention are measured as follows. That is, polyolefin resin particles (5 to 10
mg) in the differential scanning calorimeter measurement.
The temperature is raised and lowered at a rate of 10 ° C./min, and then, when the temperature is raised again at a rate of 10 ° C./min, the peak of the maximum endothermic peak that appears is the melting point. The point at which the temperature coincides with the baseline is set as the melting end temperature.

【0074】前記のごとき方法によって予備発泡粒子を
製造するため、示差走査熱量計測定において2つの融点
を示すような結晶構造を有し、高温側融点を示す吸熱ピ
ーク熱量が0.3〜6.0cal/gであり、かつ前記
予備発泡粒子の表層部に直径0.5〜50μmの微細気
泡が1mm2あたり300個以上存在し、かつ中心部の
平均気泡径が100μm以上、1000μm以下という
特徴のある予備発泡粒子がえられる。
In order to produce pre-expanded particles by the above-mentioned method, it has a crystal structure showing two melting points in a differential scanning calorimeter measurement, and has an endothermic peak calorie showing a high-temperature side melting point of 0.3 to 6. 0 cal / g, and at least 300 microbubbles having a diameter of 0.5 to 50 μm are present in the surface layer of the pre-expanded particles per 1 mm 2 , and the average bubble diameter at the center is 100 μm or more and 1000 μm or less. Certain pre-expanded particles are obtained.

【0075】[0075]

【実施例】以下に実施例をあげて、本発明をさらに詳細
に説明するが、本発明はかかる実施例のみに限定される
ものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0076】実施例1 ポリオレフィン系樹脂としてエチレン−プロピレンラン
ダム共重合体(住友化学工業(株)製「ノーブレンFM
321B」:密度0.90g/cm3、融点145℃、
MI=5.5g/10分)98%に対し、エチレン系ア
イオノマー(三井デュポンポリケミカル(株)製「ハイ
ミラン1707」:エチレン−メタクリル酸共重合体の
ナトリウム金属塩、MI=0.9g/10分、融点89
℃)2%を添加したポリマー成分100部(重量部、以
下同様)に対し、無機充填剤としてタルク(平均粒径
0.9μm)1部を添加し、50φ単軸押出機に供給
し、溶融混練したのち、直径1.5mmφの円筒ダイよ
り押し出し、水冷後カッターで切断し、円柱状のポリオ
レフィン系樹脂粒子(1.8mg/粒)をえた。えられ
たポリオレフィン系樹脂粒子の融点は145℃、融解終
了温度161℃、JISK 7112により測定した密
度は0.91g/cm3であった。
Example 1 An ethylene-propylene random copolymer ("Noblen FM" manufactured by Sumitomo Chemical Co., Ltd.) was used as the polyolefin resin.
321B ": density 0.90 g / cm 3 , melting point 145 ° C.
For 98% of MI = 5.5 g / 10 min), an ethylene ionomer (“Himilan 1707” manufactured by Mitsui-DuPont Polychemicals, Ltd.): sodium metal salt of ethylene-methacrylic acid copolymer, MI = 0.9 g / 10 Min, melting point 89
℃) 1 part of talc (average particle size: 0.9 μm) as an inorganic filler was added to 100 parts (parts by weight, hereinafter the same) of a polymer component to which 2% was added, and fed to a 50φ single screw extruder to melt. After kneading, the mixture was extruded from a cylindrical die having a diameter of 1.5 mmφ, cooled with water, and cut with a cutter to obtain columnar polyolefin resin particles (1.8 mg / particle). The melting point of the obtained polyolefin resin particles was 145 ° C., the melting end temperature was 161 ° C., and the density measured by JIS K 7112 was 0.91 g / cm 3 .

