JPH11211378A - Heat transfer pipe for heat-exchanger - Google Patents

Heat transfer pipe for heat-exchanger

Info

Publication number
JPH11211378A
JPH11211378A JP1139098A JP1139098A JPH11211378A JP H11211378 A JPH11211378 A JP H11211378A JP 1139098 A JP1139098 A JP 1139098A JP 1139098 A JP1139098 A JP 1139098A JP H11211378 A JPH11211378 A JP H11211378A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
pressure
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1139098A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
喜夫 鈴木
Tadao Otani
忠男 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1139098A priority Critical patent/JPH11211378A/en
Publication of JPH11211378A publication Critical patent/JPH11211378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer pipe for a heat-exchanger having a thin section and a sufficiently high pressure resisting strength even when a refrigerant having a working pressure higher than that of R22 is used. SOLUTION: A refrigerant the phase of which is changed is caused to flow through a pipe and heat-exchange with fluid outside a pipe to cause the occurrence of vaporization or condensation of a refrigerant. In such a heat transfer pipe for a heat-exchanger, the number of cycle to break available when a repeated pressure being 1.5 times a working pressure is exerted is 326, 500 times or more and a ratio of a minimum thickness T of a pipe to the outside diameter thereof is 0.04-0.056.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置や冷
凍機などの熱交換器に用いられる伝熱管に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for a heat exchanger such as an air conditioner and a refrigerator.

【0002】[0002]

【従来の技術】ルームエアコンやパッケージエアコンな
どの空気調和装置に用いられる従来の冷媒としてR22
が挙げられるが、このR22はオゾン層破壊係数が高い
ため、環境保護の観点からR410Aに切り替えられて
いる。
2. Description of the Related Art R22 is a conventional refrigerant used in air conditioners such as room air conditioners and package air conditioners.
However, since R22 has a high ozone layer depletion potential, it has been switched to R410A from the viewpoint of environmental protection.

【0003】R410Aの凝縮圧力(以下、使用圧力と
呼ぶ)は、R22の使用圧力(約18kgf/cm
2 (1.76×106 Pa))の約1.6倍になるた
め、冷媒をR410Aに変えると共に、凝縮温度をR2
2使用時と同じ温度の約50℃とした場合、R410A
の使用圧力は約30kgf/cm2 (2.94×106
Pa)となる。そのため、冷媒としてR410Aを用い
る場合、使用機器の耐圧強度の向上が必要となると共
に、熱交換器用伝熱管の耐圧強度の向上も必要となる。
ここで、熱交換器用伝熱管としては、内面溝付管がよく
用いられている。
The condensing pressure of R410A (hereinafter referred to as operating pressure) is the operating pressure of R22 (about 18 kgf / cm).
2 (1.76 × 10 6 Pa)), the refrigerant is changed to R410A and the condensation temperature is changed to R2.
2 When the temperature is about 50 ° C, which is the same as when using, R410A
Operating pressure is about 30 kgf / cm 2 (2.94 × 10 6
Pa). Therefore, when R410A is used as the refrigerant, it is necessary to improve the pressure resistance of the equipment used, and also to improve the pressure resistance of the heat exchanger tubes for the heat exchanger.
Here, as a heat exchanger tube for a heat exchanger, an inner surface grooved tube is often used.

【0004】内面溝付管の横断面図を図6に示す。FIG. 6 shows a cross sectional view of an inner grooved tube.

【0005】図6に示すように、内面溝付管31の内面
には多数の連続フィン32が形成されており、隣り合う
連続フィン32の間には内面溝33が形成されている。
連続フィン32の基部における内面溝付管31の肉厚T
は、例えば、外径Dがφ7.0mmの内面溝付銅管で
0.25〜0.27mmとなっている。
As shown in FIG. 6, a plurality of continuous fins 32 are formed on the inner surface of an inner grooved tube 31, and an inner groove 33 is formed between adjacent continuous fins 32.
Thickness T of inner grooved tube 31 at the base of continuous fin 32
Is, for example, an inner grooved copper pipe having an outer diameter D of φ7.0 mm, which is 0.25 to 0.27 mm.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、熱交換
器用伝熱管の耐圧強度を測定するための評価圧力は、使
用圧力の1.5倍であるため、R22の評価圧力は約2
8kgf/cm2 (2.74×106 Pa)、R410
Aの評価圧力は約45kgf/cm2 (4.41×10
6 Pa)となる。
However, since the evaluation pressure for measuring the pressure resistance of the heat exchanger tube for a heat exchanger is 1.5 times the working pressure, the evaluation pressure of R22 is about 2 times.
8 kgf / cm 2 (2.74 × 10 6 Pa), R410
The evaluation pressure of A is about 45 kgf / cm 2 (4.41 × 10
6 Pa).

