JPH11211650A - Particle passage position detection device - Google Patents

Particle passage position detection device

Info

Publication number
JPH11211650A
JPH11211650A JP10012245A JP1224598A JPH11211650A JP H11211650 A JPH11211650 A JP H11211650A JP 10012245 A JP10012245 A JP 10012245A JP 1224598 A JP1224598 A JP 1224598A JP H11211650 A JPH11211650 A JP H11211650A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light
conversion element
conversion elements
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10012245A
Other languages
Japanese (ja)
Other versions
JP3480669B2 (en
Inventor
Tomonobu Matsuda
朋信 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP01224598A priority Critical patent/JP3480669B2/en
Publication of JPH11211650A publication Critical patent/JPH11211650A/en
Application granted granted Critical
Publication of JP3480669B2 publication Critical patent/JP3480669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the scattering light intensity of a particle from differing even if the particle diameter or the like of the particle is the same depending on the passage position of the particle at a measurement region where laser beams are applied. SOLUTION: A detection device is provided with a flow cell 1 that is formed by a transparent member so that it is flexed, a laser light source 2 for forming a measurement region M by applying laser beams La to a straight line channel 1a of the flow cell 1, a condensation optical system 3 that has a light axis being matched to the center axis of the straight line channel 1a and condenses scattered light Ls of a particle being generated by the measurement region M, a light detection means 4 consisting of three optoelectric conversion elements 4a, 4b, and 4c for receiving the scattered light Ls being condensed by the condensation optical system 3, peak value detection means 6a, 6b, and 6c for detecting peak values Ea, Eb, and Ec of the output voltage of the three optoelectric conversion elements 4a, 4b, and 4c, and a position detection means 7 for comparing the output voltages Ea, Eb, and Ec of the peak value detection means and outputting the passage position information of the measurement region M where the particle passed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒子の通過位置を
検出する装置であって、例えば流路を通過する粒子の個
数を粒径を弁別してカウントする粒子計数装置に適用す
る粒子通過位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a passing position of particles, for example, a particle passing position detecting apparatus applied to a particle counting device for counting the number of particles passing through a channel by discriminating the particle size. Related to the device.

【0002】[0002]

【従来の技術】従来の粒子計数装置としては、図18に
示すように、レーザ光Laをフローセル100の内部流
路に照射し、この内部流路を粒子が通過する際に、粒子
が放出する散乱光Lsを集光光学系101によって光電
変換素子102に集光させ、光電変換素子102の出力
信号に基づき、比較回路103及びパルス計数回路10
4により、内部流路を通過する粒子の個数を粒径を弁別
して計数する光散乱式粒子計数装置が知られている。
2. Description of the Related Art As a conventional particle counting apparatus, as shown in FIG. 18, a laser beam La is applied to an internal flow path of a flow cell 100, and the particles are emitted when the particles pass through the internal flow path. The scattered light Ls is condensed on the photoelectric conversion element 102 by the condensing optical system 101, and based on the output signal of the photoelectric conversion element 102, the comparison circuit 103 and the pulse counting circuit 10
No. 4, there is known a light scattering type particle counting device which counts the number of particles passing through an internal flow path by discriminating the particle diameter.

【0003】光電変換素子102は、粒子が内部流路を
通過すると、粒子が放出する散乱光Lsに応じたパルス
状の電圧を出力する。このパルス状の電圧の波高値は、
粒子の粒径によって変化する。比較回路103は、光電
変換素子102の出力電圧を所定値と比較し、光電変換
素子102の出力電圧が所定値より大きいとき、所定の
粒径よりも大きいとしてパルス信号を出力する。このパ
ルス信号をパルス計数回路104により計数して、粒子
の個数を検出する。
[0003] When particles pass through the internal flow path, the photoelectric conversion element 102 outputs a pulse-like voltage corresponding to the scattered light Ls emitted by the particles. The peak value of this pulsed voltage is
It depends on the particle size. The comparison circuit 103 compares the output voltage of the photoelectric conversion element 102 with a predetermined value, and when the output voltage of the photoelectric conversion element 102 is larger than the predetermined value, outputs a pulse signal that the output voltage is larger than a predetermined particle size. The pulse signal is counted by the pulse counting circuit 104 to detect the number of particles.

【0004】[0004]

【発明が解決しようとする課題】しかし、図18に示す
光散乱式粒子計数装置においては、レーザ光Laを照射
した内部流路のレーザ光強度が一定でない場合、粒径の
弁別を誤って計数するという問題がある。内部流路のレ
ーザ光強度は、一般にレーザ光束の中心部が最も高く、
中心部からずれて端部に行くほど低くなるという分布
(ほぼガウス分布)を示す場合が多い。
However, in the light scattering type particle counting apparatus shown in FIG. 18, when the laser light intensity of the internal flow path irradiated with the laser light La is not constant, the discrimination of the particle diameter is erroneously counted. There is a problem of doing. The laser beam intensity of the internal flow path is generally highest in the center of the laser beam,
In many cases, the distribution becomes lower (approximately Gaussian distribution) as the distance from the center to the end is lower.

【0005】従って、粒子の粒径及び光学的性質は同じ
であっても、レーザ光束の端部を通過するときと、中心
部を通過するときとでは、粒子の散乱光Lsの強度が異
なり、光電変換素子102の出力電圧が異なる。そのた
め、比較回路103の出力信号も異なり、パルス計数回
路104が粒子を計数する場合としない場合がある。
Therefore, even if the particles have the same particle size and optical properties, the intensity of the scattered light Ls of the particles differs between passing through the end of the laser beam and passing through the center thereof. The output voltage of the photoelectric conversion element 102 is different. Therefore, the output signal of the comparison circuit 103 is different, and the pulse counting circuit 104 may or may not count particles.

【0006】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、粒子の通過位置が分かれば、従来の問題点が解
決される点に着目して、粒子が通過した流路の位置を検
出することができる粒子通過位置検出装置を提供しよう
とするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to solve the conventional problems if the passing position of the particles is known. The present invention aims to provide a particle passage position detecting device capable of detecting the position of a flow path through which particles pass by paying attention to.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、透明部材で屈曲形状に形成したフ
ローセルと、このフローセルの流路にレーザ光を照射し
て測定領域を形成するレーザ光源と、前記流路の中心軸
と一致する光軸を有して前記測定領域で発生する粒子の
散乱光を集光する集光手段と、この集光手段が集光した
散乱光を受光する複数の光電変換素子から成る光検出手
段と、前記複数の光電変換素子の出力信号を検出する電
圧検出手段と、この電圧検出手段の出力信号を互いに比
較して粒子が通過した前記測定領域の通過位置情報を出
力する位置検出手段を備えるものである。
According to a first aspect of the present invention, there is provided a flow cell having a bent shape formed of a transparent member, and a flow path of the flow cell is irradiated with laser light to form a measurement area. A laser light source, a condensing unit having an optical axis coinciding with the center axis of the flow path, and condensing scattered light of particles generated in the measurement region, and a scattered light collected by the condensing unit. A light detecting means comprising a plurality of photoelectric conversion elements for receiving light; a voltage detecting means for detecting output signals of the plurality of photoelectric conversion elements; an output signal of the voltage detecting means; Is provided with position detecting means for outputting the passing position information.

【0008】請求項2に係る発明は、請求項1記載の粒
子通過位置検出装置において、前記複数の光電変換素子
から成る光検出手段は、各受光面が流路の中心軸に垂直
で、且つ流路の中心軸とレーザ光軸にほぼ垂直な方向に
隣接して設けたN(Nは2以上の整数)個の光電変換素
子から成る光電変換素子アレイである。
According to a second aspect of the present invention, in the particle passing position detecting device according to the first aspect, the light detecting means comprising the plurality of photoelectric conversion elements is arranged such that each light receiving surface is perpendicular to the center axis of the flow path, and This is a photoelectric conversion element array including N (N is an integer of 2 or more) photoelectric conversion elements provided adjacent to a center axis of the flow path and a direction substantially perpendicular to the laser optical axis.

【0009】請求項3に係る発明は、請求項1記載の粒
子通過位置検出装置において、前記複数の光電変換素子
から成る光検出手段は、縦と横がV個×H個(V、Hと
も2以上の整数)の光電変換素子から成り、各受光面が
流路の中心軸に垂直である。
According to a third aspect of the present invention, in the particle passing position detecting apparatus according to the first aspect, the light detecting means comprising the plurality of photoelectric conversion elements has V × H (vertical and horizontal) (both V and H). (An integer of 2 or more) photoelectric conversion elements, and each light receiving surface is perpendicular to the center axis of the flow path.

【0010】請求項4に係る発明は、透明部材で形成し
たフローセルと、このフローセルの流路にレーザ光を照
射して測定領域を形成するレーザ光源と、前記レーザ光
の中心軸と一致する光軸を有して前記測定領域で発生す
る粒子の散乱光を集光する集光手段と、この集光手段の
光軸上に位置するトラップと、前記集光手段が集光した
散乱光を受光する複数の光電変換素子から成る光検出手
段と、前記複数の光電変換素子の出力信号を検出する電
圧検出手段と、この電圧検出手段の出力信号を互いに比
較して粒子が通過した前記測定領域の通過位置情報を出
力する位置検出手段を備えるものである。
According to a fourth aspect of the present invention, there is provided a flow cell formed of a transparent member, a laser light source for irradiating a flow path of the flow cell with laser light to form a measurement region, and a light coincident with the central axis of the laser light. A condensing means having an axis for condensing the scattered light of the particles generated in the measurement region, a trap positioned on the optical axis of the condensing means, and receiving the scattered light condensed by the condensing means Light detection means comprising a plurality of photoelectric conversion elements, and voltage detection means for detecting the output signals of the plurality of photoelectric conversion elements, and comparing the output signals of the voltage detection means with each other to detect the measurement area of the measurement area where the particles have passed. It is provided with position detecting means for outputting passage position information.

【0011】請求項5に係る発明は、請求項4記載の粒
子通過位置検出装置において、前記複数の光電変換素子
から成る光検出手段は、各受光面がレーザ光軸に垂直
で、且つ流路の中心軸とレーザ光軸にほぼ垂直な方向に
隣接して設けたN(Nは2以上の整数)個の光電変換素
子で成る光電変換素子アレイである。
According to a fifth aspect of the present invention, in the particle passing position detecting device according to the fourth aspect, the light detecting means comprising the plurality of photoelectric conversion elements is arranged such that each light receiving surface is perpendicular to the laser optical axis, and Is a photoelectric conversion element array composed of N (N is an integer of 2 or more) photoelectric conversion elements provided adjacent to each other in a direction substantially perpendicular to the central axis of the laser beam.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明の第1
の実施の形態に係る粒子通過位置検出装置の構成図、図
2は図1においてレーザ光を照射した測定領域の平断面
図、図3は図1においてレーザ光を照射した測定領域の
縦断面図、図4乃至図8は図1において光電変換素子ア
レイの受光状態(a)とそのときの出力波形(b)を示
す図、図9は粒子情報参照テーブルを示す図、図10は
本発明の第2の実施の形態に係る粒子通過位置検出装置
の構成図、図11は本発明の第3の実施の形態に係る粒
子通過位置検出装置の構成図、図12は図11において
レーザ光を照射した測定領域の縦断面図、図13乃至図
17は図11において光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 shows a first embodiment of the present invention.
FIG. 2 is a plan view of a measurement area irradiated with laser light in FIG. 1, and FIG. 3 is a longitudinal sectional view of a measurement area irradiated with laser light in FIG. 4 to 8 show the light receiving state (a) of the photoelectric conversion element array and the output waveform (b) at that time in FIG. 1, FIG. 9 shows a particle information reference table, and FIG. 10 shows the present invention. FIG. 11 is a configuration diagram of a particle passage position detection device according to a second embodiment, FIG. 11 is a configuration diagram of a particle passage position detection device according to a third embodiment of the present invention, and FIG. FIG. 13 to FIG. 17 are diagrams showing the light receiving state (a) of the photoelectric conversion element array and the output waveform (b) at that time in FIG.