【0077】えられたポリオレフィン系樹脂粒子100
部を、水300部、第3リン酸カルシウム1.5部およ
びαオレフィンスルホン酸ソーダ0.04部とともに耐
圧密閉容器に投入したのち、撹拌しながら154.5℃
に加熱した。このときの圧力は約6kg/cm2Gであ
った。そののち、空気加圧により耐圧密閉容器の内圧を
30kg/cm2Gとし、すぐに密閉容器下部のバルブ
を開いて水分散物(樹脂粒子および水系分散媒)を直径
4mmφのオリフィスを通じて大気圧下に放出して独立
気泡構造を有する予備発泡粒子をえた。この際、放出中
は容器内の圧力が低下しないように、空気で圧力を保持
した。
The obtained polyolefin resin particles 100
Parts were placed in a pressure-resistant closed container together with 300 parts of water, 1.5 parts of tribasic calcium phosphate and 0.04 parts of α-olefin sodium sulfonate, and then stirred at 154.5 ° C.
Heated. The pressure at this time was about 6 kg / cm 2 G. After that, the internal pressure of the pressure-resistant closed container was increased to 30 kg / cm 2 G by air pressurization, and the valve at the bottom of the closed container was immediately opened to allow the aqueous dispersion (resin particles and aqueous dispersion medium) to pass through the orifice having a diameter of 4 mmφ under atmospheric pressure. To give pre-expanded particles having a closed cell structure. At this time, the pressure was maintained with air so that the pressure in the container did not decrease during the discharge.

【0078】さらに、該予備発泡粒子を密閉容器内に投
入し、空気加圧にて2.3kg/cm2Gとし、室温で
24時間放置し、予備発泡粒子に発泡能を付与し、内圧
を2.0atm(abs)として、閉鎖しうるが密閉し
えない金型(270×290×60)内に充填し、加熱
蒸気圧3.0kg/cm2Gで成形を行ない、真珠光沢
を有するすぐれた外観美麗なポリオレフィン系樹脂発泡
成形体をえた。
Further, the pre-expanded particles are put into a closed container, and the pressure is adjusted to 2.3 kg / cm 2 G by air pressure, and the mixture is left at room temperature for 24 hours. Filled in a mold (270 × 290 × 60) that can be closed but cannot be sealed as 2.0 atm (abs), molded at a heating vapor pressure of 3.0 kg / cm 2 G, and has excellent pearl luster A polyolefin resin foam molded article with a beautiful appearance was obtained.

【0079】えられた予備発泡粒子および発泡成形体の
物性、成形性を下記方法により評価した。結果を表1に
示す。
The physical properties and moldability of the obtained pre-expanded particles and expanded molded article were evaluated by the following methods. Table 1 shows the results.

【0080】(予備発泡粒子の発泡倍率)予備発泡粒子
3〜10g程度をとり、60℃で6時間乾燥したのち重
量wを測定後、水没法にて体積vを測定し、予備発泡粒
子の真比重ρb=w/vを求め、原料樹脂粒子の密度ρ
rとの比から発泡倍率K=ρr/ρbを求めた。
(Expansion ratio of pre-expanded particles) About 3 to 10 g of pre-expanded particles were dried at 60 ° C. for 6 hours, and after measuring the weight w, the volume v was measured by a submerged method. The specific gravity ρb = w / v is determined, and the density ρ of the raw resin particles is determined.
The expansion ratio K = ρr / ρb was determined from the ratio to r.

【0081】(連泡率)空気比較式比重計(東京サイエ
ンス(株)製、1000型)を用い、えられた予備発泡
粒子の独立気泡体積を求め、これを別途水没法により求
めた見かけの体積で除してえられた独立気泡率(%)
を、100から引くことにより求めた。
(Open cell ratio) The closed cell volume of the obtained pre-expanded particles was determined using an air-comparison type hydrometer (manufactured by Tokyo Science Co., Ltd., type 1000), and the apparent closed cell volume was separately determined by a submerged method. Closed cell rate (%) obtained by dividing by volume
Was determined by subtracting from 100.

【0082】(融点の数および高温側の吸熱量)充分に
乾燥させた予備発泡粒子5〜10mgを精秤後、示差走
査熱量計(セイコー電子工業(株)製SSC5500)
に供給し、40℃から220℃まで、昇温速度10℃/
分の測定条件で測定を行ない、現れる吸熱ピークの数を
融点の数とした。また、いずれのばあいも融点は2つ現
れたので、そのうちの高温側の吸熱ピークの熱量を測定
し(図1)、高温側の吸熱量QHとした。
(Number of Melting Points and Heat Absorption on High Temperature Side) After thoroughly weighing 5 to 10 mg of sufficiently dried pre-expanded particles, a differential scanning calorimeter (SSC5500 manufactured by Seiko Instruments Inc.)
To a temperature of 40 ° C. to 220 ° C. at a rate of 10 ° C. /
The measurement was carried out under the measurement conditions for minutes, and the number of endothermic peaks that appeared was defined as the number of melting points. In each case, two melting points appeared, so the calorific value of the endothermic peak on the high temperature side was measured (FIG. 1), and the measured value was defined as the high-temperature endothermic amount QH.