【0007】冷媒としてR22を用いた従来の場合にお
いては、熱交換器用伝熱管の耐久性に問題は生じていな
かったため、冷媒としてR410Aを用いる場合、熱交
換器用伝熱管の応力がR22の時と同等なら耐久性に問
題はないと言うことになる。
In the conventional case where R22 is used as the refrigerant, no problem has occurred in the durability of the heat exchanger tubes for the heat exchanger. Therefore, when R410A is used as the refrigerant, when the stress of the heat exchanger tubes for the heat exchanger is R22. If they are equal, there is no problem in durability.

【0008】そこで、薄肉円筒公式 σ=p(b0 /t−1)… (但し、σ:応力,b0 :初期外径,t=b0 −a0
0 :初期内径,p:内圧(機械工学便覧 日本機械学
会編 1987 第6章A4−72))を用いて、p=
28kgf/cm2 、t=0.25mm、b0 =7.0
mm、冷媒としてR22を使用した時の熱交換器用伝熱
銅管の応力σ22を求めると、σ22=756kgf/cm
2 となる。次に、p=45kgf/cm2 、冷媒として
R410Aを使用した時の熱交換器用伝熱銅管の応力を
σ22として、b0 =7.0mmとした時の肉厚tを式
から求めると、t=0.39mmとなる。
Accordingly, a thin cylinder formula σ = p (b 0 / t−1) (where σ: stress, b 0 : initial outer diameter, t = b 0 −a 0 ,
a 0: initial inner diameter, p: pressure (Mechanical Engineering Handbook Japan Society of Mechanical Engineers ed. 1987 Chapter 6 A4-72)) using a, p =
28 kgf / cm 2 , t = 0.25 mm, b 0 = 7.0
mm, the stress σ 22 of the heat transfer copper tube for a heat exchanger when R22 is used as the refrigerant is σ 22 = 756 kgf / cm
It becomes 2 . Next, when the stress of the heat transfer copper pipe for a heat exchanger when p = 45 kgf / cm 2 and R410A is used as the refrigerant is σ 22 , and the thickness t when b 0 = 7.0 mm is obtained from the equation, , T = 0.39 mm.

【0009】したがって、現行技術において、冷媒をR
22からR410Aに変更すると共に、凝縮温度をR2
2使用時と同じ温度の約50℃とした場合、φ7.0m
mの熱交換器用伝熱銅管の肉厚は最低でも0.39mm
必要となる(肉厚/外径比≧0.056)。
Therefore, in the current technology, the refrigerant is R
22 to R410A, and the condensation temperature to R2
2 When the temperature is the same as when using 50 ° C, φ7.0m
The minimum thickness of the heat transfer copper tube for heat exchangers is 0.39mm
Required (thickness / outer diameter ratio ≧ 0.056).

【0010】すなわち、R410A使用時の熱交換器用
伝熱銅管は、従来のR22使用時の熱交換器用伝熱銅管
に比べて、肉厚が約0.14mm厚くなるため、熱交換
器用伝熱銅管の単位長さ当りの重量が重くなると共に、
内径が約0.28mm小さくなるため、熱交換器用伝熱
銅管の圧力損失が増大するなどの問題が生じる。
That is, the heat transfer copper pipe for the heat exchanger when using R410A is about 0.14 mm thicker than the conventional heat transfer copper pipe for heat exchanger when using R22. As the weight per unit length of the hot copper tube increases,
Since the inner diameter is reduced by about 0.28 mm, problems such as an increase in pressure loss of the heat transfer copper tube for a heat exchanger occur.

【0011】また、熱交換器用伝熱銅管を熱交換器に組
み込む際においては、銅管の外表面とプレートフィンと
の密着性を高めるべく、銅管内に拡管プラグを挿入して
銅管の外径を拡管している。この時、熱交換器用伝熱銅
管の肉厚が厚くなることによって、銅管を拡管するため
に必要な荷重も大きくなる。このため、銅管内面に溝が
形成された内面溝付銅管においては、拡管の際に銅管内
面のフィンを押し潰す大きな力が作用することになり、
R22使用の場合より拡管時のフィン潰れが大きくな
る。これによって、内面溝付管の熱伝達率の低下が大き
くなり、空気調和装置自体の性能低下が生じると言う問
題があった。
When a heat transfer copper tube for a heat exchanger is incorporated into a heat exchanger, an expansion plug is inserted into the copper tube to increase the adhesion between the outer surface of the copper tube and the plate fin. The outer diameter of has been expanded. At this time, as the thickness of the heat transfer copper tube for a heat exchanger increases, the load required for expanding the copper tube also increases. For this reason, in the copper pipe with an inner surface groove in which a groove is formed on the inner surface of the copper tube, a large force acts to crush the fins on the inner surface of the copper tube during expansion.
Fin collapse at the time of tube expansion is greater than in the case of using R22. As a result, there is a problem that the heat transfer coefficient of the inner grooved pipe is greatly reduced, and the performance of the air conditioner itself is reduced.