【0013】本発明の第1の実施の形態に係る粒子通過
位置検出装置は、図1に示すように、フローセル1、レ
ーザ光源2、集光光学系3、光電変換素子アレイ4及び
処理装置5から成る。
As shown in FIG. 1, a particle passing position detecting apparatus according to a first embodiment of the present invention comprises a flow cell 1, a laser light source 2, a condensing optical system 3, a photoelectric conversion element array 4, and a processing device 5. Consists of

【0014】フローセル1は、透明部材から成り、所定
長さの直線流路1aを有し、全体として屈曲している。
フローセル1は、断面形状を四角形状とし、全体として
L型筒形状に形成したものである。直線流路1aの中心
軸は、X方向と一致している。
The flow cell 1 is made of a transparent member, has a straight flow path 1a of a predetermined length, and is bent as a whole.
The flow cell 1 has a rectangular cross section and is formed as an L-shaped cylinder as a whole. The center axis of the straight flow path 1a coincides with the X direction.

【0015】所定長さの直線流路1aを設けた理由は、
フローセル1に供試流体を流したとき、供試流体の流れ
を層流にするためである。なお、層流を得るための条件
としては、供試流体の粘度、直線流路の長さ、流路の断
面形状及び流速などが挙げられ、直線流路1aの長さ及
び流路の断面形状については、供試流体の粘度と流速を
勘案して決定している。
The reason for providing the straight flow path 1a having a predetermined length is as follows.
This is because, when the test fluid flows through the flow cell 1, the flow of the test fluid becomes laminar. The conditions for obtaining the laminar flow include the viscosity of the test fluid, the length of the straight flow path, the cross-sectional shape and flow velocity of the flow path, and the like, and the length of the straight flow path 1a and the cross-sectional shape of the flow path. Is determined in consideration of the viscosity and flow rate of the test fluid.

【0016】レーザ光源2は、フローセル1の直線流路
1aの所定箇所にレーザ光Laを照射して照射領域を形
成する。ここで、レーザ光Laの光軸は、Z方向と一致
し、X方向と一致する直線流路1aの中心軸と直交して
いる。
The laser light source 2 irradiates a predetermined portion of the linear flow path 1a of the flow cell 1 with a laser beam La to form an irradiation area. Here, the optical axis of the laser beam La coincides with the Z direction and is orthogonal to the central axis of the straight flow path 1a coincident with the X direction.

【0017】また、図2に示すように、レーザ光Laの
光軸とフローセル1の外壁との成す角を所定角度θに設
定してもよい。これは、レーザ光Laがフローセル1の
外壁に反射して反射光の一部がレーザ光源2に戻るのを
防止するためである。反射光の一部がレーザ光源2に戻
ると、帰還ノイズがレーザ光Laに重畳するので好まし
くないからである。
Further, as shown in FIG. 2, the angle between the optical axis of the laser beam La and the outer wall of the flow cell 1 may be set to a predetermined angle θ. This is to prevent the laser light La from being reflected on the outer wall of the flow cell 1 and part of the reflected light returning to the laser light source 2. This is because, when a part of the reflected light returns to the laser light source 2, the feedback noise is undesirably superimposed on the laser light La.

【0018】なお、レーザ光Laがフローセル1の外壁
で反射しないように、例えばレーザ光Laをフローセル
1の外壁と同じ物質中を通して直線流路1aの所定箇所
に導くことができれば、所定角度θを設定する必要はな
い。
In order to prevent the laser beam La from being reflected by the outer wall of the flow cell 1, for example, if the laser beam La can be guided to a predetermined portion of the linear flow path 1a through the same material as the outer wall of the flow cell 1, the predetermined angle θ is set. No need to set.

【0019】集光光学系3は、フローセル1の直線流路
1aの中心軸と一致する光軸を有し、図2に示す照射領
域内の所定の領域M(以下、測定領域Mと呼ぶ)におい
てレーザ光Laを受けた粒子が発する散乱光Lsを集光
する機能を備える。
The condensing optical system 3 has an optical axis coinciding with the central axis of the straight flow path 1a of the flow cell 1, and has a predetermined area M (hereinafter referred to as a measurement area M) in the irradiation area shown in FIG. Has a function of condensing scattered light Ls emitted from particles that have received the laser light La.

【0020】光電変換素子アレイ4は、3個の光電変換
素子4a,4b,4cから成り、各受光面が流路の中心
軸に垂直で、且つ流路の中心軸(X方向)とレーザ光軸
(Z方向)に垂直なY方向に隣接して設けられている。
光電変換素子4a,4b,4cは、粒子が測定領域Mを
通過する間に発する散乱光Lsを電圧に変換する。
The photoelectric conversion element array 4 includes three photoelectric conversion elements 4a, 4b, and 4c, each light receiving surface being perpendicular to the center axis of the flow path, and the center axis (X direction) of the flow path and the laser light. It is provided adjacent to the Y direction perpendicular to the axis (Z direction).
The photoelectric conversion elements 4a, 4b, and 4c convert scattered light Ls emitted while particles pass through the measurement region M into a voltage.

【0021】なお、レーザ光Laの光軸とフローセル1
の外壁との成す角を、図2に示す所定角度θに設定した
場合には、光電変換素子4a,4b,4cの受光面を、
集光光学系3の光軸に垂直な面に対して所定角度θだけ
傾けてもよい。
The optical axis of the laser beam La and the flow cell 1
When the angle formed by the outer wall of the photoelectric conversion elements 4a, 4b, and 4c is set to a predetermined angle θ shown in FIG.
The light collecting optical system 3 may be inclined by a predetermined angle θ with respect to a plane perpendicular to the optical axis.

【0022】処理装置5は、粒子が測定領域Mを通過す
る間に3個の光電変換素子4a,4b,4cが夫々出力
する電圧のピーク値(パルス高)Ea,Eb,Ecを検
出するピーク値検出手段6a,6b,6cと、粒子情報
参照テーブルを作成する位置検出手段7から成る。
The processing unit 5 detects peak values (pulse heights) Ea, Eb, and Ec of voltages output by the three photoelectric conversion elements 4a, 4b, and 4c while the particles pass through the measurement area M. It comprises value detecting means 6a, 6b, 6c and position detecting means 7 for creating a particle information reference table.

【0023】本発明の第1の実施の形態では、電圧検出
手段として、光電変換素子4a,4b,4cが夫々出力
する電圧のピーク値Ea,Eb,Ecを検出するピーク
値検出手段6a,6b,6cを採用しているが、必ずし
もピーク値でなく、例えば光電変換素子4a,4b,4
cの出力電圧を同一のタイミングで検出し、その出力電
圧を後の演算処理に使用してもよい。また、電圧検出手
段として、光電変換素子4a,4b,4cの出力電圧を
所定時間だけ積分して出力してもよい。
In the first embodiment of the present invention, as voltage detecting means, peak value detecting means 6a, 6b for detecting peak values Ea, Eb, Ec of voltages output from photoelectric conversion elements 4a, 4b, 4c, respectively. , 6c, but not necessarily peak values, for example, photoelectric conversion elements 4a, 4b, 4c.
The output voltage of c may be detected at the same timing, and the output voltage may be used in the subsequent arithmetic processing. Further, as the voltage detecting means, the output voltages of the photoelectric conversion elements 4a, 4b, 4c may be integrated and output for a predetermined time.

【0024】位置検出手段7は、演算部7aと記憶部7
bを備え、先ず演算部7aにおいて、次の(1)と
(2)の演算処理を行い、その結果を記憶部7bに記憶
して、粒子情報参照テーブルを作成する。 (1)ピーク値検出手段6bの出力電圧Ebに対するピ
ーク値検出手段6aの出力電圧Eaの比Ea/Ebを演
算する。 (2)ピーク値検出手段6bの出力電圧Ebに対するピ
ーク値検出手段6cの出力電圧Ecの比Ec/Ebを演
算する。
The position detecting means 7 includes an arithmetic unit 7a and a storage unit 7
b. First, the arithmetic unit 7a performs the following arithmetic processes (1) and (2), stores the result in the storage unit 7b, and creates a particle information reference table. (1) The ratio Ea / Eb of the output voltage Ea of the peak value detecting means 6a to the output voltage Eb of the peak value detecting means 6b is calculated. (2) The ratio Ec / Eb of the output voltage Ec of the peak value detecting means 6c to the output voltage Eb of the peak value detecting means 6b is calculated.

【0025】以上のように構成した本発明の第1の実施
の形態に係る粒子通過位置検出装置の作用について説明
する。予め測定領域Mのレーザ光強度分布を知っておく
必要があるので、測定領域Mのレーザ光強度分布の測定
方法について説明する。
The operation of the particle passing position detecting device according to the first embodiment of the present invention configured as described above will be described. Since it is necessary to know the laser light intensity distribution in the measurement area M in advance, a method for measuring the laser light intensity distribution in the measurement area M will be described.

【0026】図3に示すように、矢印Aの方向から標準
粒子(粒径が同一のもの)を多数含んだ流体をフローセ
ル1に流し込む。このとき、測定領域Mのどの位置を標
準粒子が通過するかによって、光電変換素子アレイ4の
各光電変換素子4a,4b,4cの出力波形は様々なも
のとなる。そして、3個の光電変換素子4a,4b,4
cから成る光電変換素子アレイ4の場合には、主な5通
りの通過パターンが考えられる。
As shown in FIG. 3, a fluid containing a large number of standard particles (having the same particle size) is poured into the flow cell 1 from the direction of arrow A. At this time, the output waveform of each photoelectric conversion element 4a, 4b, 4c of the photoelectric conversion element array 4 varies depending on which position in the measurement area M the standard particle passes. Then, the three photoelectric conversion elements 4a, 4b, 4
In the case of the photoelectric conversion element array 4 made of c, there are five main types of passing patterns.