【0083】(予備発泡粒子の表層部微細気泡径および
数)予備発泡粒子5個を任意に取り出し、光学顕微鏡を
用いて表層部の拡大顕微鏡写真(×1000倍)をそれ
ぞれ2枚撮影した。えられた10枚の顕微鏡写真上にそ
れぞれ一辺100μmに相当する正方形を描き、その中
に少なくとも一部が含まれる気泡全ての断面積を求め、
これを円と仮定した際に面積同等となるような相当径を
求め、表層微細気泡径とした。また、該表層微細気泡径
が0.5μm以上、50μm以下であるような表層微細
気泡の数を測定し、その合計数を求め(10枚総計で
0.1mm2)、これを10倍することにより、1mm2
あたりの微細気泡数を算出した。
(Fine Cell Size and Number of Surface Layer Part of Pre-expanded Particles) Five pre-expanded particles were arbitrarily taken out, and two enlarged microphotographs (× 1000) of the surface layer part were taken using an optical microscope. Draw a square corresponding to 100 μm on each side on the obtained 10 micrographs, and calculate the cross-sectional area of all the bubbles including at least a part thereof,
When this was assumed to be a circle, an equivalent diameter that would have the same area was obtained, and the diameter was defined as the surface fine bubble diameter. In addition, the number of surface fine bubbles having a surface layer fine bubble diameter of 0.5 μm or more and 50 μm or less is measured, the total number thereof is determined (a total of 10 sheets of 0.1 mm 2 ), and this is multiplied by 10. 1 mm 2
The number of fine bubbles per unit was calculated.

【0084】(予備発泡粒子の中心部平均気泡径)予備
発泡粒子をナイフで切断した断面の光学顕微鏡による拡
大顕微鏡写真(×50倍)において、表層部を除く部分
に1mmに相当する線分を引き、該線分が通る気泡数を
求めたのち、ASTM D3576記載の手順にもとづ
いて求めた。
(Average cell diameter at the center of the pre-expanded particles) In a magnified micrograph (× 50) of a cross section of the pre-expanded particles cut with a knife, a line segment corresponding to 1 mm was formed at a portion excluding the surface layer portion. After the number of bubbles passing through the line segment was determined, the number was determined based on the procedure described in ASTM D3576.

【0085】(発泡成形体融着率)発泡成形体の表面に
ナイフで約5mmの深さのクラックを入れたのち、この
クラックに沿って成形体を割り、破断面を観察し、粒子
の全個数に対する破壊粒子数の割合を求め、発泡成形体
融着率とした。
(Fused ratio of foam molded article) A crack having a depth of about 5 mm was formed on the surface of the foam molded article with a knife, the molded article was split along the crack, the fracture surface was observed, and the total particle size was observed. The ratio of the number of broken particles to the number was determined and defined as the fusion ratio of the foamed molded product.

【0086】(ポリオレフィン系樹脂発泡成形体の融点
の数)成形体中の表層部を含まないように、重さ5〜1
0mgの試料を採取したほかは予備発泡粒子の融点の数
を求めたのと同様の方法で融点の数を求めた。
(Number of Melting Points of Polyolefin Resin Foam Molded Article) A weight of 5 to 1 was set so as not to include the surface layer portion in the molded article.
The number of melting points was determined in the same manner as the number of melting points of the pre-expanded particles except that a sample of 0 mg was collected.

【0087】(発泡成形体密度)成形後80℃×48時
間乾燥した発泡成形体の重量wを測定後、水没法により
体積vを求め、密度ρ=w/vを求めた。
(Density of foamed molded article) After the molded article was dried at 80 ° C. for 48 hours and then measured for weight w, the volume v was determined by the submerged method, and the density ρ = w / v was determined.

【0088】(表層部密度)発泡成形体の表面(6面)
を含む厚さ5mmの測定用サンプルを採取し(計6
枚)、重量wを測定後、水没法により体積vを求め、密
度w/vを算出した。
(Surface Layer Density) Surface (6 faces) of foamed molded article
5 mm thick measurement sample containing
After measuring the weight w, the volume v was determined by the submergence method, and the density w / v was calculated.

【0089】(中心部密度)表層部密度測定用サンプル
採取後の発泡成形体の残りの部分の重量wを測定後、水
没法により体積vを求め、密度w/vを算出した。
(Central Density) After measuring the weight w of the remaining portion of the foamed molded product after collecting the surface layer density measurement sample, the volume v was determined by the submerged method, and the density w / v was calculated.