【0012】そこで本発明は、上記課題を解決し、薄肉
で、かつ、R22よりも使用圧力が高い冷媒を用いた場
合においても十分な耐圧強度を有する熱交換器用伝熱管
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat exchanger tube for a heat exchanger which is thin and has a sufficient pressure resistance even when a refrigerant having a higher working pressure than R22 is used. .

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、管内に相変化する冷媒を流通させ
ると共に、管外流体と熱交換させて冷媒の蒸発または凝
縮を生じさせる熱交換器用伝熱管において、使用圧力の
1.5倍の繰り返し圧力をかけた際の破壊繰り返し数が
326,500回以上であり、かつ、管の最小肉厚と外
径との比が0.04〜0.056であるものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the invention of claim 1 circulates a phase-change refrigerant in a pipe and causes heat exchange with a fluid outside the pipe to cause evaporation or condensation of the refrigerant. In the heat exchanger tube for a heat exchanger, the number of repetitions of destruction when a repetitive pressure 1.5 times the working pressure is applied is 326,500 or more, and the ratio of the minimum wall thickness to the outer diameter of the tube is 0. 04 to 0.056.

【0014】請求項2の発明は、上記繰り返し圧力が4
5kgf/cm2 (約4.41×106 Pa)以上であ
る請求項1記載の熱交換器用伝熱管である。
According to a second aspect of the present invention, the repetition pressure is 4
The heat exchanger tube for a heat exchanger according to claim 1, wherein the heat transfer tube has a pressure of 5 kgf / cm 2 (about 4.41 × 10 6 Pa) or more.

【0015】請求項3の発明は、上記冷媒がR410A
である請求項1記載の熱交換器用伝熱管である。
According to a third aspect of the present invention, the refrigerant is R410A
The heat exchanger tube for a heat exchanger according to claim 1, wherein

【0016】以上の構成によれば、管内に相変化する冷
媒を流通させると共に、管外流体と熱交換させて冷媒の
蒸発または凝縮を生じさせる熱交換器用伝熱管におい
て、使用圧力の1.5倍の繰り返し圧力をかけた際の破
壊繰り返し数が326,500回以上であり、かつ、管
の最小肉厚と外径との比が0.04〜0.056である
ため、薄肉で、かつ、R22よりも使用圧力が高い冷媒
を用いた場合においても十分な耐圧強度を有する熱交換
器用伝熱管を得ることができる。
According to the above-described structure, in the heat exchanger tube for a heat exchanger in which the phase-changing refrigerant is circulated in the pipe and exchanges heat with the fluid outside the pipe to cause the refrigerant to evaporate or condense, the operating pressure of 1.5. Since the number of times of destruction repetition when a double pressure is applied is 326,500 times or more, and the ratio of the minimum wall thickness to the outer diameter of the pipe is 0.04 to 0.056, it is thin and Even when a refrigerant having a higher working pressure than R22 is used, a heat exchanger tube for a heat exchanger having a sufficient pressure resistance can be obtained.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0018】本発明の熱交換器用伝熱管は、使用圧力の
1.5倍の繰り返し圧力をかけた際の破壊繰り返し数が
326,500回以上であり、かつ、管の最小肉厚と外
径との比が0.04〜0.056のものである。
In the heat exchanger tube for a heat exchanger of the present invention, the number of times of destruction repetition when a repetitive pressure 1.5 times the working pressure is applied is 326,500 times or more, and the minimum wall thickness and outer diameter of the tube. Is 0.04 to 0.056.

【0019】熱交換器用伝熱管としては特に限定するも
のではないが、熱交換効率を考慮すると内面溝付管が特
に好ましい。
Although the heat transfer tube for the heat exchanger is not particularly limited, an inner grooved tube is particularly preferable in consideration of heat exchange efficiency.

【0020】また、熱交換器用伝熱管の材質は特に限定
するものではないが、銅または銅合金が特に好ましい。
The material of the heat exchanger tube is not particularly limited, but copper or a copper alloy is particularly preferred.

【0021】次に、本発明の作用を説明する。Next, the operation of the present invention will be described.

【0022】使用圧力が約18kgf/cm2 のR22
用の熱交換器用伝熱管として、例えば、外径が7.0m
m、最小肉厚が0.25mmの内面溝付管を用いていた
場合、凝縮温度を略同等のまま冷媒を現行のR22から
R410Aに変更すると、使用圧力が約30kgf/c
2 となるため耐圧強度の向上が必要となる。管の外径
を同じにした場合では、R410A用の内面溝付管の計
算上の寸法は、前述したの式から最小肉厚が0.39
mmとなる。
R22 whose working pressure is about 18 kgf / cm 2
Heat exchanger tube for heat exchanger, for example, the outer diameter is 7.0m
m, when using a grooved tube with an inner surface with a minimum thickness of 0.25 mm, if the refrigerant is changed from the current R22 to R410A while keeping the condensing temperature substantially equal, the working pressure becomes about 30 kgf / c.
m 2 , the pressure resistance must be improved. In the case where the outer diameter of the pipe is the same, the calculated dimension of the inner grooved pipe for R410A is 0.39 from the above equation.
mm.