【0027】先ず、標準粒子が、図3に示す測定領域M
の中心Mcを通過する場合で、標準粒子による散乱光L
sのスポットSは、図4(a)に示すように、光電変換
素子アレイ4の中央の光電変換素子4bのみに現れる。
このとき、各光電変換素子4a,4b,4cの出力波形
(時間tと電圧Eとの関係)は、図4(b)に示すよう
になる。即ち、光電変換素子4bのみが測定領域Mの中
心Mcをある時間の間(時間t1から時間t2)に通過す
る標準粒子の散乱光Lsに応じた略パルス状の電圧(ピ
ーク値Eb)を出力し、他の光電変換素子4a,4cは
ノイズに応じた略レベル電圧(ピーク値Ea,Ec)し
か出力しない。
First, the standard particles are placed in the measurement area M shown in FIG.
, The light scattered by the standard particles L
The spot S of s appears only on the photoelectric conversion element 4b at the center of the photoelectric conversion element array 4, as shown in FIG.
At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 4a, 4b, 4c is as shown in FIG. That is, only the photoelectric conversion element 4b outputs a substantially pulse-like voltage (peak value Eb) corresponding to the scattered light Ls of the standard particles passing through the center Mc of the measurement region M for a certain time (from time t1 to time t2). However, the other photoelectric conversion elements 4a and 4c output only approximately level voltages (peak values Ea and Ec) corresponding to the noise.

【0028】次に、標準粒子が、図3に示す測定領域M
の一端部Msを通過する場合で、標準粒子による散乱光
LsのスポットSは、図5(a)に示すように、光電変
換素子アレイ4の一端の光電変換素子4aのみに現れ
る。このとき、各光電変換素子4a,4b,4cの出力
波形(時間tと電圧Eとの関係)は、図5(b)に示す
ようになる。即ち、光電変換素子4aのみが測定領域M
の一端部Msをある時間の間(時間t3から時間t4)に
通過する標準粒子の散乱光Lsに応じた略パルス状の電
圧(ピーク値Ea)を出力し、他の光電変換素子4b,
4cはノイズに応じた略レベル電圧(ピーク値Eb,E
c)しか出力しない。
Next, the standard particles are measured in the measurement area M shown in FIG.
5A, the spot S of the scattered light Ls by the standard particles appears only on the photoelectric conversion element 4a at one end of the photoelectric conversion element array 4, as shown in FIG. At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 4a, 4b, 4c is as shown in FIG. That is, only the photoelectric conversion element 4a has the measurement area M
And outputs a substantially pulse-like voltage (peak value Ea) corresponding to the scattered light Ls of the standard particles passing for one time Ms from time t3 to time t4.
4c is a substantially level voltage (peak values Eb, Eb) corresponding to the noise.
Output only c).

【0029】同様に、標準粒子が、図3に示す測定領域
Mの他端部Ms(一端部Msと対称)を通過する場合
で、標準粒子による散乱光LsのスポットSは、図6
(a)に示すように、光電変換素子アレイ4の他端の光
電変換素子4cのみに現れる。このとき、各光電変換素
子4a,4b,4cの出力波形(時間tと電圧Eとの関
係)は、図6(b)に示すようになる。即ち、光電変換
素子4cのみが測定領域Mの他端部Msをある時間の間
(時間t3から時間t4)に通過する標準粒子の散乱光L
sに応じた略パルス状の電圧(ピーク値Ec)を出力
し、他の光電変換素子4a,4bはノイズに応じた略レ
ベル電圧(ピーク値Ea,Eb)しか出力しない。
Similarly, when the standard particles pass through the other end Ms (symmetrical to the one end Ms) of the measurement area M shown in FIG. 3, the spot S of the scattered light Ls by the standard particles is shown in FIG.
As shown in (a), it appears only in the photoelectric conversion element 4c at the other end of the photoelectric conversion element array 4. At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 4a, 4b, 4c is as shown in FIG. That is, only the photoelectric conversion element 4c passes through the other end portion Ms of the measurement area M for a certain period of time (from time t3 to time t4).
A substantially pulse-shaped voltage (peak value Ec) corresponding to s is output, and the other photoelectric conversion elements 4a and 4b output only a substantially level voltage (peak values Ea and Eb) corresponding to noise.

【0030】更に、標準粒子が、図3に示す測定領域M
の一経路Mmを通過する場合で、標準粒子による散乱光
LsのスポットSは、図7(a)に示すように、光電変
換素子4aと光電変換素子4bの境界にまたがって現れ
る。このとき、各光電変換素子4a,4b,4cの出力
波形(時間tと電圧Eとの関係)は、図7(b)に示す
ようになる。即ち、光電変換素子4a,4bが測定領域
Mの一経路Mmをある時間の間(時間t5から時間t6)
に通過する標準粒子の散乱光Lsに応じた略パルス状の
電圧(ピーク値Ea,Eb)を出力し、光電変換素子4
cはノイズに応じた略レベル電圧(ピーク値Ec)しか
出力しない。
Further, when the standard particles are in the measurement area M shown in FIG.
7, the spot S of the scattered light Ls due to the standard particles appears over the boundary between the photoelectric conversion element 4a and the photoelectric conversion element 4b as shown in FIG. 7A. At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 4a, 4b, 4c is as shown in FIG. 7B. That is, the photoelectric conversion elements 4a and 4b move along one path Mm of the measurement area M for a certain period of time (from time t5 to time t6).
And outputs substantially pulse-like voltages (peak values Ea and Eb) corresponding to the scattered light Ls of the standard particles passing through the photoelectric conversion element 4.
c outputs only a substantially level voltage (peak value Ec) corresponding to the noise.

【0031】同様に、標準粒子が、図3に示す測定領域
Mの他経路Mm(一経路Mmと対称)を通過する場合
で、標準粒子による散乱光LsのスポットSは、図8
(a)に示すように、光電変換素子4bと光電変換素子
4cの境界にまたがって現れる。このとき、各光電変換
素子4a,4b,4cの出力波形(時間tと電圧Eとの
関係)は、図8(b)に示すようになる。即ち、光電変
換素子4b,4cが測定領域Mの他経路Mmをある時間
の間(時間t5から時間t6)に通過する標準粒子の散乱
光Lsに応じた略パルス状の電圧(ピーク値Eb,E
c)を出力し、光電変換素子4aはノイズに応じた略レ
ベル電圧(ピーク値Ea)しか出力しない。
Similarly, when the standard particles pass through another path Mm of the measurement area M shown in FIG. 3 (symmetric with one path Mm), the spot S of the scattered light Ls by the standard particles is shown in FIG.
As shown in (a), it appears over the boundary between the photoelectric conversion element 4b and the photoelectric conversion element 4c. At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 4a, 4b, 4c is as shown in FIG. That is, a substantially pulse-shaped voltage (peak value Eb, Pb) corresponding to the scattered light Ls of the standard particles that the photoelectric conversion elements 4b, 4c pass through the other path Mm of the measurement area M for a certain period of time (from time t5 to time t6). E
c), and the photoelectric conversion element 4a outputs only a substantially level voltage (peak value Ea) corresponding to the noise.

【0032】そして、位置検出手段7では、図4(a)
に示すように、中央の光電変換素子4bのみにスポット
Sが現れた場合、演算部7aにおいて、光電変換素子4
bのピーク電圧Ebに対する光電変換素子4aのピーク
電圧Eaの比Ea/Ebを演算し、Ea<Ebであるか
ら、比Ea/Ebとしてほぼゼロ(Ea/Eb≒0)の
値を出力し、記憶部7bに記憶する。また、演算部7a
において、光電変換素子4bのピーク電圧Ebに対する
光電変換素子4cのピーク電圧Ecの比Ec/Ebを演
算し、Ec<Ebであるから、比Ec/Ebとしてほぼ
ゼロ(Ec/Eb≒0)の値を出力し、記憶部7bに記
憶する。
Then, in the position detecting means 7, FIG.
When the spot S appears only in the center photoelectric conversion element 4b as shown in FIG.
The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a to the peak voltage Eb of b is calculated, and since Ea <Eb, a value of almost zero (Ea / Eb ≒ 0) is output as the ratio Ea / Eb; It is stored in the storage unit 7b. The operation unit 7a
, The ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c to the peak voltage Eb of the photoelectric conversion element 4b is calculated, and since Ec <Eb, the ratio Ec / Eb is substantially zero (Ec / Eb ≒ 0). The value is output and stored in the storage unit 7b.

【0033】また、位置検出手段7では、図5(a)に
示すように、一端の光電変換素子4aのみにスポットS
が現れた場合、演算部7aにおいて、光電変換素子4b
のピーク電圧Ebに対する光電変換素子4aのピーク電
圧Eaの比Ea/Ebを演算し、Ea>Ebであるか
ら、比Ea/Ebとして非常に大きな値(Ea/Eb≒
∞)を出力し、記憶部7bに記憶する。同様に、光電変
換素子4bのピーク電圧Ebに対する光電変換素子4c
のピーク電圧Ecの比Ec/Ebを演算し、Ec≒Eb
であるから、比Ea/Ebとして約1(Ea/Eb≒
1)の値を出力し、記憶部7bに記憶する。
In the position detecting means 7, as shown in FIG. 5A, the spot S is applied only to the photoelectric conversion element 4a at one end.
Appears in the arithmetic unit 7a, the photoelectric conversion element 4b
The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a with respect to the peak voltage Eb is calculated, and since Ea> Eb, a very large value (Ea / Eb ≒) is obtained as the ratio Ea / Eb.
∞) is output and stored in the storage unit 7b. Similarly, the photoelectric conversion element 4c with respect to the peak voltage Eb of the photoelectric conversion element 4b
Calculate the ratio Ec / Eb of the peak voltage Ec of
Therefore, the ratio Ea / Eb is about 1 (Ea / Eb ≒).
The value of 1) is output and stored in the storage unit 7b.

【0034】また、位置検出手段7では、図6(a)に
示すように、他端の光電変換素子4cのみにスポットS
が現れた場合、演算部7aにおいて、光電変換素子4b
のピーク電圧Ebに対する光電変換素子4aのピーク電
圧Eaの比Ea/Ebを演算し、Ea≒Ebであるか
ら、比Ea/Ebとして約1(Ea/Eb≒1)の値を
出力し、記憶部7bに記憶する。同様に、光電変換素子
4bのピーク電圧Ebに対する光電変換素子4cのピー
ク電圧Ecの比Ec/Ebを演算し、Ec>Ebである
から、比Ec/Ebとして非常に大きな値(Ec/Eb
≒∞)を出力し、記憶部7bに記憶する。
In the position detecting means 7, as shown in FIG. 6 (a), the spot S is applied only to the photoelectric conversion element 4c at the other end.
Appears in the arithmetic unit 7a, the photoelectric conversion element 4b
The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a to the peak voltage Eb is calculated, and since Ea ≒ Eb, a value of about 1 (Ea / Eb ≒ 1) is output as the ratio Ea / Eb and stored. The information is stored in the unit 7b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c to the peak voltage Eb of the photoelectric conversion element 4b is calculated. Since Ec> Eb, a very large value (Ec / Eb) is obtained as the ratio Ec / Eb.
≒ ∞) is output and stored in the storage unit 7b.