【0090】(密度表芯比)(中心部密度)/(表層部
密度)より算出した。
It was calculated from (density surface-to-core ratio) (center density) / (surface layer density).

【0091】(ポリオレフィン系樹脂発泡成形体の表層
部微細気泡径および数)直方体形状の成形体の表層部を
含む厚さ5mm×100mm×100mmの試料を5枚
採取したほかは、予備発泡粒子の表層部微細気泡径およ
び数を求めたのと同様の方法で該成形体の表層部微細気
泡径および数を求めた。
(Fine cell diameter and number of surface layer portion of polyolefin resin foam molded article) Five samples of 5 mm x 100 mm x 100 mm including the surface layer of the rectangular parallelepiped molded article were collected, and the pre-expanded particles were The surface layer microbubble diameter and number of the molded article were determined in the same manner as the surface layer microbubble diameter and number were determined.

【0092】(スキン付強度測定)発泡成形体の表面
(50×50mm)を含み、厚さ25mmの直方体形状
の測定用試験片を採取し(n=5)、23℃、50%R
Hの標準状態に一週間放置後、重量wおよび3次元の寸
法を測定し、体積および試験片密度を求めたのち、同標
準状態において、試験速度10mm/minにて圧縮強
度試験を実施し、厚さ(25mm)方向に対する5%歪
み時および50%歪み時の圧縮応力[kg/cm2]を求
め、5点の測定値を平均した。ここで、測定後、各試験
における歪み−応力曲線を検討した結果、5%歪み時は
いずれも塑性変形範囲内であることを確認した。その
後、(50%歪み時圧縮応力)/(5%歪み時圧縮応
力)から、強度向上率を測定した。
(Measurement of strength with skin) A rectangular parallelepiped measurement test piece having a thickness of 25 mm including the surface (50 × 50 mm) of the foamed molded product was taken (n = 5), and was subjected to 23 ° C. and 50% R.
After being left in the standard state of H for one week, the weight w and the three-dimensional dimensions were measured, the volume and the test piece density were determined, and then, in the same standard state, a compression strength test was performed at a test speed of 10 mm / min. The compressive stress [kg / cm 2 ] at the time of 5% strain and 50% strain in the thickness (25 mm) direction was determined, and the measured values at five points were averaged. Here, after the measurement, as a result of examining the strain-stress curves in each test, it was confirmed that all of them were within the range of plastic deformation at the time of 5% strain. Thereafter, the strength improvement ratio was measured from (compression stress at 50% strain) / (compression stress at 5% strain).

【0093】(スキンなし強度測定)発泡成形体の表面
を含まないように、50×50×25mmの直方体形状
の測定用試験片を採取し(n=5)、前記スキン付強度
測定と同様に圧縮強度試験を実施した。ただし、圧縮応
力は50%歪み時のみを求め、5点の測定値を平均し、
圧縮強度とした。
(Measurement of Strength without Skin) A rectangular parallelepiped measuring test piece of 50 × 50 × 25 mm was taken so as not to include the surface of the foamed molded article (n = 5), and the same as in the above-mentioned strength measurement with skin. A compressive strength test was performed. However, the compressive stress was obtained only at the time of 50% strain, and the measured values at five points were averaged.
The compressive strength was used.

【0094】実施例2 予備発泡粒子製造時の発泡圧力を15kg/cm2Gと
した以外は、実施例1と同様にしてポリオレフィン系樹
脂予備発泡粒子および真珠光沢を有するすぐれた外観美
麗な発泡成形体をえた。えられた予備発泡粒子および発
泡成形体の物性、成形性を表1に示す。
Example 2 Except that the foaming pressure during the production of the pre-expanded particles was changed to 15 kg / cm 2 G, the pre-expanded polyolefin-based resin particles and foam molding having excellent pearly luster were obtained in the same manner as in Example 1. I got a body. Table 1 shows the physical properties and moldability of the obtained pre-expanded particles and expanded molded article.