【0023】しかし、本発明の熱交換器用伝熱管におい
ては、使用圧力の1.5倍の繰り返し圧力をかけた際の
破壊繰り返し数が326,500回以上であり、かつ、
管の最小肉厚と外径との比を0.04〜0.056に規
定しているため、実際には、外径が7.0mm、最小肉
厚が0.28〜0.392mmとなる。
However, in the heat exchanger tube for a heat exchanger of the present invention, the number of times of destruction when applying a repetitive pressure 1.5 times the working pressure is 326,500 or more, and
Since the ratio between the minimum wall thickness and the outer diameter of the pipe is defined as 0.04 to 0.056, the outer diameter is actually 7.0 mm and the minimum wall thickness is 0.28 to 0.392 mm. .

【0024】すなわち、本発明の熱交換器用伝熱管によ
れば、使用圧力の1.5倍の繰り返し圧力をかけた際の
破壊繰り返し数および管の最小肉厚と外径との比を規定
しているため、現行の冷媒であるR22よりも使用圧力
が高い冷媒を使用する際に、耐久性は十分に確保したま
ま、R22の使用圧力から薄肉円筒公式を用いて求めら
れる最小肉厚よりも更に肉厚が薄い熱交換器用伝熱管を
得ることができる。
That is, according to the heat exchanger tube for a heat exchanger of the present invention, the number of repetitions of breakage when a repetitive pressure 1.5 times the working pressure is applied and the ratio of the minimum wall thickness to the outer diameter of the tube are specified. Therefore, when using a refrigerant having a higher working pressure than R22, which is the current refrigerant, while maintaining sufficient durability, the minimum wall thickness obtained from the working pressure of R22 by using the thin cylinder formula is used. Further, a heat exchanger tube for a heat exchanger having a small thickness can be obtained.

【0025】また、熱交換器用伝熱管の最小肉厚が減少
することで、管内における冷媒が流れる断面積が増加す
ることになり、冷媒の圧力損失を低減することができ
る。さらに、計算から推定される最小肉厚よりも更に肉
厚を減少させることができるため、熱交換器用伝熱管の
単位長さ当りの重量を軽くすることができる。すなわ
ち、熱交換器の軽量化および空気調和装置全体の効率向
上などに効果がある。
In addition, since the minimum thickness of the heat exchanger tube for a heat exchanger is reduced, the cross-sectional area in which the refrigerant flows in the tube increases, and the pressure loss of the refrigerant can be reduced. Further, since the thickness can be further reduced from the minimum thickness estimated from the calculation, the weight per unit length of the heat exchanger tube for a heat exchanger can be reduced. That is, it is effective in reducing the weight of the heat exchanger and improving the efficiency of the entire air conditioner.

【0026】次に、本発明の他の実施の形態を説明す
る。
Next, another embodiment of the present invention will be described.

【0027】第1の実施の形態の熱交換器用伝熱管の内
面一部の模式図を図2に示す。
FIG. 2 is a schematic view of a part of the inner surface of the heat exchanger tube for a heat exchanger according to the first embodiment.

【0028】図2に示すように、本実施の形態の熱交換
器用伝熱管(内面溝付管)1は、管内面に内面溝3およ
び内面溝3と交差する第二溝4を形成して管内面に横断
面が略三角の突起(フィン)2を多数個形成したもので
ある。図中においては、第二溝4の部分が最小肉厚Tと
なっているが、内面溝3の溝深さを第二溝4よりも深く
してもよいことは言うまでもない。また、内面溝3と第
二溝4との交差角度は特に限定するものではない。
As shown in FIG. 2, the heat exchanger tube (tube with an inner surface groove) 1 for a heat exchanger of the present embodiment has an inner surface groove 3 and a second groove 4 intersecting with the inner surface groove 3 on the inner surface of the tube. A large number of projections (fins) 2 having a substantially triangular cross section are formed on the inner surface of the tube. In the figure, the portion of the second groove 4 has the minimum thickness T, but it goes without saying that the groove depth of the inner surface groove 3 may be deeper than the second groove 4. Further, the intersection angle between the inner surface groove 3 and the second groove 4 is not particularly limited.

【0029】第2の実施の形態の熱交換器用伝熱管の内
面一部の模式図を図3に示す。
FIG. 3 is a schematic view of a part of the inner surface of the heat exchanger tube for a heat exchanger according to the second embodiment.