【0035】次に、位置検出手段7では、図7(a)に
示すように、光電変換素子4aと光電変換素子4bの境
界にスポットSがまたがって現れた場合、演算部7aに
おいて、光電変換素子4bのピーク電圧Ebに対する光
電変換素子4aのピーク電圧Eaの比Ea/Ebを演算
し、Ea≒Ebであるから、比Ea/Ebとして約1
(Ea/Eb≒1)の値を出力し、記憶部7bに記憶す
る。同様に、光電変換素子4bのピーク電圧Ebに対す
る光電変換素子4cのピーク電圧Ecの比Ec/Ebを
演算し、Ec<Ebであるから、比Ec/Ebとしてほ
ぼゼロ(Ec/Eb≒0)の値を出力し、記憶部7bに
記憶する。
Next, in the position detecting means 7, as shown in FIG. 7A, when the spot S appears over the boundary between the photoelectric conversion element 4a and the photoelectric conversion element 4b, the photoelectric conversion is performed by the arithmetic unit 7a. The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a to the peak voltage Eb of the element 4b is calculated. Since Ea ≒ Eb, the ratio Ea / Eb is about 1
The value of (Ea / Eb ≒ 1) is output and stored in the storage unit 7b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c to the peak voltage Eb of the photoelectric conversion element 4b is calculated. Since Ec <Eb, the ratio Ec / Eb is almost zero (Ec / Eb ≒ 0). Is output and stored in the storage unit 7b.

【0036】また、位置検出手段7では、図8(a)に
示すように、光電変換素子4bと光電変換素子4cの境
界にスポットSがまたがって現れた場合、演算部7aに
おいて、光電変換素子4bのピーク電圧Ebに対する光
電変換素子4aのピーク電圧Eaの比Ea/Ebを演算
し、Ea<Ebであるから、比Ea/Ebとしてほぼゼ
ロ(Ec/Eb≒0)の値を出力し、記憶部7bに記憶
する。同様に、光電変換素子4bのピーク電圧Ebに対
する光電変換素子4cのピーク電圧Ecの比Ec/Eb
を演算し、Ec≒Ebであるから、比Ec/Ebとして
約1(Ec/Eb≒1)の値を出力し、記憶部7bに記
憶する。
In the position detecting means 7, as shown in FIG. 8 (a), when the spot S appears over the boundary between the photoelectric conversion element 4b and the photoelectric conversion element 4c, the photoelectric conversion element The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a to the peak voltage Eb of 4b is calculated, and since Ea <Eb, a value of almost zero (Ec / Eb ≒ 0) is output as the ratio Ea / Eb, It is stored in the storage unit 7b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c to the peak voltage Eb of the photoelectric conversion element 4b.
Is calculated, and since Ec ≒ Eb, a value of about 1 (Ec / Eb ≒ 1) is output as the ratio Ec / Eb and stored in the storage unit 7b.

【0037】なお、基準とする電圧は、光電変換素子4
bのピーク電圧Eb以外の他の光電変換素子4a,4c
のピーク電圧Ea,Ecでもよいし、また各ピーク電圧
の和(Ea+Eb+Ec)でもよい。要は、光電変換素
子4a,4b,4cのピーク電圧の絶対値ではなく、基
準電圧に対する各光電変換素子4a,4b,4cのピー
ク電圧の比(割合)から標準粒子による散乱光Lsのス
ポットSの位置を求める方が確度が高いからである。
Note that the reference voltage is the photoelectric conversion element 4
photoelectric conversion elements 4a and 4c other than the peak voltage Eb
Or the sum of the peak voltages (Ea + Eb + Ec). The point is not the absolute value of the peak voltage of the photoelectric conversion elements 4a, 4b, 4c, but the spot S of the scattered light Ls by the standard particles based on the ratio (ratio) of the peak voltage of each of the photoelectric conversion elements 4a, 4b, 4c to the reference voltage. This is because the accuracy is higher when the position is obtained.

【0038】以上のような5通りの場合について、図9
に示すように、基準電圧を光電変換素子4bのピーク電
圧Ebとした場合の粒子情報参照テーブルが作成でき
る。従って、光電変換素子4bのピーク電圧Ebに対す
る光電変換素子4aのピーク電圧Eaの比Ea/Eb
と、光電変換素子4bのピーク電圧Ebに対する光電変
換素子4cのピーク電圧Ecの比Ec/Ebが分かれ
ば、粒子情報参照テーブルを参照することにより、測定
領域Mにおける粒子のY方向の通過位置を5通りの中か
ら識別することができる。
For the above five cases, FIG.
As shown in (5), a particle information reference table can be created when the reference voltage is the peak voltage Eb of the photoelectric conversion element 4b. Therefore, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a to the peak voltage Eb of the photoelectric conversion element 4b.
If the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c to the peak voltage Eb of the photoelectric conversion element 4b is known, the passing position of the particles in the measurement region M in the Y direction can be determined by referring to the particle information reference table. It can be identified from among five ways.

【0039】また、上記した5通りの通過パターン以外
で、光電変換素子4aと光電変換素子4bの境界又は光
電変換素子4bと光電変換素子4cの境界にスポットS
が均等でなくまたがって現れるような測定領域Mの経路
を通過した場合であっても、光電変換素子4bのピーク
電圧Ebに対する光電変換素子4aのピーク電圧Eaの
比Ea/Ebと、光電変換素子4bのピーク電圧Ebに
対する光電変換素子4cのピーク電圧Ecの比Ec/E
bが分かれば、比Ea/Ebの値と比Ec/Ebの値を
粒子情報参照テーブルに当てはめることにより、測定領
域Mにおける粒子のY方向の通過位置を識別することが
できる。
In addition to the above-mentioned five kinds of passing patterns, spots S on the boundary between the photoelectric conversion element 4a and the photoelectric conversion element 4b or on the boundary between the photoelectric conversion element 4b and the photoelectric conversion element 4c.
, The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a to the peak voltage Eb of the photoelectric conversion element 4b and the photoelectric conversion element Ratio Ec / E of peak voltage Ec of photoelectric conversion element 4c to peak voltage Eb of peak 4b
If b is known, the position of the particle in the measurement area M in the Y direction can be identified by applying the value of the ratio Ea / Eb and the value of the ratio Ec / Eb to the particle information reference table.

【0040】本発明の第2の実施の形態に係る粒子通過
位置検出装置は、図10に示すように、フローセル1
1、レーザ光源12、集光光学系13、光検出手段14
及び処理装置15から成る。ここで、フローセル11、
レーザ光源12、集光光学系13は、図1に示すものと
同様の構成であるので説明は省略する。
The particle passage position detecting device according to the second embodiment of the present invention has a flow cell 1 as shown in FIG.
1, laser light source 12, condensing optical system 13, light detection means 14
And a processing device 15. Here, the flow cell 11,
The laser light source 12 and the condensing optical system 13 have the same configuration as that shown in FIG.

【0041】光検出手段14は、縦(Y方向)と横(Z
方向)が3個×3個のマトリックス状の光電変換素子D
11,D12,D13,D21,……D33から成り、各受光面が
流路11aの中心軸(X方向)に垂直なY・Z平面を形
成している。
The light detecting means 14 has a vertical (Y direction) and a horizontal (Z
3) x 3 matrix-shaped photoelectric conversion elements D
11, D 12, D 13, D 21, consists ...... D 33, the light receiving surface forms a vertical Y · Z plane to the central axis of the flow channel 11a (X direction).

【0042】処理装置15は、3個×3個の光電変換素
子D11,D12,D13,D21,……D33の夫々の出力電圧
のピーク値E11,E12,E13,E21,……E33を検出す
るピーク値検出手段16a,16b,16cと、ピーク
値E11,E12,E13,E21,……E33から粒子の位置を
検出する位置検出手段17から成る。
The processor 15, three × 3 pieces of photoelectric conversion elements D 11, D 12, D 13 , D 21, ...... peak value E 11 of each of the output voltage of the D 33, E 12, E 13 , E 21, ...... peak value detecting means 16a for detecting the E 33, 16b, 16c and the peak value E 11, E 12, E 13 , E 21, position detecting means for detecting the position of the particle from ...... E 33 17 Consists of

【0043】ピーク値検出手段16aは光電変換素子D
11,D12,D13の出力電圧を時分割でサンプリングして
そのピーク値E11,E12,E13を検出し、ピーク値検出
手段16bは光電変換素子D21,D22,D23の出力電圧
を時分割でサンプリングしてそのピーク値E21,E22
23を検出し、ピーク値検出手段16cは光電変換素子
31,D32,D33の出力電圧を時分割でサンプリングし
てピーク値E31,E32,E33を検出する。
The peak value detecting means 16a is a photoelectric conversion element D
11 , D 12 , and D 13 are time-divisionally sampled to detect their peak values E 11 , E 12 , and E 13 , and the peak value detecting means 16b detects the peak values of the photoelectric conversion elements D 21 , D 22 , and D 23 . The output voltage is sampled in a time-division manner and its peak values E 21 , E 22 ,
Detecting the E 23, a peak value detecting means 16c detects the photoelectric conversion element D 31, D 32, the peak value is sampled in a time division output voltage of the D 33 E 31, E 32, E 33.

【0044】なお、ピーク値検出手段を光電変換素子D
11,D12,D13,D21,……D33の個数分設け、測定領
域Mをある時間で通過する粒子の散乱光Lsによる出力
電圧を常時サンプリングしてピーク値を検出してもよ
い。また、電圧検出手段として、必ずしもピーク値でな
く、例えば光電変換素子D11,D12,D13,D21,……
33の出力電圧を同一のタイミングで検出してもよい。
また、電圧検出手段として、光電変換素子4a,4b,
4cの出力電圧を所定時間だけ積分して出力してもよ
い。
Note that the peak value detecting means is a photoelectric conversion element D
11 , D 12 , D 13 , D 21 ,..., D 33 may be provided, and the peak value may be detected by constantly sampling the output voltage due to the scattered light Ls of the particles passing through the measurement area M at a certain time. . Further, the voltage detecting means is not necessarily a peak value, and may be, for example, photoelectric conversion elements D 11 , D 12 , D 13 , D 21 ,.
The output voltage of the D 33 may be detected at the same timing.
Further, as voltage detecting means, the photoelectric conversion elements 4a, 4b,
The output voltage of 4c may be integrated and output for a predetermined time.