【0095】比較例1 ポリオレフィン系樹脂として、実施例1と同様のエチレ
ン−プロピレンランダム共重合体100部に対し、タル
ク0.01部を添加し、実施例1と同様にしてポリオレ
フィン系樹脂粒子(1.8mg/粒)をえた(融点14
5℃、融解終了温度161℃、密度0.90)。
Comparative Example 1 As a polyolefin resin, 0.01 part of talc was added to 100 parts of the same ethylene-propylene random copolymer as in Example 1, and polyolefin resin particles ( (1.8 mg / particle) (melting point: 14)
5 ° C., melting end temperature 161 ° C., density 0.90).

【0096】該ポリオレフィン系樹脂粒子100部を、
水300部、第3リン酸カルシウム1.5部およびαオ
レフィンスルホン酸ソーダ0.04部とともに耐圧密閉
容器内に投入し、揮発性発泡剤としてイソブタンを用
い、144.5℃、19.5kg/cm2Gで発泡さ
せ、予備発泡粒子をえた。また、該予備発泡粒子を実施
例1と同様の条件にて成形、発泡成形体をえた。えられ
た予備発泡粒子および発泡成形体の物性および成形性を
表1に示す。
100 parts of the polyolefin resin particles are
300 parts of water, 1.5 parts of tribasic calcium phosphate and 0.04 parts of α-olefin sodium sulfonate were put into a pressure-tight container, and isobutane was used as a volatile blowing agent at 144.5 ° C. and 19.5 kg / cm 2. The mixture was foamed with G to obtain pre-expanded particles. The pre-expanded particles were molded under the same conditions as in Example 1 to obtain an expanded molded article. Table 1 shows the physical properties and moldability of the obtained pre-expanded particles and expanded molded article.

【0097】これを実施例1と比較すると、予備発泡粒
子の表層部に微細気泡が存在しないため、実施例1と同
一条件で成形を行ったばあい(最高金型内面圧同一)、
成形サイクルが長くなり、密度の表芯比が0.8未満と
なるほか、外観も鈍い光沢を有するものであった。この
ため、成形体密度同一のばあい、スキン付試験片を用い
た圧縮強度測定では、弾性領域(5%歪み時)では圧縮
強度はほぼ同等であるが、塑性領域にはいって歪みの増
大に伴う強度向上率(=(50%歪み時圧縮応力)/
(5%歪み時圧縮応力))が小さく、50%歪み時の圧
縮応力が低下する。また、スキンなし試験片を用いた通
常の圧縮応力測定においては、試験片比重が小さいため
か、さらに強度低下が著しくなっており、本発明におけ
る成形体および成形体の製造方法の有効性が確認され
る。
When this is compared with Example 1, fine bubbles are not present in the surface layer of the pre-expanded particles. Therefore, when molding is performed under the same conditions as in Example 1 (the same inner surface pressure of the mold),
The molding cycle was prolonged, the surface-to-core ratio of the density was less than 0.8, and the appearance had a dull luster. Therefore, when the compact density is the same, the compressive strength in the elastic region (at 5% strain) is almost the same in the compressive strength measurement using the test piece with the skin, but the compressive strength is increased in the plastic region. Accompanying strength improvement rate (= (compression stress at 50% strain) /
(5% strain compressive stress)), and the compressive stress at 50% strain decreases. In addition, in the normal measurement of compressive stress using a test piece without skin, the strength of the test piece was significantly reduced, probably due to the small specific gravity of the test piece, and the effectiveness of the molded article and the method for producing the molded article in the present invention was confirmed. Is done.

【0098】比較例2 発泡温度を141.0℃、発泡圧力を19.8kg/c
2Gとした以外は、比較例1と同様にして、ポリオレ
フィン系樹脂予備発泡粒子をえた。また、加熱蒸気圧を
2.2kg/cm2Gとした以外は比較例1と同様にし
てポリオレフィン系樹脂発泡成形体をえた。結果を表1
に示す。予備発泡粒子の高温側吸熱量を6.2cal/
gと大きくするとともに、成形時の加熱蒸気圧を2.2
kg/cm2Gと下げたところ、予備発泡粒子の2次発
泡性が低下し、成形体の密度の表芯比は0.83となっ
たが、融着率は0%となり、発泡成形体の破断面を指で
こすると発泡粒子が剥離欠落し、満足な発泡成形体はえ
られなかった。
Comparative Example 2 The foaming temperature was 141.0 ° C. and the foaming pressure was 19.8 kg / c.
Pre-expanded polyolefin resin particles were obtained in the same manner as in Comparative Example 1 except that m 2 G was used. Also, a polyolefin-based resin foam molded article was obtained in the same manner as in Comparative Example 1 except that the heating steam pressure was 2.2 kg / cm 2 G. Table 1 shows the results
Shown in The high-temperature endotherm of the pre-expanded particles is 6.2 cal /
g, and the heating steam pressure during molding is 2.2.
When reduced to kg / cm 2 G, the secondary expandability of the pre-expanded particles was reduced, and the surface-to-core ratio of the density of the molded article was 0.83, but the fusion ratio was 0%, By rubbing the fracture surface with a finger, the foamed particles were peeled off and missing, and a satisfactory foamed molded article was not obtained.