【0030】図3に示すように、本実施の形態の熱交換
器用伝熱管(内面溝付管)11は、管内面に段部14を
有した内面溝13を形成して管内面に多数の連続フィン
12を形成したものである。図中においては、内面溝1
3底部の断面形状は凹状となっているが、凸状であって
もよいことは言うまでもない。また、内面溝13底部の
段部14の数は複数個であってもよいことは言うまでも
ない。
As shown in FIG. 3, a heat exchanger tube (inner grooved tube) 11 for a heat exchanger of the present embodiment has an inner surface groove 13 having a step portion 14 on the inner surface of the tube to form a large number of grooves on the inner surface of the tube. The continuous fins 12 are formed. In the figure, the inner surface groove 1
The cross-sectional shape of the three bottoms is concave, but it goes without saying that it may be convex. Needless to say, the number of steps 14 at the bottom of the inner groove 13 may be plural.

【0031】ここで、第1および第2の実施の形態の熱
交換器用伝熱管(内面溝付管)1,11を、実際に熱交
換器に溶接する際においては、溶接ビード部を含まない
第二溝4および段部14の部分の肉厚を最小肉厚(底肉
厚)Tとする。これは、溶接ビード部が、第二溝4およ
び段部14の部分より厚くなることによる。
Here, when the heat exchanger tubes (inner grooved tubes) 1 and 11 of the first and second embodiments are actually welded to the heat exchanger, no weld bead portion is included. The thickness of the portion of the second groove 4 and the step portion 14 is defined as a minimum thickness (bottom thickness) T. This is because the weld bead portion is thicker than the portion of the second groove 4 and the step portion 14.

【0032】また、第1および第2の実施の形態の熱交
換器用伝熱管(内面溝付管)1,11における内圧に対
する耐久性は、管内面に形成されたフィン2,12の
数、形状、および先端部加工状態によるものではなく、
管の最小肉厚部分によることは明白である。したがっ
て、フィン2,12の数、形状、および先端部加工状態
は特に限定するものではなく、適宜選択されるものであ
る。
The durability of the heat exchanger tubes (inner grooved tubes) 1 and 11 of the first and second embodiments against internal pressure depends on the number and shape of the fins 2 and 12 formed on the inner surfaces of the tubes. , And not due to the tip processing state,
It is clear that this is due to the minimum wall thickness of the tube. Therefore, the number, shape, and processing state of the end portions of the fins 2 and 12 are not particularly limited, and are appropriately selected.

【0033】さらに、第1および第2の実施の形態の熱
交換器用伝熱管(内面溝付管)1,11におけるフィン
2,12と内面溝3,13との各境界部は、応力集中に
よる管の亀裂を避けるべく、R加工を施しておくことが
好ましい。
Further, the boundaries between the fins 2, 12 and the inner grooves 3, 13 in the heat exchanger tubes (inner grooved tubes) 1, 11 of the first and second embodiments are caused by stress concentration. In order to avoid cracks in the pipe, it is preferable to carry out R processing.

【0034】尚、第1および第2の実施の形態の熱交換
器用伝熱管においても、本発明と同様の作用効果を奏す
ることは言うまでもない。
It is needless to say that the heat transfer tubes for heat exchangers of the first and second embodiments also have the same operational effects as the present invention.

【0035】[0035]

【実施例】先ず、最小肉厚が0.25mmであるR22
用の内面溝付管に、熱交換器組み立てと同様の拡管およ
びヘアピン曲げ加工を施したものを評価サンプルとし、
現状のルームエアコンの使用圧力の1.5倍の繰り返し
圧力(評価圧力;30kgf/cm2 )をかけて内圧繰
り返し試験を行い、破壊までの繰り返し数の評価を行っ
た。この時、エアコンの熱交換器にかかる圧力の変動
は、エアコン停止状態から運転状態またはその逆の操作
時が最大となるため、1.0〜30kgf/cm2 (約
0.098×106 〜2.94×106 Pa)の範囲で
連続的に繰り返し圧力を加圧・除圧する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, R22 having a minimum thickness of 0.25 mm
For the inner grooved tube for use, the same expansion tube and hairpin bending process as in the heat exchanger assembly was used as the evaluation sample.
An internal pressure repetition test was performed by applying a repetition pressure (evaluation pressure; 30 kgf / cm 2 ) 1.5 times the operating pressure of the current room air conditioner, and the number of repetitions up to destruction was evaluated. At this time, the variation of the pressure on the air-conditioning heat exchanger, since the time of operation from the air conditioner stop state operating state and vice versa is maximum, 1.0~30kgf / cm 2 (about 0.098 × 10 6 ~ The pressure is repeatedly increased and reduced in the range of 2.94 × 10 6 Pa).