【0045】位置検出手段17は、演算部17aと記憶
部17bを備え、先ず演算部17aにおいて、ピーク値
検出手段16a,16b,16cが検出したピーク値E
11,E12,E13,E21,……E33の中から一の電圧(例
えば、ピーク値E22)を選択し、この電圧を基準にして
他のピーク値との比(E11/E22、E12/E22……)を
演算し、その結果を記憶部17bに記憶して、図9と同
様な粒子情報参照テーブルを作成する。
The position detecting means 17 comprises a calculating part 17a and a storage part 17b. First, in the calculating part 17a, the peak value E detected by the peak value detecting means 16a, 16b, 16c is detected.
11, E 12, E 13, E 21, one voltage among ...... E 33 (e.g., a peak value E 22) is selected, the ratio of the other peak values, based on the voltage (E 11 / E 22 , E 12 / E 22 ...) Are calculated, and the result is stored in the storage unit 17b to create a particle information reference table similar to that of FIG.

【0046】また、演算部17aにおいて、ピーク値検
出手段16a,16b,16cが検出したピーク値
11,E12,E13,E21,……E33の中から最も大きい
ピーク値を選択し、その結果を記憶部17bに記憶して
もよい。
[0046] Further, the calculating unit 17a, the peak value detecting means 16a, 16b, 16c peak value E 11 which detects, E 12, E 13, E 21, selects the largest peak value among ...... E 33 The result may be stored in the storage unit 17b.

【0047】以上のように構成した本発明の第2の実施
の形態に係る粒子通過位置検出装置の作用について説明
する。図10に示すように、矢印Aの方向から粒子を含
んだ流体をフローセル11に流し込む。このとき、測定
領域Mのどの位置を粒子が通過するかによって、光検出
手段14の光電変換素子D11,D12,D13,D21,……
33の出力波形は様々なものとなる。
The operation of the particle passing position detecting device according to the second embodiment of the present invention will be described. As shown in FIG. 10, a fluid containing particles flows into the flow cell 11 from the direction of arrow A. At this time, the photoelectric conversion elements D 11 , D 12 , D 13 , D 21 ,... Of the light detecting means 14 depend on which position in the measurement area M the particles pass through.
The output waveform of the D 33 is a different one.

【0048】例えば、粒子が光検出手段14の中で光電
変換素子D22の受光面に対応する測定領域Mの経路を通
過すると、ピーク値検出手段16a,16b,16cは
粒子が測定領域Mを通過する間、粒子の散乱光Lsに応
じた光電変換素子D11,D12,D13,D21,……D33
出力電圧をサンプリングしてピーク値を検出する。
[0048] For example, when particles pass through the path of the measurement area M corresponding to the light receiving surface of the photoelectric conversion element D 22 in the light detection means 14, the peak value detecting means 16a, 16b, 16c are particles the measurement region M During the passage, the output voltages of the photoelectric conversion elements D 11 , D 12 , D 13 , D 21 ,..., D 33 according to the scattered light Ls of the particles are sampled to detect the peak value.

【0049】この場合に、測定領域Mのレーザ光強度
は、中心部が最も強く、中心部からずれて端部に行くほ
ど弱くなるという分布(ほぼガウス分布)をしているの
で、粒子はレーザ光強度の弱い部分から中心部の強い部
分を通り再び弱い部分を通るため、光電変換素子D22
みが略パルス状の電圧を出力し、他の光電変換素子は、
ノイズに応じたレベル電圧しか出力しない。
In this case, the intensity of the laser beam in the measurement area M has a distribution (almost Gaussian distribution) in which the intensity is strongest at the center and becomes weaker toward the edge away from the center. because through the strong portions through again weak portions of the heart from the weak light intensity, the photoelectric conversion element D 22 Nomigaryaku pulsed voltage output and the other photoelectric conversion element,
Only the level voltage corresponding to the noise is output.

【0050】従って、光電変換素子D22のピーク値E22
を基準にした場合に、他のピーク値との比(E11
22、E12/E22……)が分かれば、粒子情報参照テー
ブルを参照することにより、測定領域Mにおける粒子の
通過位置を2次元(Y・Z平面)で識別することができ
る。
[0050] Therefore, the peak value of the photoelectric conversion element D 22 E 22
, The ratio to other peak values (E 11 /
If E 22 , E 12 / E 22 ... Are known, the passing position of the particles in the measurement region M can be identified two-dimensionally (YZ plane) by referring to the particle information reference table.

【0051】本発明の第3の実施の形態に係る粒子通過
位置検出装置は、図11に示すように、フローセル2
1、レーザ光源22、集光光学系23、トラップ20、
光電変換素子アレイ24及び処理装置25から成る。
The particle passing position detecting apparatus according to the third embodiment of the present invention has a flow cell 2 as shown in FIG.
1, laser light source 22, condensing optical system 23, trap 20,
It comprises a photoelectric conversion element array 24 and a processing device 25.

【0052】フローセル21は、透明部材から成り、所
定長さの直線流路21a(Y方向)を有する。ここで
は、フローセル21の断面形状は角筒形状としている。
所定の長さの直線流路21aを設けた理由は、本発明の
第1の実施の形態に係る粒子通過位置検出装置のフロー
セル1の場合と同様である。
The flow cell 21 is made of a transparent member and has a straight flow path 21a (Y direction) having a predetermined length. Here, the cross-sectional shape of the flow cell 21 is a rectangular tube shape.
The reason for providing the straight flow path 21a of a predetermined length is the same as in the case of the flow cell 1 of the particle passage position detecting device according to the first embodiment of the present invention.

【0053】レーザ光源22は、フローセル21の直線
流路21aの所定の箇所にレーザ光Laを照射して照射
領域を形成する。ここで、レーザ光Laの光軸(X方
向)と直線流路21a(Y方向)は交差している。
The laser light source 22 irradiates a predetermined portion of the linear flow path 21a of the flow cell 21 with a laser beam La to form an irradiation area. Here, the optical axis (X direction) of the laser beam La intersects the straight flow path 21a (Y direction).

【0054】集光光学系23は、レーザ光源22の光軸
と一致する光軸(X方向)を有し、図12に示す照射領
域内の所定の領域M(以下、測定領域Mと呼ぶ)におい
て発生する散乱光Lsを集光する機能を備える。
The condensing optical system 23 has an optical axis (X direction) coinciding with the optical axis of the laser light source 22, and a predetermined area M (hereinafter referred to as a measurement area M) in the irradiation area shown in FIG. Is provided with a function of condensing the scattered light Ls generated in.

【0055】光電変換素子アレイ24は、3個の光電変
換素子24a,24b,24cから成り、各受光面が集
光光学系23の光軸(X方向)に垂直で、且つ流路の中
心軸(Y方向)とレーザ光軸(X方向)に垂直なZ方向
に隣接して設けられている。光電変換素子24a,24
b,24cは、粒子が測定領域Mを通過する間に発する
散乱光Lsを電圧に変換する。
The photoelectric conversion element array 24 is composed of three photoelectric conversion elements 24a, 24b and 24c, each light receiving surface being perpendicular to the optical axis (X direction) of the condensing optical system 23 and the central axis of the flow path. (Y direction) and a Z direction perpendicular to the laser optical axis (X direction). Photoelectric conversion elements 24a, 24
b and 24c convert the scattered light Ls emitted while the particles pass through the measurement region M into a voltage.

【0056】集光光学系23の光軸上に位置するトラッ
プ20は、レーザ光源22の光源光Laが直接、光電変
換素子アレイ24に入射するのを阻止する。これによ
り、光電変換素子24には、流路21a内を通過する粒
子が発する散乱光Lsのみが入射することになる。
The trap 20 located on the optical axis of the condensing optical system 23 prevents the light source light La of the laser light source 22 from directly entering the photoelectric conversion element array 24. As a result, only the scattered light Ls emitted by the particles passing through the flow path 21a enters the photoelectric conversion element 24.

【0057】処理装置25は、粒子が測定領域Mを通過
する間に3個の光電変換素子24a,24b,24cが
夫々出力する電圧のピーク値(パルス高)Ea,Eb,
Ecを検出するピーク値検出手段26a,26b,26
cと、粒子情報参照テーブルを作成する位置検出手段2
7から成る。
The processing device 25 outputs the peak values (pulse heights) Ea, Eb, and Ev of the voltages output by the three photoelectric conversion elements 24a, 24b, and 24c while the particles pass through the measurement area M.
Peak value detecting means 26a, 26b, 26 for detecting Ec
c and position detecting means 2 for creating a particle information reference table
7

【0058】本発明の第3の実施の形態では、電圧検出
手段として、光電変換素子24a,24b,24cが夫
々出力する電圧のピーク値Ea,Eb,Ecを検出する
ピーク値検出手段26a,26b,26cを採用してい
るが、必ずしもピーク値でなく、例えば光電変換素子2
4a,24b,24cの出力電圧を同一のタイミングで
検出し、その出力電圧を後の演算処理に使用してもよ
い。また、電圧検出手段として、光電変換素子24a,
24b,24cの出力電圧を所定時間だけ積分して出力
してもよい。
In the third embodiment of the present invention, as voltage detecting means, peak value detecting means 26a, 26b for detecting peak values Ea, Eb, Ec of voltages output from photoelectric conversion elements 24a, 24b, 24c, respectively. , 26c, but not necessarily the peak value.
The output voltages of 4a, 24b, and 24c may be detected at the same timing, and the output voltages may be used in subsequent arithmetic processing. Further, as the voltage detecting means, the photoelectric conversion elements 24a,
The output voltages of 24b and 24c may be integrated and output for a predetermined time.

【0059】位置検出手段27は、演算部27aと記憶
部27bを備え、先ず演算部27aにおいて、次の
(1)と(2)の演算処理を行い、その結果を記憶部2
7bに記憶して、粒子情報参照テーブルを作成する。 (1)ピーク値検出手段26bの出力電圧Ebに対する
ピーク値検出手段26aの出力電圧Eaの比Ea/Eb
を演算する。 (2)ピーク値検出手段26bの出力電圧Ebに対する
ピーク値検出手段26cの出力電圧Ecの比Ec/Eb
を演算する。
The position detecting means 27 includes an arithmetic unit 27a and a storage unit 27b. First, the arithmetic unit 27a performs the following arithmetic processes (1) and (2), and stores the result in the storage unit 2.
7b to create a particle information reference table. (1) The ratio Ea / Eb of the output voltage Ea of the peak value detecting means 26a to the output voltage Eb of the peak value detecting means 26b
Is calculated. (2) Ratio Ec / Eb of output voltage Ec of peak value detecting means 26c to output voltage Eb of peak value detecting means 26b
Is calculated.

【0060】以上のように構成した本発明の第3の実施
の形態に係る粒子通過位置検出装置の作用について説明
する。図12に示すように、矢印Aの方向から粒子を含
んだ流体をフローセル21に流し込む。このとき、測定
領域Mのどの位置を粒子が通過するかによって、光電変
換素子アレイ24の各光電変換素子24a,24b,2
4c出力波形は様々なものとなる。そして、3個の光電
変換素子24a,24b,24cから成る光電変換素子
アレイ24の場合には、主な5通りの通過パターンが考
えられる。
The operation of the particle passing position detecting device according to the third embodiment of the present invention will be described. As shown in FIG. 12, a fluid containing particles flows into the flow cell 21 from the direction of arrow A. At this time, each photoelectric conversion element 24a, 24b, 2 of the photoelectric conversion element array 24 depends on which position in the measurement area M the particle passes.
4c output waveforms are various. In the case of the photoelectric conversion element array 24 including three photoelectric conversion elements 24a, 24b, and 24c, there are five main types of passing patterns.