【0099】[0099]

【表1】 [Table 1]

【0100】[0100]

【発明の効果】本発明でえられたポリオレフィン系樹脂
の型内発泡成形体は表層部と中心部との密度の差が小さ
く、融着率、機械的強度、外観などの特性にすぐれたポ
リオレフィン系樹脂発泡成形体であり、これらは断熱
材、緩衝包装材、通函、車のバンパー用芯材、パレット
材などに好適である。また本発明の製法はこのようなポ
リオレフィン系樹脂の型内発泡成形体を容易に与えるこ
とができる。
The in-mold foam molded article of the polyolefin resin obtained according to the present invention has a small difference in density between the surface layer and the central part, and is excellent in properties such as fusion rate, mechanical strength and appearance. These are resin-based foamed moldings, which are suitable for heat insulating materials, cushioning and packaging materials, mail boxes, core materials for car bumpers, pallet materials, and the like. Further, the production method of the present invention can easily provide such an in-mold foam molded article of a polyolefin resin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で融点の数および吸熱量を求め
るために測定した示差走査熱量計のDSC曲線である。
FIG. 1 is a DSC curve of a differential scanning calorimeter measured to determine the number of melting points and the amount of endotherm in Examples of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系樹脂予備発泡粒子を型
内成形してえられる融着率が50%以上の成形体であっ
て、示差走査熱量計測定により2つの融点を示すような
結晶構造を有し、かつ前記成形体の表層部密度に対する
中心部密度の比が0.8以上、1.0以下であることを
特徴とするポリオレフィン系樹脂発泡成形体。
1. A molded article having a fusion rate of 50% or more obtained by molding in-mold polyolefin-based resin pre-expanded particles, and having a crystal structure showing two melting points as measured by a differential scanning calorimeter. And a ratio of the density of the center portion to the density of the surface layer portion of the molded product is 0.8 or more and 1.0 or less.
【請求項2】 表層部に直径0.5〜50μmの微細気
泡が1mm2あたり300個以上存在する請求項1記載
のポリオレフィン系樹脂発泡成形体。
2. The polyolefin resin foam according to claim 1, wherein at least 300 microbubbles having a diameter of 0.5 to 50 μm are present in the surface layer per 1 mm 2 .
【請求項3】 密度が45〜200g/Lである請求項
1または2記載のポリオレフィン系樹脂発泡成形体。
3. The polyolefin resin foam according to claim 1, having a density of 45 to 200 g / L.
【請求項4】 ポリオレフィン系樹脂がポリプロピレン
系樹脂である請求項1、2または3記載のポリオレフィ
ン系樹脂発泡成形体。
4. The polyolefin resin foam according to claim 1, wherein the polyolefin resin is a polypropylene resin.
【請求項5】 ポリオレフィン系樹脂予備発泡粒子を閉
鎖しうるが密閉しえない金型内に充填し、加熱融着さ
せ、型通りのポリオレフィン系樹脂発泡成形体を製造す
る方法であって、前記予備発泡粒子が示差走査熱量計測
定において2つの融点を示すような結晶構造を有し、高
温側融点の吸熱ピーク熱量が0.3〜6.0cal/g
であり、かつ前記予備発泡粒子の表層部に直径0.5〜
50μmの微細気泡が1mm2あたり300個以上存在
し、かつ中心部の平均気泡径が100μm以上、100
0μm以下であることを特徴とするポリオレフィン系樹
脂発泡成形体の製法。
5. A method for producing a polyolefin resin foam molded article according to claim 1, wherein the polyolefin resin pre-expanded particles are filled in a mold that can be closed but cannot be sealed, and heat-fused. The pre-expanded particles have a crystal structure showing two melting points in a differential scanning calorimeter measurement, and have an endothermic peak calorie at a high-temperature side melting point of 0.3 to 6.0 cal / g.
And the surface layer portion of the pre-expanded particles has a diameter of 0.5 to
There are 300 or more microbubbles of 50 μm per 1 mm 2 , and the average bubble diameter at the center is 100 μm or more,
A method for producing a polyolefin-based resin foam molded article, which is not more than 0 μm.
【請求項6】 加熱融着が水蒸気による加熱融着である
請求項5記載の製法。
6. The method according to claim 5, wherein the heat fusion is heat fusion with steam.
JP17727297A 1997-07-02 1997-07-02 Foamed polyolefinic resin molding and its preparation Pending JPH1121368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17727297A JPH1121368A (en) 1997-07-02 1997-07-02 Foamed polyolefinic resin molding and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17727297A JPH1121368A (en) 1997-07-02 1997-07-02 Foamed polyolefinic resin molding and its preparation