【0036】その結果、R22用の内面溝付管は、32
6,500回で構造破壊を起こした。現行の冷媒である
R22を使用した熱交換器は十分な耐久性(耐圧強度)
を有しているため、この繰り返し数326,500回
が、耐久性の判断基準となる。すなわち、使用圧力が、
現行のエアコンの熱交換器の使用圧力より高くなって
も、それに応じた評価圧力での繰り返し試験で、現行の
エアコンの熱交換器と同等以上の耐久性(繰り返し数;
326,500回以上)が得られれば、現行のエアコン
の熱交換器と同様の使用環境においても十分な耐久性が
確保できるものと考えられる。
As a result, the inner grooved pipe for R22 is 32
At 6,500 times, structural destruction occurred. The heat exchanger using the current refrigerant R22 has sufficient durability (pressure resistance)
Therefore, the repetition number 326,500 times is a criterion for determining durability. That is, the working pressure is
Even if the operating pressure of the current air conditioner heat exchanger is higher than that of the current air conditioner, the durability of the heat exchanger of the current air conditioner is equal to or higher than that of the current air conditioner in the repetition test at the evaluated pressure.
(326,500 times or more), it is considered that sufficient durability can be ensured even in a use environment similar to that of a heat exchanger of a current air conditioner.

【0037】耐久性試験に用いた内圧繰り返し試験機の
油圧系統図を図4に示す。
FIG. 4 shows a hydraulic system diagram of the internal pressure repetition tester used for the durability test.

【0038】図4に示すように、内圧繰り返し試験機4
1は、作動油23を蓄えておくためのオイルタンク22
と、ストレーナ42を備え、かつ、作動油23を吸い上
げるための油圧ポンプ24と、油圧ポンプ24を駆動す
るためのモータ25と、油圧ポンプ24から吐出される
作動油23の一部をオイルタンク22に戻すためのリリ
ーフバルブ26と、発生圧力を計測するための圧力計2
7と、加圧された作動油23を、フレキシブルホース2
9を介して接続された内面溝付管(試験サンプル)21
とオイルタンク22への戻り配管30とに切り替えるた
めのソレノイドバルブ28から構成されている。
As shown in FIG.
1 is an oil tank 22 for storing hydraulic oil 23
, A hydraulic pump 24 for drawing up the hydraulic oil 23, a motor 25 for driving the hydraulic pump 24, and a part of the hydraulic oil 23 discharged from the hydraulic pump 24 Relief valve 26 for returning pressure and pressure gauge 2 for measuring generated pressure
7 and the pressurized hydraulic oil 23 are supplied to the flexible hose 2
Internal grooved tube (test sample) 21 connected via 9
And a return pipe 30 to the oil tank 22.

【0039】油圧ポンプ24から吐出される作動油23
がオイルタンク22に戻る量をリリーフバルブ26によ
って調整することで、内面溝付管21にかかる圧力を調
整する。この圧力調整は、圧力計27で圧力を計測しな
がら行うものである。
Hydraulic oil 23 discharged from hydraulic pump 24
By adjusting the amount of oil returning to the oil tank 22 by the relief valve 26, the pressure applied to the inner grooved pipe 21 is adjusted. This pressure adjustment is performed while measuring the pressure with the pressure gauge 27.

【0040】内面溝付管21に対する加圧・除圧は、ソ
レノイドバルブ28のON−OFF動作により油圧経路
を切り替えて行うものである。ソレノイドバルブ28の
ONおよびOFFの保持時間は、それぞれ個別のタイマ
ー(図示せず)で設定できるようになっている。
The pressurization and depressurization of the inner grooved pipe 21 is performed by switching the hydraulic path by the ON / OFF operation of the solenoid valve 28. The ON and OFF holding times of the solenoid valve 28 can be set by individual timers (not shown).

【0041】次に、R410A用の熱交換器用伝熱管と
して、肉厚が異なる外径7mmの各内面溝付管に熱交換
器組み立てと同様の拡管およびヘアピン曲げ加工を施し
たものを用い、管内に1.6〜45kgf/cm2 (約
0.157×106 〜4.41×106 Pa)の圧力を
繰り返しかけ、各内面溝付管の破壊までの繰り返し数と
肉厚との関係から、R22用の内面溝付管と同等以上の
耐久性を有するR410A用の内面溝付管の最小肉厚を
求める。
Next, as a heat exchanger tube for a heat exchanger for R410A, tubes each having an inner diameter of 7 mm with a different wall thickness and subjected to the same expansion and hairpin bending as in the assembly of the heat exchanger were used. Pressure of 1.6 to 45 kgf / cm 2 (approximately 0.157 × 10 6 to 4.41 × 10 6 Pa), and the relationship between the number of repetitions up to the destruction of each inner grooved tube and the wall thickness. The minimum wall thickness of the inner grooved pipe for R410A having the durability equal to or more than that of the inner grooved pipe for R22 is determined.