【0061】先ず、標準粒子が、図12に示す測定領域
Mの中心Mcを通過する場合で、標準粒子による散乱光
LsのスポットSは、図13(a)に示すように、光電
変換素子アレイ24の中央の光電変換素子24bのみに
現れ、矢印方向に移動する。このとき、各光電変換素子
24a,24b,24cの出力波形(時間tと電圧Eと
の関係)は、図13(b)に示すようになる。即ち、光
電変換素子24bのみが測定領域Mの中心Mcをある時
間の間(時間t1から時間t2)に通過する標準粒子の散
乱光Lsに応じた略パルス状の電圧(ピーク値Eb)を
出力し、他の光電変換素子24a,24cはノイズに応
じた略レベル電圧(ピーク値Ea,Ec)しか出力しな
い。
First, when the standard particles pass through the center Mc of the measurement area M shown in FIG. 12, the spot S of the scattered light Ls by the standard particles is, as shown in FIG. It appears only in the photoelectric conversion element 24b at the center of 24 and moves in the direction of the arrow. At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 24a, 24b, 24c is as shown in FIG. That is, only the photoelectric conversion element 24b outputs a substantially pulse-like voltage (peak value Eb) corresponding to the scattered light Ls of the standard particles passing through the center Mc of the measurement area M for a certain time (from time t1 to time t2). However, the other photoelectric conversion elements 24a and 24c output only approximately level voltages (peak values Ea and Ec) corresponding to noise.

【0062】次に、標準粒子が、図12に示す測定領域
Mの一端部Msを通過する場合で、標準粒子による散乱
光LsのスポットSは、図14(a)に示すように、光
電変換素子アレイ24の一端の光電変換素子24aのみ
に現れ、矢印方向に移動する。このとき、各光電変換素
子24a,24b,24cの出力波形(時間tと電圧E
との関係)は、図14(b)に示すようになる。即ち、
光電変換素子24aのみが測定領域Mの一端部Msをあ
る時間の間(時間t3から時間t4)に通過する標準粒子
の散乱光Lsに応じた略パルス状の電圧(ピーク値E
a)を出力し、他の光電変換素子24b,24cはノイ
ズに応じた略レベル電圧(ピーク値Eb,Ec)しか出
力しない。
Next, when the standard particles pass through one end Ms of the measurement area M shown in FIG. 12, the spot S of the scattered light Ls by the standard particles is photoelectrically converted as shown in FIG. It appears only in the photoelectric conversion element 24a at one end of the element array 24 and moves in the direction of the arrow. At this time, the output waveform (time t and voltage E of each photoelectric conversion element 24a, 24b, 24c)
14B) is as shown in FIG. That is,
A substantially pulse-shaped voltage (peak value E) corresponding to the scattered light Ls of the standard particles that passes only one end Ms of the measurement area M for a certain period of time (from time t3 to time t4).
a), and the other photoelectric conversion elements 24b and 24c output only approximately level voltages (peak values Eb and Ec) corresponding to noise.

【0063】同様に、標準粒子が、図12に示す測定領
域Mの他端部Ms(一端部Msと対称の位置)を通過す
る場合で、標準粒子による散乱光LsのスポットSは、
図15(a)に示すように、光電変換素子アレイ24の
他端の光電変換素子24cのみに現れ、矢印方向に移動
する。このとき、各光電変換素子24a,24b,24
cの出力波形(時間tと電圧Eとの関係)は、図15
(b)に示すようになる。即ち、光電変換素子24cの
みが測定領域Mの他端部Msをある時間の間(時間t3
から時間t4)に通過する標準粒子の散乱光Lsに応じ
た略パルス状の電圧(ピーク値Ec)を出力し、他の光
電変換素子24a,24bはノイズに応じた略レベル電
圧(ピーク値Ea,Eb)しか出力しない。
Similarly, when the standard particles pass through the other end Ms (a position symmetrical to the one end Ms) of the measurement area M shown in FIG. 12, the spot S of the scattered light Ls by the standard particles is
As shown in FIG. 15A, only the photoelectric conversion element 24c at the other end of the photoelectric conversion element array 24 appears and moves in the direction of the arrow. At this time, each of the photoelectric conversion elements 24a, 24b, 24
The output waveform of c (the relationship between time t and voltage E) is shown in FIG.
The result is as shown in FIG. That is, only the photoelectric conversion element 24c moves the other end Ms of the measurement area M for a certain time (time t3
To a time t4), outputs a substantially pulse-like voltage (peak value Ec) corresponding to the scattered light Ls of the standard particles passing through, and the other photoelectric conversion elements 24a and 24b output a substantially level voltage (peak value Ea) corresponding to noise. , Eb).

【0064】更に、標準粒子が、図12に示す測定領域
Mの一経路Mmを通過する場合で、標準粒子による散乱
光LsのスポットSは、図16(a)に示すように、光
電変換素子24aと光電変換素子24bの境界にまたが
って現れ、矢印方向に移動する。このとき、各光電変換
素子24a,24b,24cの出力波形(時間tと電圧
Eとの関係)は、図16(b)に示すようになる。即
ち、光電変換素子24a,24bが測定領域Mの一経路
Mmをある時間の間(時間t5から時間t6)に通過する
標準粒子の散乱光Lsに応じた略パルス状の電圧(ピー
ク値Ea,Eb)を出力し、光電変換素子24cはノイ
ズに応じた略レベル電圧(ピーク値Ec)しか出力しな
い。
Further, when the standard particles pass through one path Mm of the measurement area M shown in FIG. 12, the spot S of the scattered light Ls by the standard particles is, as shown in FIG. It appears over the boundary between the photoelectric conversion element 24a and the photoelectric conversion element 24b and moves in the direction of the arrow. At this time, the output waveform (relationship between time t and voltage E) of each of the photoelectric conversion elements 24a, 24b, 24c is as shown in FIG. That is, the voltage (peak value Ea, peak value Ea,) corresponding to the scattered light Ls of the standard particles that the photoelectric conversion elements 24a and 24b pass through one path Mm of the measurement area M for a certain time (from time t5 to time t6). Eb), and the photoelectric conversion element 24c outputs only a substantially level voltage (peak value Ec) corresponding to the noise.

【0065】同様に、標準粒子が、図12に示す測定領
域Mの他経路Mm(一経路Mmと対称の位置)を通過す
る場合で、標準粒子による散乱光LsのスポットSは、
図17(a)に示すように、光電変換素子24bと光電
変換素子24cの境界にまたがって現れ、矢印方向に移
動する。このとき、各光電変換素子24a,24b,2
4cの出力波形(時間tと電圧Eとの関係)は、図17
(b)に示すようになる。即ち、光電変換素子24b,
24cが測定領域Mの他経路Mmをある時間の間(時間
t5から時間t6)に通過する標準粒子の散乱光Lsに応
じた略パルス状の電圧(ピーク値Eb,Ec)を出力
し、光電変換素子24aはノイズに応じた略レベル電圧
(ピーク値Ea)しか出力しない。
Similarly, when the standard particle passes through another path Mm (a position symmetrical to one path Mm) of the measurement area M shown in FIG. 12, the spot S of the scattered light Ls by the standard particle is
As shown in FIG. 17 (a), it appears over the boundary between the photoelectric conversion elements 24b and 24c and moves in the direction of the arrow. At this time, each photoelectric conversion element 24a, 24b, 2
4c (the relationship between time t and voltage E) is shown in FIG.
The result is as shown in FIG. That is, the photoelectric conversion elements 24b,
A substantially pulse-like voltage (peak values Eb, Ec) corresponding to the scattered light Ls of the standard particles that passes through the other path Mm of the measurement area M for a certain time (from time t5 to time t6) is output. The conversion element 24a outputs only a substantially level voltage (peak value Ea) corresponding to the noise.

【0066】そして、位置検出手段27では、図13
(a)に示すように、中央の光電変換素子24bのみに
スポットSが現れた場合、演算部17aにおいて、光電
変換素子24bのピーク電圧Ebに対する光電変換素子
24aのピーク電圧Eaの比Ea/Ebを演算し、Ea
<Ebであるから、比Ea/Ebとしてほぼゼロ(Ea
/Eb≒0)の値を出力し、記憶部27bに記憶する。
また、演算部27aにおいて、光電変換素子24bのピ
ーク電圧Ebに対する光電変換素子24cのピーク電圧
Ecの比Ec/Ebを演算し、Ec<Ebであるから、
比Ec/Ebとしてほぼゼロ(Ec/Eb≒0)の値を
出力し、記憶部27bに記憶する。
Then, the position detecting means 27
As shown in (a), when the spot S appears only in the central photoelectric conversion element 24b, the arithmetic unit 17a calculates the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a to the peak voltage Eb of the photoelectric conversion element 24b. And Ea
<Eb, the ratio Ea / Eb is almost zero (Ea
/ Eb ≒ 0) is output and stored in the storage unit 27b.
Further, in the calculation unit 27a, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b is calculated, and since Ec <Eb,
A value of approximately zero (Ec / Eb ≒ 0) is output as the ratio Ec / Eb and stored in the storage unit 27b.

【0067】また、位置検出手段27では、図14
(a)に示すように、一端の光電変換素子24aのみに
スポットSが現れた場合、演算部27aにおいて、光電
変換素子24bのピーク電圧Ebに対する光電変換素子
24aのピーク電圧Eaの比Ea/Ebを演算し、Ea
>Ebであるから、比Ea/Ebとして非常に大きい値
(Ea/Eb≒∞)を出力し、記憶部27bに記憶す
る。同様に、光電変換素子24bのピーク電圧Ebに対
する光電変換素子24cのピーク電圧Ecの比Ec/E
bを演算し、Ec≒Ebであるから、比Ea/Ebとし
て約1(Ea/Eb≒1)の値を出力し、記憶部27b
に記憶する。
In the position detecting means 27, FIG.
As shown in (a), when the spot S appears only on the photoelectric conversion element 24a at one end, the arithmetic unit 27a calculates the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a to the peak voltage Eb of the photoelectric conversion element 24b. And Ea
> Eb, a very large value (Ea / Eb ≒ ∞) is output as the ratio Ea / Eb and stored in the storage unit 27b. Similarly, the ratio Ec / E of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b.
b, and Ec ≒ Eb, so that a value of about 1 (Ea / Eb ≒ 1) is output as the ratio Ea / Eb, and the storage unit 27b
To memorize.