Publications (1)

Publication Number Publication Date
JPH1121368A true JPH1121368A (en) 1999-01-26

Family

ID=16028162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17727297A Pending JPH1121368A (en) 1997-07-02 1997-07-02 Foamed polyolefinic resin molding and its preparation

Country Status (1)

Country Link
JP (1) JPH1121368A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295179A (en) * 2001-03-30 2002-10-09 Kurimoto Ltd Earthquake resisting pipe jacking method, pipe joint for use in earthquake resisting pipe jacking method, and water-soluble polymer
JP2003039512A (en) * 2001-08-01 2003-02-13 Sumitomo Chem Co Ltd Thermoplastic resin foamed molded object
JP2011137172A (en) * 2011-03-07 2011-07-14 Kaneka Corp Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof
CN105694170A (en) * 2016-04-26 2016-06-22 国网山东省电力公司莒南县供电公司 Electric power engineering construction tool box and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295179A (en) * 2001-03-30 2002-10-09 Kurimoto Ltd Earthquake resisting pipe jacking method, pipe joint for use in earthquake resisting pipe jacking method, and water-soluble polymer
JP2003039512A (en) * 2001-08-01 2003-02-13 Sumitomo Chem Co Ltd Thermoplastic resin foamed molded object
JP2011137172A (en) * 2011-03-07 2011-07-14 Kaneka Corp Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof
CN105694170A (en) * 2016-04-26 2016-06-22 国网山东省电力公司莒南县供电公司 Electric power engineering construction tool box and preparation method thereof

Similar Documents

Publication Publication Date Title
US6723793B2 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
EP0934974B1 (en) Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JP2004068016A (en) Method for manufacturing foamed polypropylene resin particle, and formed polypropylene resin particle
JP2001131327A (en) Molded foam of polypropylene resin composition
ES2295337T3 (en) MIXTURES OF ETHYLENE POLYMERS WITH IMPROVED MODULE AND RESISTANCE OF THE CAST AND ARTICLES MANUFACTURED FROM THESE MIXTURES.
EP0256489B2 (en) Process for preparing pre-expanded particles of thermoplastic resin
JPH1121368A (en) Foamed polyolefinic resin molding and its preparation
JP3558503B2 (en) In-mold molding method for polyolefin resin pre-expanded particles
EP1016690B1 (en) Water-containing polypropylene resin composition and pre-expanded particles made thereof
JP2000095891A (en) Production of pre-expanded particle of polyolefin-based resin composition
JPS6259642A (en) Pre-expanded particle of modified polyethylene resin and production thereof
JPH11106547A (en) Preliminary foaming particulate of polyolefin-based resin composition
JP3641098B2 (en) Polyolefin resin composition pre-expanded particles, process for producing the same, and molded article comprising the pre-expanded particles
JPH11100468A (en) Hydrous polyolefin-based resin composition and pre-expanded particle comprising the same
JPH10176077A (en) Polyolefin-based resin preexpanded particle and its production
JP4283822B2 (en) Manufacturing method of core material for automobile bumper
JP3618525B2 (en) Pre-expanded particles comprising a polypropylene resin composition and process for producing the same
JP5252957B2 (en) Polypropylene resin pre-expanded particles and in-mold molded body comprising the same
JPH11100458A (en) Foamed molding product of polyolefinic composition
JPH05179049A (en) Polypropylene-based resin foam particle and its molding
JP3126449B2 (en) Polyolefin resin foam particles
JP2001329121A (en) Water-containing polyolefin-based resin composition and pre-expanded particle consisting of the same
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JPH1045939A (en) Molded polypropylene resin foam
JP3149152B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same