【0042】内圧繰り返し試験における圧力勾配のチャ
ート図を図5に示す。図中の横軸は時間を、縦軸は圧力
(kgf/cm2 )を示している。
FIG. 5 shows a chart of the pressure gradient in the internal pressure repetition test. In the figure, the horizontal axis represents time, and the vertical axis represents pressure (kgf / cm 2 ).

【0043】図5に示すように、内圧繰り返し試験は、
ソレノイドバルブのONおよびOFFの保持時間をそれ
ぞれ5sec、1.5secとすると共に、1.6〜4
5kgf/cm2 の範囲で連続的に繰り返し圧力を加圧
・除圧するものである。
As shown in FIG. 5, the internal pressure repetition test
The holding time of ON and OFF of the solenoid valve is set to 5 sec and 1.5 sec, respectively, and 1.6 to 4 sec.
The pressure is repeatedly increased and reduced in the range of 5 kgf / cm 2 continuously.

【0044】本発明の熱交換器用伝熱管の破壊までの繰
り返し数と肉厚との関係を図1に示す。図中の横軸は図
5に示した内圧繰り返し試験を行った時の破壊繰り返し
数(×105 回)を、縦軸は熱交換器に組む前の状態に
おける内面溝付管(熱交換器用伝熱管)の最小肉厚(m
m)を示しており、図中の点線は、336,500回の
ラインを示している。
FIG. 1 shows the relationship between the number of repetitions up to the destruction of the heat exchanger tube for a heat exchanger of the present invention and the wall thickness. The abscissa in the figure indicates the number of repetitions of fracture (× 10 5 times) when the internal pressure repetition test shown in FIG. 5 was performed, and the ordinate indicates the inner grooved tube (for heat exchanger) before being assembled into the heat exchanger. Minimum wall thickness of heat transfer tube (m)
m), and the dotted line in the figure indicates 336,500 lines.

【0045】図1に示すように、評価圧力での破壊繰り
返し数が336,500回を上回る内面溝付管の最小肉
厚は0.28mm以上となる。これは、内面溝付管の外
径の0.04倍以上である。ここで、最小肉厚の上限
は、前述した式から求められた肉厚/外径比である
0.056以下とする。
As shown in FIG. 1, the minimum thickness of the inner grooved pipe having the number of times of destruction repeated at the evaluation pressure exceeding 336,500 is 0.28 mm or more. This is at least 0.04 times the outer diameter of the inner grooved tube. Here, the upper limit of the minimum thickness is 0.056 or less, which is the thickness / outer diameter ratio obtained from the above-described equation.

【0046】本発明の熱交換器用伝熱管は、空気調和装
置に限らず、熱交換器全般に適用することができること
は言うまでもなく、また、使用冷媒もR410Aに限定
されることはなく、使用圧力が30kgf/cm2 より
も大きな冷媒であってもよい。
Needless to say, the heat exchanger tube for a heat exchanger of the present invention can be applied not only to air conditioners but also to general heat exchangers, and the refrigerant used is not limited to R410A, and the operating pressure is not limited to R410A. May be a refrigerant larger than 30 kgf / cm 2 .

【0047】[0047]

【発明の効果】以上要するに本発明によれば、使用圧力
の1.5倍の繰り返し圧力をかけた際の破壊繰り返し数
および管の最小肉厚と外径との比を規定することで、現
行の冷媒であるR22よりも使用圧力が高い冷媒を使用
する際に、耐久性は十分に確保したまま、R22の使用
圧力から薄肉円筒公式を用いて求められる最小肉厚より
も更に肉厚が薄い熱交換器用伝熱管を得ることができる
という優れた効果を発揮する。
In summary, according to the present invention, the number of repetitions of breakage and the ratio of the minimum wall thickness to the outer diameter of a pipe when a repetitive pressure 1.5 times the working pressure is applied are defined. When using a refrigerant having a higher operating pressure than R22, which is a refrigerant, the wall thickness is thinner than the minimum thickness obtained by using the thin-walled cylindrical formula from the operating pressure of R22 while maintaining sufficient durability. An excellent effect that a heat exchanger tube for a heat exchanger can be obtained is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器用伝熱管の破壊までの繰り返
し数と肉厚との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the number of repetitions up to destruction and the wall thickness of a heat exchanger tube for a heat exchanger of the present invention.

【図2】第1の実施の形態の熱交換器用伝熱管の内面一
部の模式図である。
FIG. 2 is a schematic diagram of a part of the inner surface of the heat exchanger tube for a heat exchanger according to the first embodiment.

【図3】第2の実施の形態の熱交換器用伝熱管の内面一
部の模式図である。
FIG. 3 is a schematic view of a part of an inner surface of a heat exchanger tube for a heat exchanger according to a second embodiment.

【図4】耐久性試験に用いた内圧繰り返し試験機の油圧
系統図である。
FIG. 4 is a hydraulic system diagram of an internal pressure repetition tester used for a durability test.

【図5】内圧繰り返し試験における圧力勾配のチャート
図である。
FIG. 5 is a chart of a pressure gradient in an internal pressure repetition test.

【図6】内面溝付管の横断面図である。FIG. 6 is a cross-sectional view of the inner grooved pipe.

【符号の説明】[Explanation of symbols]

T 最小肉厚 T Minimum thickness

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管内に相変化する冷媒を流通させると共
に、管外流体と熱交換させて冷媒の蒸発または凝縮を生
じさせる熱交換器用伝熱管において、使用圧力の1.5
倍の繰り返し圧力をかけた際の破壊繰り返し数が32
6,500回以上であり、かつ、管の最小肉厚と外径と
の比が0.04〜0.056であることを特徴とする熱
交換器用伝熱管。
1. A heat exchanger tube for a heat exchanger, in which a phase-changing refrigerant flows through a pipe and exchanges heat with an extrapipe fluid to cause the refrigerant to evaporate or condense.
The number of repetition of destruction when applying double pressure is 32
A heat exchanger tube for a heat exchanger, wherein the ratio is a minimum of 6,500 times and the ratio of the minimum wall thickness to the outer diameter is 0.04 to 0.056.
【請求項2】 上記繰り返し圧力が45kgf/cm2
(約4.41×106 Pa)以上である請求項1記載の
熱交換器用伝熱管。
2. The method according to claim 1, wherein the repetition pressure is 45 kgf / cm 2.
The heat transfer tube for a heat exchanger according to claim 1, wherein the heat transfer tube is at least about 4.41 x 10 6 Pa.
【請求項3】 上記冷媒がR410Aである請求項1記
載の熱交換器用伝熱管。
3. The heat exchanger tube for a heat exchanger according to claim 1, wherein the refrigerant is R410A.
JP1139098A 1998-01-23 1998-01-23 Heat transfer pipe for heat-exchanger Pending JPH11211378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139098A JPH11211378A (en) 1998-01-23 1998-01-23 Heat transfer pipe for heat-exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139098A JPH11211378A (en) 1998-01-23 1998-01-23 Heat transfer pipe for heat-exchanger

Publications (1)

Publication Number Publication Date
JPH11211378A true JPH11211378A (en) 1999-08-06

Family

ID=11776692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139098A Pending JPH11211378A (en) 1998-01-23 1998-01-23 Heat transfer pipe for heat-exchanger

Country Status (1)

Country Link
JP (1) JPH11211378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006103788A1 (en) * 2005-03-25 2008-09-04 清華大学 Heat transfer pipe for hot water supply
JP2009530581A (en) * 2006-03-23 2009-08-27 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト How to use heat exchanger tubes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006103788A1 (en) * 2005-03-25 2008-09-04 清華大学 Heat transfer pipe for hot water supply
US8215380B2 (en) 2005-03-25 2012-07-10 Tsinghua University Hot water heat transfer pipe
JP2009530581A (en) * 2006-03-23 2009-08-27 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト How to use heat exchanger tubes

Similar Documents

Publication Publication Date Title
US6928833B2 (en) Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
US8037699B2 (en) Heat exchanger and air conditioner using the same
AU2011100257A4 (en) Heat exchanger and heat pump device using same
WO2006059544A1 (en) Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
US20020078566A1 (en) Heat exchanger made of aluminum alloy
US7181929B2 (en) Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube
JPH11211378A (en) Heat transfer pipe for heat-exchanger
JP2006194476A (en) Outdoor heat exchanger
JP6053693B2 (en) Air conditioner
JPH09145076A (en) Heat exchanger
JP2002147981A (en) Heat exchanger tube and finned tube heat exchanger
JP2004125340A (en) Heat exchanger
US5159976A (en) Heat transfer device
JPH07127985A (en) Heat exchanger and its manufacturing method
JPH09303986A (en) Method and structure for fitting-in between plate fin for heat-exchanger and pipe
WO2004053414A1 (en) Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube
JP2007155192A (en) Refrigerating cycle device
JP2003202195A (en) Tube with fins for heat exchanger, heat exchanger, method for manufacturing tube with fins for heat exchanger and method for manufacturing heat exchanger
WO1994027105A1 (en) Mechanically assembled high internal pressure heat exchanger
JP2014001869A (en) Heat exchanger and refrigeration cycle device
WO2001092806A1 (en) Heating tube with internal grooves and heat exchanger
JPH0534085A (en) Heat exchanger and manufacture thereof
AU2002339744B2 (en) Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
JP4216422B2 (en) Heat exchanger and manufacturing method thereof
JPH08145501A (en) Heat exchanger with fins