【0068】また、位置検出手段27では、図15
(a)に示すように、他端の光電変換素子24cのみに
スポットSが現れた場合、演算部27aにおいて、光電
変換素子24bのピーク電圧Ebに対する光電変換素子
24aのピーク電圧Eaの比Ea/Ebを演算し、Ea
≒Ebであるから、比Ea/Ebとして約1(Ea/E
b≒1)の値を出力し、記憶部27bに記憶する。同様
に、光電変換素子24bのピーク電圧Ebに対する光電
変換素子24cのピーク電圧Ecの比Ec/Ebを演算
し、Ec>Ebであるから、比Ec/Ebとして非常に
大きい値(Ec/Eb≒∞)を出力し、記憶部27bに
記憶する。
In the position detecting means 27, FIG.
As shown in (a), when the spot S appears only in the photoelectric conversion element 24c at the other end, the arithmetic unit 27a calculates a ratio Ea / Pe of the peak voltage Ea of the photoelectric conversion element 24a to the peak voltage Eb of the photoelectric conversion element 24b. Eb is calculated and Ea
Since ≒ Eb, the ratio Ea / Eb is about 1 (Ea / Eb).
The value of b ≒ 1) is output and stored in the storage unit 27b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b is calculated, and since Ec> Eb, a very large value (Ec / Eb ≒) is obtained as the ratio Ec / Eb. ∞) is output and stored in the storage unit 27b.

【0069】次に、位置検出手段27では、図16
(a)に示すように、光電変換素子24aと光電変換素
子24bの境界にスポットSがまたがって現れた場合、
演算部27aにおいて、光電変換素子24bのピーク電
圧Ebに対する光電変換素子24aのピーク電圧Eaの
比Ea/Ebを演算し、Ea≒Ebであるから、比Ea
/Ebとして約1(Ea/Eb≒1)の値を出力し、記
憶部27bに記憶する。同様に、光電変換素子24bの
ピーク電圧Ebに対する光電変換素子24cのピーク電
圧Ecの比Ec/Ebを演算し、Ec<Ebであるか
ら、比Ec/Ebとしてほぼゼロ(Ec/Eb≒0)の
値を出力し、記憶部27bに記憶する。
Next, in the position detecting means 27, FIG.
As shown in (a), when the spot S appears over the boundary between the photoelectric conversion element 24a and the photoelectric conversion element 24b,
The calculation unit 27a calculates the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a to the peak voltage Eb of the photoelectric conversion element 24b. Since Ea ≒ Eb, the ratio Ea
A value of about 1 (Ea / Eb ≒ 1) is output as / Eb and stored in the storage unit 27b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b is calculated. Since Ec <Eb, the ratio Ec / Eb is almost zero (Ec / Eb ≒ 0). Is output and stored in the storage unit 27b.

【0070】また、位置検出手段27では、図17
(a)に示すように、光電変換素子24bと光電変換素
子24cの境界にスポットSがまたがって現れた場合、
演算部27aにおいて、光電変換素子24bのピーク電
圧Ebに対する光電変換素子24aのピーク電圧Eaの
比Ea/Ebを演算し、Ea<Ebであるから、比Ea
/Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力
し、記憶部27bに記憶する。同様に、光電変換素子2
4bのピーク電圧Ebに対する光電変換素子24cのピ
ーク電圧Ecの比Ec/Ebを演算し、Ec≒Ebであ
るから、比Ec/Ebとして約1(Ec/Eb≒1)の
値を出力し、記憶部27bに記憶する。
In the position detecting means 27, FIG.
As shown in (a), when the spot S appears over the boundary between the photoelectric conversion element 24b and the photoelectric conversion element 24c,
The calculation unit 27a calculates the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a to the peak voltage Eb of the photoelectric conversion element 24b. Since Ea <Eb, the ratio Ea
A value of almost zero (Ec / Eb ≒ 0) is output as / Eb and stored in the storage unit 27b. Similarly, the photoelectric conversion element 2
The ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of 4b is calculated, and since Ec ≒ Eb, a value of about 1 (Ec / Eb ≒ 1) is output as the ratio Ec / Eb, It is stored in the storage unit 27b.

【0071】なお、基準とする電圧は、光電変換素子2
4bのピーク電圧Eb以外の他の光電変換素子24a,
24cのピーク電圧Ea,Ecでもよいし、また各ピー
ク電圧の和(Ea+Eb+Ec)でもよい。要は、光電
変換素子24a,24b,24cのピーク電圧の絶対値
ではなく、基準電圧に対する各光電変換素子24a,2
4b,24cのピーク電圧の比(割合)から標準粒子に
よる散乱光LsのスポットSの位置を求める方が確度が
高いからである。
Note that the reference voltage is the voltage of the photoelectric conversion element 2.
4b other than the peak voltage Eb of 4b,
The peak voltages Ea and Ec of 24c may be used, or the sum of each peak voltage (Ea + Eb + Ec) may be used. The point is not the absolute value of the peak voltage of the photoelectric conversion elements 24a, 24b, 24c, but the respective photoelectric conversion elements 24a, 242 with respect to the reference voltage.
This is because the accuracy is higher when the position of the spot S of the scattered light Ls by the standard particles is obtained from the ratio (ratio) of the peak voltages of 4b and 24c.

【0072】以上のような5通りの場合について、図9
に示す粒子情報参照テーブルと同様な、基準電圧を光電
変換素子24bのピーク電圧Ebとした場合の粒子情報
参照テーブルが作成できる。従って、光電変換素子24
bのピーク電圧Ebに対する光電変換素子24aのピー
ク電圧Eaの比Ea/Ebと、光電変換素子24bのピ
ーク電圧Ebに対する光電変換素子24cのピーク電圧
Ecの比Ec/Ebが分かれば、粒子情報参照テーブル
を参照することにより、測定領域Mにおける粒子のZ方
向の通過位置を5通りの中から識別することができる。
In the above five cases, FIG.
A particle information reference table can be created in the case where the reference voltage is the peak voltage Eb of the photoelectric conversion element 24b, similar to the particle information reference table shown in FIG. Therefore, the photoelectric conversion element 24
If the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a to the peak voltage Eb of b, and the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b are known, refer to the particle information. By referring to the table, the passing position of the particles in the measurement region M in the Z direction can be identified from among five types.

【0073】また、上記した5通りの通過パターン以外
で、光電変換素子24aと光電変換素子24bの境界又
は光電変換素子24bと光電変換素子24cの境界にス
ポットSがまたがって現れるような測定領域Mの経路を
通過した場合であっても、光電変換素子24bのピーク
電圧Ebに対する光電変換素子24aのピーク電圧Ea
の比Ea/Ebと、光電変換素子24bのピーク電圧E
bに対する光電変換素子24cのピーク電圧Ecの比E
c/Ebが分かれば、比Ea/Ebの値と比Ec/Eb
の値を粒子情報参照テーブルに当てはめることにより、
測定領域Mにおける粒子のZ方向の通過位置を識別する
ことができる。
In addition to the above-mentioned five passing patterns, the measurement area M where the spot S appears over the boundary between the photoelectric conversion elements 24a and 24b or the boundary between the photoelectric conversion elements 24b and 24c. The peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b
Ratio Ea / Eb and the peak voltage E of the photoelectric conversion element 24b.
b, the ratio E of the peak voltage Ec of the photoelectric conversion element 24c to
If c / Eb is known, the value of the ratio Ea / Eb and the ratio Ec / Eb
By applying the value of to the particle information lookup table,
The position at which the particles pass in the Z direction in the measurement region M can be identified.

【0074】本発明は、上述の発明の実施の形態に限定
されるものではなく、例えば、フローセルの全体形状と
しては、L型のフローセル1,11や直線状のフローセ
ル21を用いたが、要は流路の中心軸と集光光学系の光
軸が一致するように配置できる形状であればよい。従っ
て、レーザ光Laと散乱光Lsとの光学的な関わりに影
響を与えなければ、フローセルの全体形状は、屈曲又は
湾曲形状であってもよい。
The present invention is not limited to the above embodiment of the present invention. For example, as the overall shape of the flow cell, L-shaped flow cells 1 and 11 and a linear flow cell 21 are used. May be any shape as long as it can be arranged so that the central axis of the flow path and the optical axis of the light collecting optical system coincide. Therefore, the overall shape of the flow cell may be bent or curved as long as the optical relationship between the laser light La and the scattered light Ls is not affected.

【0075】また、フローセルの断面形状として、上述
の発明の実施の形態では、矩形のものを用いたが、円形
のものでもよい。
Although the flow cell has a rectangular cross section in the above embodiment of the invention, it may have a circular cross section.

【0076】また、本発明では、複数の光電変換素子か
ら成る光検出手段の受光面を、流路の中心軸又はレーザ
光軸に対して垂直に配置し、流路における粒子通過位置
と粒子の散乱光の強度分布を検出した。しかし、粒子の
散乱光の強度分布を検出せずに、流路における粒子通過
位置だけを検出するのであれば、光検出手段の受光面を
流路の中心軸とレーザ光軸に対して垂直に配置すること
もできる。
Further, according to the present invention, the light receiving surface of the light detecting means composed of a plurality of photoelectric conversion elements is arranged perpendicular to the center axis of the flow path or the laser optical axis, and the particle passage position in the flow path and the particle The intensity distribution of the scattered light was detected. However, if only the particle passage position in the flow path is detected without detecting the intensity distribution of the scattered light of the particles, the light receiving surface of the light detection means should be perpendicular to the center axis of the flow path and the laser optical axis. They can also be placed.

【0077】[0077]

【発明の効果】以上説明したように請求項1に係る発明
によれば、レーザ光を照射した測定領域のレーザ光強度
分布に伴う通過粒子の散乱光強度の大きさに影響され
ず、粒子が通過した流路の位置を検出することができ
る。
As described above, according to the first aspect of the present invention, particles are not affected by the intensity of the scattered light of passing particles due to the laser light intensity distribution in the measurement area irradiated with the laser light. The position of the passage that has passed can be detected.

【0078】請求項2に係る発明によれば、レーザ光を
照射した測定領域のレーザ光強度分布に伴う通過粒子の
散乱光強度の大きさに影響されず、粒子が通過した流路
の位置を検出することができる。
According to the second aspect of the present invention, the position of the flow path through which the particles pass is not affected by the intensity of the scattered light intensity of the passing particles due to the laser light intensity distribution in the measurement area irradiated with the laser light. Can be detected.

【0079】請求項3に係る発明によれば、レーザ光を
照射した測定領域のレーザ光強度分布に伴う通過粒子の
散乱光強度の大きさに影響されず、粒子が通過した流路
の位置を2次元で検出することができる。
According to the third aspect of the invention, the position of the flow path through which the particles pass is not affected by the intensity of the scattered light intensity of the passing particles due to the laser light intensity distribution in the measurement area irradiated with the laser light. It can be detected in two dimensions.

【0080】請求項4に係る発明によれば、レーザ光を
照射した測定領域のレーザ光強度分布に伴う通過粒子の
散乱光強度の大きさに影響されず、粒子が通過した流路
の位置を検出することができる。
According to the fourth aspect of the present invention, the position of the flow path through which the particles pass is not affected by the intensity of the scattered light intensity of the passing particles due to the laser light intensity distribution in the measurement area irradiated with the laser light. Can be detected.

【0081】請求項5に係る発明によれば、測定領域の
レーザ光強度分布に伴う粒子の散乱光強度の大きさに影
響されず、粒子が通過した流路の位置を検出することが
できる。
According to the fifth aspect of the present invention, it is possible to detect the position of the flow path through which the particles pass without being influenced by the intensity of the scattered light intensity of the particles accompanying the laser light intensity distribution in the measurement area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る粒子通過位置
検出装置の構成図
FIG. 1 is a configuration diagram of a particle passing position detecting device according to a first embodiment of the present invention.

【図2】図1においてレーザ光を照射した測定領域の平
断面図
FIG. 2 is a plan sectional view of a measurement region irradiated with laser light in FIG.

【図3】図1においてレーザ光を照射した測定領域の縦
断面図
FIG. 3 is a longitudinal sectional view of a measurement region irradiated with laser light in FIG.

【図4】図1において光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
FIG. 4 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図5】図1において光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
FIG. 5 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図6】図1において光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
FIG. 6 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図7】図1において光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
FIG. 7 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図8】図1において光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
8 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図9】粒子情報参照テーブル示す図FIG. 9 is a diagram showing a particle information reference table.

【図10】本発明の第2の実施の形態に係る粒子通過位
置検出装置の構成図
FIG. 10 is a configuration diagram of a particle passage position detecting device according to a second embodiment of the present invention.

【図11】本発明の第3の実施の形態に係る粒子通過位
置検出装置の構成図
FIG. 11 is a configuration diagram of a particle passage position detecting device according to a third embodiment of the present invention.

【図12】図11においてレーザ光を照射した測定領域
の縦断面図
12 is a longitudinal sectional view of a measurement region irradiated with laser light in FIG.

【図13】図11において光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
13 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図14】図11において光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
14 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図15】図11において光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
15 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図16】図11において光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
FIG. 16 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図17】図11において光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
17 is a diagram showing a light receiving state (a) of the photoelectric conversion element array and an output waveform (b) at that time in FIG.

【図18】従来の光散乱式粒子計数装置の構成図FIG. 18 is a configuration diagram of a conventional light scattering type particle counting device.

【符号の説明】[Explanation of symbols]

1,11,21…フローセル、1a,11a,21a…
直線流路、2,12,22…レーザ光源、3,13,2
3…集光光学系(集光手段)、4,24…光電変換素子
アレイ、4a,4b,4c,24a,24b,24c…
光電変換素子、5,15,25…処理装置、6a,6
b,6c,16a,16b,16c,26a,26b,
26c…ピーク値検出手段(電圧検出手段)、7,1
7,27…位置検出手段、14…光検出手段、20…ト
ラップ。
1, 11, 21, ... flow cells, 1a, 11a, 21a ...
Linear flow path, 2, 12, 22 ... laser light source, 3, 13, 2
3 ... Condensing optical system (condensing means), 4,24 ... Photoelectric conversion element array, 4a, 4b, 4c, 24a, 24b, 24c ...
Photoelectric conversion element, 5, 15, 25 ... processing device, 6a, 6
b, 6c, 16a, 16b, 16c, 26a, 26b,
26c: peak value detecting means (voltage detecting means), 7, 1
7, 27: position detecting means, 14: light detecting means, 20: trap.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透明部材で屈曲形状に形成したフローセ
ルと、このフローセルの流路にレーザ光を照射して測定
領域を形成するレーザ光源と、前記流路の中心軸と一致
する光軸を有して前記測定領域で発生する粒子の散乱光
を集光する集光手段と、この集光手段が集光した散乱光
を受光する複数の光電変換素子から成る光検出手段と、
前記複数の光電変換素子の出力信号を検出する電圧検出
手段と、この電圧検出手段の出力信号を互いに比較して
粒子が通過した前記測定領域の通過位置情報を出力する
位置検出手段を備えることを特徴とする粒子通過位置検
出装置。
1. A flow cell having a bent shape made of a transparent member, a laser light source that irradiates a flow path of the flow cell with a laser beam to form a measurement region, and an optical axis coinciding with a center axis of the flow path. Light collecting means for collecting the scattered light of the particles generated in the measurement area and a light detecting means comprising a plurality of photoelectric conversion elements for receiving the scattered light collected by the light collecting means,
Voltage detecting means for detecting output signals of the plurality of photoelectric conversion elements, and position detecting means for comparing the output signals of the voltage detecting means with each other and outputting passage position information of the measurement region through which particles have passed. Characteristic particle passing position detection device.
【請求項2】 前記複数の光電変換素子から成る光検出
手段は、各受光面が流路の中心軸に垂直で、且つ流路の
中心軸とレーザ光軸にほぼ垂直な方向に隣接して設けた
N(Nは2以上の整数)個の光電変換素子から成る光電
変換素子アレイである請求項1記載の粒子通過位置検出
装置。
2. The light detecting means comprising a plurality of photoelectric conversion elements, wherein each light receiving surface is adjacent to a direction perpendicular to a center axis of the flow path and substantially perpendicular to a center axis of the flow path and a laser optical axis. 2. The particle passing position detecting device according to claim 1, wherein the device is a photoelectric conversion element array including N (N is an integer of 2 or more) provided photoelectric conversion elements.
【請求項3】 前記複数の光電変換素子から成る光検出
手段は、縦と横がV個×H個(V、Hとも2以上の整
数)の光電変換素子から成り、各受光面が流路の中心軸
に垂直である請求項1記載の粒子通過位置検出装置。
3. The light detecting means comprising a plurality of photoelectric conversion elements, wherein the vertical and horizontal photoelectric conversion elements are composed of V × H (V and H are both integers of 2 or more) photoelectric conversion elements, and each light receiving surface has a flow path. The particle passing position detection device according to claim 1, wherein the particle passage position detection device is perpendicular to a central axis of the particle.
【請求項4】 透明部材で形成したフローセルと、この
フローセルの流路にレーザ光を照射して測定領域を形成
するレーザ光源と、前記レーザ光の中心軸と一致する光
軸を有して前記測定領域で発生する粒子の散乱光を集光
する集光手段と、この集光手段の光軸上に位置するトラ
ップと、前記集光手段が集光した散乱光を受光する複数
の光電変換素子から成る光検出手段と、前記複数の光電
変換素子の出力信号を検出する電圧検出手段と、この電
圧検出手段の出力信号を互いに比較して粒子が通過した
前記測定領域の通過位置情報を出力する位置検出手段を
備えることを特徴とする粒子通過位置検出装置。
4. A flow cell formed of a transparent member, a laser light source that irradiates a flow path of the flow cell with laser light to form a measurement region, and an optical axis that coincides with a central axis of the laser light. Light collecting means for collecting scattered light of particles generated in the measurement region, a trap located on the optical axis of the light collecting means, and a plurality of photoelectric conversion elements for receiving the scattered light collected by the light collecting means And a voltage detecting means for detecting output signals of the plurality of photoelectric conversion elements, and comparing the output signals of the voltage detecting means with each other to output information on a passing position of the measurement area through which the particles have passed. A particle passing position detecting device comprising a position detecting means.
【請求項5】 前記複数の光電変換素子から成る光検出
手段は、各受光面がレーザ光軸に垂直で、且つ流路の中
心軸とレーザ光軸にほぼ垂直な方向に隣接して設けたN
(Nは2以上の整数)個の光電変換素子で成る光電変換
素子アレイである請求項4記載の粒子通過位置検出装
置。
5. A light detecting means comprising a plurality of photoelectric conversion elements, wherein each light receiving surface is provided adjacently in a direction perpendicular to the laser optical axis and substantially perpendicular to the center axis of the flow path and the laser optical axis. N
5. The particle passing position detecting device according to claim 4, wherein the photoelectric conversion element array comprises (N is an integer of 2 or more) photoelectric conversion elements.
JP01224598A 1998-01-26 1998-01-26 Particle passing position detector Expired - Fee Related JP3480669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01224598A JP3480669B2 (en) 1998-01-26 1998-01-26 Particle passing position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01224598A JP3480669B2 (en) 1998-01-26 1998-01-26 Particle passing position detector

Publications (2)

Publication Number Publication Date
JPH11211650A true JPH11211650A (en) 1999-08-06
JP3480669B2 JP3480669B2 (en) 2003-12-22

Family

ID=11799992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01224598A Expired - Fee Related JP3480669B2 (en) 1998-01-26 1998-01-26 Particle passing position detector

Country Status (1)

Country Link
JP (1) JP3480669B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170601B2 (en) 2002-09-27 2007-01-30 Rion Co., Ltd. Flow cell, and particle measurement device using the same
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
JP2009162650A (en) * 2008-01-08 2009-07-23 Sony Corp Optical measuring device
JP2018513971A (en) * 2015-04-02 2018-05-31 パーティクル・メージャーリング・システムズ・インコーポレーテッド Laser noise detection and mitigation in particle counters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073649A1 (en) 2007-12-04 2009-06-11 Particle Measuring Systems, Inc. Non-orthogonal particle detection systems and methods
CN103528928A (en) * 2013-10-24 2014-01-22 南开大学 Method for sensing single-cell based on graphene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170601B2 (en) 2002-09-27 2007-01-30 Rion Co., Ltd. Flow cell, and particle measurement device using the same
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
JP2009162650A (en) * 2008-01-08 2009-07-23 Sony Corp Optical measuring device
JP2018513971A (en) * 2015-04-02 2018-05-31 パーティクル・メージャーリング・システムズ・インコーポレーテッド Laser noise detection and mitigation in particle counters

Also Published As

Publication number Publication date
JP3480669B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
JP2899360B2 (en) Method and apparatus for measuring particles in fluid
US8154724B2 (en) Two-dimensional optical imaging methods and systems for particle detection
EP0369654B1 (en) Particle measurement apparatus
JP4981569B2 (en) Particle counter
JP3521381B2 (en) Particle counting device
US7362421B2 (en) Analysis of signal oscillation patterns
JPH11211650A (en) Particle passage position detection device
JP3480670B2 (en) Light intensity distribution detector
EP1544600A1 (en) Flow cell, and particle measurement device using the same
JP5438198B1 (en) Light scattering particle counter
JP2899359B2 (en) Method and apparatus for measuring particles in fluid
US20020030815A1 (en) Light scattering type particle detector
KR940000735B1 (en) Electron beam pattern line width measurement system
JP2004251906A (en) Measurement method and measurement device of insulator thickness of flat ribbon cable in conducting path
JPH05240770A (en) Particle counter
KR100860933B1 (en) Flow cell and particle measuring apparatus using the same
JPH05240769A (en) Particle counter
JPS62151742A (en) Analyzing and selecting device for corpuscle
JPH0718788B2 (en) Optical particle measuring device
JPH0442621B2 (en)
JPH03200049A (en) Scanning type fine particle detector
JPH02196943A (en) Sample cell for measuring microobject
JPH065165B2 (en) Photoelectric object detector
JPH03285244A (en) Ion scattering analyzing device
JPH03142302A (en) Optical width measuring instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees