JP2007155192A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2007155192A
JP2007155192A JP2005349777A JP2005349777A JP2007155192A JP 2007155192 A JP2007155192 A JP 2007155192A JP 2005349777 A JP2005349777 A JP 2005349777A JP 2005349777 A JP2005349777 A JP 2005349777A JP 2007155192 A JP2007155192 A JP 2007155192A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
cycle apparatus
refrigeration cycle
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005349777A
Other languages
Japanese (ja)
Inventor
Masaaki Sato
全秋 佐藤
Koichi Yamaguchi
山口  広一
Kazuhisa Tsunoda
和久 角田
Hajime Ono
一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Toshiba Carrier Corp
Original Assignee
Hokkaido Electric Power Co Inc
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Toshiba Carrier Corp filed Critical Hokkaido Electric Power Co Inc
Priority to JP2005349777A priority Critical patent/JP2007155192A/en
Publication of JP2007155192A publication Critical patent/JP2007155192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device improving a heat exchange amount, and preventing easy frost formation even when a mixed coolant of dimethyl ether and carbon dioxide is used. <P>SOLUTION: The refrigerating cycle device is provided with a compressor, a condenser, an expansion device, and an evaporator. The mixed coolant of dimethyl ether and carbon dioxide is used as a coolant, and a pressure loss increasing means is provided for increasing a pressure loss in a coolant passage of the evaporator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は冷凍サイクル装置に係り、特にジメチルエーテルと二酸化炭素からなる混合冷媒の使用に適する冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus suitable for using a mixed refrigerant composed of dimethyl ether and carbon dioxide.

従来、ヒートポンプ式給湯機等の冷凍サイクル装置の冷媒としてHCFC冷媒であるR22冷媒が一般に用いられていたが、近年、自然冷媒であるCO(二酸化炭素)冷媒が使用されている。 Conventionally, an R22 refrigerant, which is an HCFC refrigerant, has been generally used as a refrigerant in a refrigeration cycle apparatus such as a heat pump type hot water heater, but in recent years, a CO 2 (carbon dioxide) refrigerant, which is a natural refrigerant, has been used.

このCOは高圧であるため、高圧に対する安全性確保のために耐圧の強化などの対策が必要である。使用圧力を低下させ、高効率な冷凍サイクル装置の実現を期待されるジメチルエーテル(DMEという。)とCOの混合冷媒は、非共沸混合冷媒であり、同一圧力下において乾き度が大きくなるにつれ、蒸発温度が上昇する特性を持つ。 Since this CO 2 is at a high pressure, it is necessary to take measures such as strengthening the pressure resistance to ensure safety against the high pressure. A mixed refrigerant of dimethyl ether (referred to as DME) and CO 2 , which is expected to realize a highly efficient refrigeration cycle apparatus by lowering the working pressure, is a non-azeotropic mixed refrigerant, and as the dryness increases under the same pressure, It has the characteristic that the evaporation temperature increases.

このようなDMEとCOの混合冷媒を用い、図12に示すように、圧縮機62、凝縮器63、膨張装置64、図13に示す1個の蒸発器65からなる冷凍サイクル装置61では、図14に示すモリエル線図(圧力−エンタルピ線図)になる。 Using such a mixed refrigerant of DME and CO 2 , as shown in FIG. 12, in the refrigeration cycle apparatus 61 including the compressor 62, the condenser 63, the expansion device 64, and one evaporator 65 shown in FIG. The Mollier diagram (pressure-enthalpy diagram) shown in FIG. 14 is obtained.

このモリエル線図に示す(71)から(74)の各点は、図12に記載する冷凍サイクル装置の(71)から(74)の各点に対応し、各位置における圧力−エンタルピ状態を表わす。   Each point (71) to (74) shown in this Mollier diagram corresponds to each point (71) to (74) of the refrigeration cycle apparatus shown in FIG. 12, and represents the pressure-enthalpy state at each position. .

図12(図中矢印で示す)及び図14に示すように、圧縮機62から吐出され(図中点(71))、凝縮器63で凝縮された後(図中点(72))、膨張装置64で減圧され(図中点(73)、蒸発器65に流入し蒸発する(図中点(74)。   As shown in FIG. 12 (indicated by an arrow in the figure) and FIG. 14, after being discharged from the compressor 62 (point (71) in the figure) and condensed in the condenser 63 (point (72) in the figure), expansion is performed. The pressure is reduced by the device 64 (the point (73) in the figure, and it flows into the evaporator 65 and evaporates (the point (74) in the figure).

図14に示すように、蒸発器65内で等圧に近いと蒸発過程で等温線を何本も横切ることになる。このため、蒸発器65の管内(冷媒側)圧力損失が小さいと蒸発器65内の温度分布が大きくなり、また、蒸発器65の冷媒出口側では空気との温度差が小さくなり、あるいは逆転するなどで熱交換が行われ難くなる不具合が生じる。また、冬期などの低温下では、蒸発器65内に温度分布(温度差)があると蒸発器65の冷媒入口近傍に着霜する問題が発生する。   As shown in FIG. 14, if the pressure is close to the same pressure in the evaporator 65, many isotherms will be crossed during the evaporation process. For this reason, when the pressure loss in the pipe (refrigerant side) of the evaporator 65 is small, the temperature distribution in the evaporator 65 becomes large, and the temperature difference with air becomes small or reverses on the refrigerant outlet side of the evaporator 65. This causes a problem that heat exchange is difficult to be performed. Further, under a low temperature such as in winter, if there is a temperature distribution (temperature difference) in the evaporator 65, a problem of frost formation near the refrigerant inlet of the evaporator 65 occurs.

なお、CO冷媒を使用したヒートポンプ式給湯機として特開2001−201177号公報(例えば、特許文献1参照)のヒートポンプ式給湯機が提案されている。
特開2001−201177号公報
As heat pump water heater using CO 2 refrigerant JP 2001-201177 JP (e.g., see Patent Document 1) heat pump water heater has been proposed.
JP 2001-201177 A

本発明は上述した事情を考慮してなされたもので、ジメチルエーテルと二酸化炭素の混合冷媒を使用しても、熱交換量が向上し、着霜がしにくい冷凍サイクル装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a refrigeration cycle apparatus in which heat exchange is improved and frost formation is difficult even when a mixed refrigerant of dimethyl ether and carbon dioxide is used. To do.

上述した目的を達成するため、本発明に係る冷凍サイクル装置は、圧縮機、放熱器、膨張装置、蒸発器を備えた冷凍サイクル装置において、冷媒としてジメチルエーテルと二酸化炭素の混合冷媒を使用するとともに、前記蒸発器の冷媒流路に圧力損失を増大させる圧力損失増大手段を設けたことを特徴とする。   In order to achieve the above-described object, the refrigeration cycle apparatus according to the present invention uses a mixed refrigerant of dimethyl ether and carbon dioxide as a refrigerant in a refrigeration cycle apparatus including a compressor, a radiator, an expansion device, and an evaporator, Pressure loss increasing means for increasing pressure loss is provided in the refrigerant flow path of the evaporator.

本発明に係る冷凍サイクル装置によれば、ジメチルエーテルと二酸化炭素の混合冷媒を使用しても、熱交換量が向上し、着霜がしにくい冷凍サイクル装置を提供することができる。   According to the refrigeration cycle apparatus according to the present invention, even if a mixed refrigerant of dimethyl ether and carbon dioxide is used, it is possible to provide a refrigeration cycle apparatus that improves the amount of heat exchange and hardly forms frost.

以下、本発明の第1実施形態に係る冷凍サイクル装置について添付図面を参照して説明する。   Hereinafter, a refrigeration cycle apparatus according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第1実施形態に係る冷凍サイクル装置の構成図である。   FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to the first embodiment of the present invention.

図1に示すように、本第1実施形態の冷凍サイクル装置1は、圧縮機2、放熱器としての凝縮器3、膨張装置4、蒸発器5、この蒸発器5の冷媒流路に設けられ圧力損失を増大させる圧力損失増大手段、例えばキャピラリチューブ6を備え、冷媒としてDMEとCOの混合冷媒を使用する。 As shown in FIG. 1, the refrigeration cycle apparatus 1 of the first embodiment is provided in a compressor 2, a condenser 3 as a radiator, an expansion device 4, an evaporator 5, and a refrigerant flow path of the evaporator 5. A pressure loss increasing means for increasing the pressure loss, for example, a capillary tube 6 is provided, and a mixed refrigerant of DME and CO 2 is used as a refrigerant.

図2に示すように、蒸発器5は、所定のフィンピッチを存して並設される複数枚の板状フィン5aに冷媒流路を形成するU字状伝熱管5bを貫通させ、上記U字状伝熱管5bの開口端同士をリターンベンド16で接続したフィンチューブ型熱交換器であり、蒸発器5の配管の途中に圧力損失を増大させるキャピラリチューブ6(6a、6b)を設け、蒸発器5を例えば3領域に分割し、それぞれの蒸発器部分5A、5B、5Cに圧力差をつける。   As shown in FIG. 2, the evaporator 5 allows a plurality of plate-like fins 5 a arranged side by side with a predetermined fin pitch to pass through a U-shaped heat transfer tube 5 b that forms a refrigerant flow path. It is a finned tube heat exchanger in which the open ends of the letter-shaped heat transfer tube 5b are connected by a return bend 16, and a capillary tube 6 (6a, 6b) that increases pressure loss is provided in the middle of the piping of the evaporator 5 to evaporate The vessel 5 is divided into, for example, three regions, and pressure differences are given to the respective evaporator portions 5A, 5B, 5C.

図3は本第1実施形態の冷凍サイクル装置の動作を説明するためのモリエル線図であり、この図3に示す(11)から(16)の各点は、図1に記載する冷凍サイクル装置の(11)から(16)の各点に対応し、各位置における圧力−エンタルピ状態を表わす。   FIG. 3 is a Mollier diagram for explaining the operation of the refrigeration cycle apparatus according to the first embodiment, and the points (11) to (16) shown in FIG. 3 indicate the refrigeration cycle apparatus shown in FIG. Corresponding to the points (11) to (16), and the pressure-enthalpy state at each position.

図1及び図3に示すように、上記のような構成を有する本第1実施形態の冷凍サイクル装置によれば、図中矢印で示すように、圧縮機2から吐出された高温高圧の冷媒の蒸気は最も高い圧力とエンタルピを有し(図中点(11))、凝縮器3で凝縮された後(図中点(12))、膨張装置4で減圧され(図中点(13)、蒸発器部分5Aに流入し蒸発し、キャピラリチューブ6aにより減圧され(図中点(14)、蒸発器部分5Bに流入し蒸発し、さらに、キャピラリチューブ6bにより減圧され(図中点(15)、蒸発器部分6Cに流入し蒸発する。   As shown in FIGS. 1 and 3, according to the refrigeration cycle apparatus of the first embodiment having the above-described configuration, the high-temperature and high-pressure refrigerant discharged from the compressor 2 is Vapor has the highest pressure and enthalpy (point (11) in the figure), and after being condensed by the condenser 3 (point (12) in the figure), it is depressurized by the expansion device 4 (point (13) in the figure). It flows into the evaporator part 5A and evaporates and is depressurized by the capillary tube 6a (point (14) in the figure), flows into the evaporator part 5B and evaporates, and is further depressurized by the capillary tube 6b (point (15) in the figure). It flows into the evaporator part 6C and evaporates.

一般に非共沸混合冷媒であるCOとDMEの混合冷媒は、蒸発器内の温度分布が大きくなる問題があるが、本実施形態のように、蒸発器5の冷媒流路に圧力損失増大手段としてのキャピラリチューブ6a、6bを設けることにより、蒸発器部分5A、5B、5Cに3分割することにより、蒸発器5内の冷媒の状態は、図3に示すような状態線図になり、図12及び図14に示す従来の圧力損失増大手段を有しない蒸発器で冷媒を蒸発させるのに比べて、蒸発過程の冷媒の状態を等温線に沿わせるように変化させる図4に示す理想状態に近づけることができる。 Generally, the mixed refrigerant of CO 2 and DME, which is a non-azeotropic refrigerant, has a problem that the temperature distribution in the evaporator becomes large. However, as in this embodiment, the pressure loss increasing means is provided in the refrigerant flow path of the evaporator 5. As shown in FIG. 3, the state of the refrigerant in the evaporator 5 becomes a state diagram as shown in FIG. Compared to evaporating the refrigerant with an evaporator having no conventional pressure loss increasing means shown in FIGS. 12 and 14, the state of the refrigerant in the evaporating process is changed so as to follow the isotherm. You can get closer.

従って、上記非共沸混合冷媒を用いても、略等温線に沿って蒸発させることができ、蒸発温度の上昇を抑制し、熱交換相手である空気との温度差を大きくとれ、熱交換量を増大させることができ、また局部的に低温になるのを防いで、着霜をしにくくできる。   Therefore, even if the non-azeotropic refrigerant mixture is used, it can be evaporated substantially along the isotherm, the rise in the evaporation temperature can be suppressed, the temperature difference with the air that is the heat exchange partner can be increased, and the heat exchange amount In addition, it is possible to prevent local chilling and prevent frost formation.

また、図2に示すように、各蒸発器部分5A、5B、5Cの冷媒の流れは、風下側の伝熱管5b1を入口、風上側の伝熱管5b2を出口とする対向流的にすることが好ましい。すなわち、空気は蒸発器5内では、熱交換によって風上から風下に向かって温度が低下する。一方、図3に示すように各蒸発器部分5A、5B、5C内においては冷媒側の乾き度の上昇に伴い、冷媒の温度が上昇する。したがって、風下側の伝熱管5b1を入口、風上側の伝熱管5b1を出口にし、冷媒の特性に合わせて熱交換させることにより、熱交換相手である空気との温度差を大きくとれ、熱交換量を向上させることができる。   In addition, as shown in FIG. 2, the flow of the refrigerant in each of the evaporator portions 5A, 5B, and 5C may be counterflow with the leeward heat transfer tube 5b1 as an inlet and the leeward heat transfer tube 5b2 as an outlet. preferable. That is, the temperature of the air in the evaporator 5 decreases from the windward to the leeward due to heat exchange. On the other hand, as shown in FIG. 3, the temperature of the refrigerant rises in each of the evaporator portions 5A, 5B, and 5C as the dryness on the refrigerant side increases. Therefore, by using the leeward heat transfer tube 5b1 as the inlet and the leeward heat transfer tube 5b1 as the outlet and performing heat exchange according to the characteristics of the refrigerant, a large temperature difference with the air that is the heat exchange partner can be obtained, and the heat exchange amount Can be improved.

なお、圧力損失増大手段としては、キャピラリチューブの他に細径管、膨張弁等が適し、膨張弁を用いれば、使用条件に合わせて、圧力を適切に制御することも可能である。また、蒸発器は本第1実施形態のように、物理的に分割せず、配管の途中に圧力損失増大手段を設け実質的に分割する例で説明するが、蒸発器を物理的に分割してもよい。   As the pressure loss increasing means, in addition to the capillary tube, a small diameter tube, an expansion valve, and the like are suitable. If an expansion valve is used, the pressure can be appropriately controlled according to the use conditions. In addition, the evaporator is not physically divided as in the first embodiment, but an example in which pressure loss increasing means is provided in the middle of the pipe and substantially divided is described. However, the evaporator is physically divided. May be.

上記のように本第1実施形態の冷凍サイクル装置によれば、ジメチルエーテルと二酸化炭素の混合冷媒を使用しても、熱交換量が向上し、着霜がしにくい冷凍サイクル装置が実現される。   As described above, according to the refrigeration cycle apparatus of the first embodiment, even if a mixed refrigerant of dimethyl ether and carbon dioxide is used, a heat exchange amount is improved and a refrigeration cycle apparatus that hardly forms frost is realized.

なお、圧力損失手段の数(蒸発器の分割数)を多くすれば、図4に示すように、等温線に沿い蒸発器内の温度分布をより均一にし、理想状態に近づけることができる。   If the number of pressure loss means (the number of divisions of the evaporator) is increased, the temperature distribution in the evaporator can be made more uniform along the isotherm as shown in FIG.

次に第2実施形態に係る冷凍サイクル装置に付いて説明する。   Next, the refrigeration cycle apparatus according to the second embodiment will be described.

本第2実施形態は、第1実施形態が蒸発器の冷媒流路に2つのキャピラリチューブを設けたものあるのに対して、U字状伝熱管の開口端同士を接続するリターンベンドの管径をU字状伝熱管の管径よりも小さくしたものである。   In the second embodiment, the diameter of the return bend connecting the open ends of the U-shaped heat transfer tubes is different from that of the first embodiment in which two capillary tubes are provided in the refrigerant flow path of the evaporator. Is smaller than the tube diameter of the U-shaped heat transfer tube.

例えば、図5に示すように、第2実施形態の冷凍サイクル装置に用いられる蒸発器25は、そのU字状伝熱管5bの開口端同士を接続するリターンベンド26を全てキャピラリチューブで形成する。これにより、U字状伝熱管1本毎に圧力を下げることができるため、蒸発器内の温度分布をより小さくすることができる。なお、リターンベンド26はキャピラリチューブに限らず、U字状伝熱管5bの管径よりも径の小さなものであれば良い。   For example, as shown in FIG. 5, the evaporator 25 used in the refrigeration cycle apparatus of the second embodiment forms all return bends 26 connecting the open ends of the U-shaped heat transfer tubes 5b with capillary tubes. Thereby, since a pressure can be lowered | hung for every U-shaped heat exchanger tube, the temperature distribution in an evaporator can be made smaller. The return bend 26 is not limited to a capillary tube, and may be any one having a diameter smaller than the tube diameter of the U-shaped heat transfer tube 5b.

他の構成は図2に示す蒸発器と異ならないので、同一符号を付して説明は省略する。   Since the other configuration is not different from the evaporator shown in FIG.

また、第3実施形態に係る冷凍サイクル装置に付いて説明する。   The refrigeration cycle apparatus according to the third embodiment will be described.

本第3実施形態は、第2実施形態がリターンベンドを全て短いキャピラリチューブで繋ぐのに対して、一部に長いキャピラリチューブを設けたものである。   In the third embodiment, all the return bends are connected by a short capillary tube in the second embodiment, but a long capillary tube is provided in part.

例えば、図7に示すように、第3実施形態の冷凍サイクル装置に用いられる蒸発器35は、蒸発器部分5Aと蒸発器部分5Bを長いキャピラリチューブ6aで、蒸発器部分5Bと蒸発器部分5Cを長いキャピラリチューブ6bで繋ぎ、蒸発器5のU字状伝熱管5bを全てリターンベンドをなすキャピラリチューブ36で繋ぐ。これにより、図6に示すような状態線図にすることができ、図4に示すような理想的な状態線図に近づけることが可能となる。   For example, as shown in FIG. 7, the evaporator 35 used in the refrigeration cycle apparatus of the third embodiment includes an evaporator portion 5A and an evaporator portion 5B that are long capillary tubes 6a, and an evaporator portion 5B and an evaporator portion 5C. Are connected by a long capillary tube 6b, and all the U-shaped heat transfer tubes 5b of the evaporator 5 are connected by a capillary tube 36 forming a return bend. As a result, the state diagram as shown in FIG. 6 can be obtained, and the ideal state diagram as shown in FIG. 4 can be obtained.

また、第4実施形態に係る冷凍サイクル装置に付いて説明する。   Moreover, it demonstrates about the refrigerating-cycle apparatus which concerns on 4th Embodiment.

本第4実施形態は、第1実施形態が圧力損失増大手段としてキャピラリチューブを用いるのに対して、インナースペーサ挿入管を用いる。   The fourth embodiment uses an inner spacer insertion tube, whereas the first embodiment uses a capillary tube as the pressure loss increasing means.

例えば、図8に示すように、第4実施形態の冷凍サイクル装置における圧力損失増大手段としてのインナースペーサ挿入管46は、内面溝付伝熱管46aにインナースペーサ(棒状部材)46bを挿入して形成される。このように伝熱管46aの流路をインナースペーサ46bの挿入によって狭くすることで、空気側と接する管外表面積を減少させることなく、冷媒速度が高まり圧力損失を増加させることができ、伝熱性能も流速の増加によって向上する。図9は本第4実施形態の状態線図であり、伝熱管内の圧力損失を上昇させることによって、図4の理想的な圧力変化により近づけることができる。   For example, as shown in FIG. 8, the inner spacer insertion tube 46 as the pressure loss increasing means in the refrigeration cycle apparatus of the fourth embodiment is formed by inserting an inner spacer (rod-like member) 46b into the inner surface grooved heat transfer tube 46a. Is done. Thus, by narrowing the flow path of the heat transfer tube 46a by inserting the inner spacer 46b, the refrigerant speed can be increased and the pressure loss can be increased without reducing the surface area outside the tube in contact with the air side. Is also improved by increasing the flow velocity. FIG. 9 is a state diagram of the fourth embodiment. By increasing the pressure loss in the heat transfer tube, the ideal pressure change in FIG. 4 can be made closer.

なお、図10(a)〜(c)に示すように、断面積(直径)の異なるインナースペーサ46bを複数用意し(D1<D2<D3)、蒸発器における伝熱管の位置に応じて、断面積の異なるインナースペーサ46bを使用することにより、圧力損失を最適化することができる。   As shown in FIGS. 10A to 10C, a plurality of inner spacers 46b having different cross-sectional areas (diameters) are prepared (D1 <D2 <D3), and the inner spacers 46b are cut according to the position of the heat transfer tube in the evaporator. By using the inner spacers 46b having different areas, the pressure loss can be optimized.

また、第5実施形態に係る冷凍サイクル装置に付いて説明する。   Moreover, it demonstrates about the refrigerating-cycle apparatus which concerns on 5th Embodiment.

本第5実施形態は、圧力損失増大手段として、蒸発器の冷媒流路パス数を冷媒入口側より出口側で減少させたものである。   In the fifth embodiment, as the pressure loss increasing means, the number of refrigerant flow paths of the evaporator is decreased from the refrigerant inlet side to the outlet side.

例えば、図11に示すように、蒸発器50は、所定のフィンピッチを存して並設される複数枚の板状フィン50aに冷媒流路を形成するU字状伝熱管50bを貫通させ、上記U字状伝熱管50bの開口端同士をリターンベンド51で接続したフィンチューブ型熱交換器であり、蒸発器50の冷媒入口側(図11では風下側の冷媒流路)では冷媒流路パス数が2であり、冷媒出口側(図11では風上側の冷媒流路)では冷媒流路パス数が1に減少されている。   For example, as shown in FIG. 11, the evaporator 50 allows a plurality of plate-like fins 50a arranged side by side with a predetermined fin pitch to pass through U-shaped heat transfer tubes 50b that form a refrigerant flow path. A fin-tube heat exchanger in which the open ends of the U-shaped heat transfer tube 50b are connected by a return bend 51, and a refrigerant flow path on the refrigerant inlet side of the evaporator 50 (the refrigerant flow path on the leeward side in FIG. 11). The number is 2, and the number of refrigerant flow paths is reduced to 1 on the refrigerant outlet side (the upwind refrigerant flow path in FIG. 11).

このように、冷媒流路パス数を冷媒入口側より出口側で減少させる、すなわち、冷媒流路パス数を冷媒流れ方向に沿って減少させることにより、冷媒流量に対する流路断面積が減少し、圧力損失を増大させることができ、上記第1ないし第4実施態様と同様な効果を得ることができる。また、冷媒流路を形成するU字状伝熱管50bの開口端同士の接続を変えるだけで、冷媒流路パス数の調整を容易に行うことができる。   Thus, by reducing the refrigerant flow path number from the refrigerant inlet side to the outlet side, that is, by reducing the refrigerant flow path number along the refrigerant flow direction, the flow channel cross-sectional area with respect to the refrigerant flow rate is reduced, The pressure loss can be increased, and the same effect as in the first to fourth embodiments can be obtained. Further, the number of refrigerant flow paths can be easily adjusted by simply changing the connection between the open ends of the U-shaped heat transfer tubes 50b forming the refrigerant flow paths.

なお、上記各実施形態においては、圧縮機から吐出された高圧側の冷媒が放熱器としての凝縮器により凝縮される例で説明したが、本発明は高圧側の冷媒が凝縮状態となるものに限らず、より高い圧力で超臨界状態、すなわち、圧縮機からの吐出冷媒の状態がモリエル線図上における飽和液線と飽和蒸気線との交点における圧力と温度以上となるものであっても良い。   In each of the above embodiments, the high-pressure side refrigerant discharged from the compressor has been described as being condensed by a condenser as a radiator, but the present invention is such that the high-pressure side refrigerant is in a condensed state. Not limited to this, the supercritical state at a higher pressure, that is, the state of the refrigerant discharged from the compressor may be equal to or higher than the pressure and temperature at the intersection of the saturated liquid line and the saturated vapor line on the Mollier diagram. .

本発明の第1実施形態に係る冷凍サイクル装置の構成図。The block diagram of the refrigerating-cycle apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る冷凍サイクル装置に用いられる蒸発器の側面図。The side view of the evaporator used for the refrigerating cycle device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る冷凍サイクル装置の圧力−エンタルピ線図。The pressure-enthalpy diagram of the refrigerating cycle device concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る冷凍サイクル装置の理想的な圧力−エンタルピ線図。The ideal pressure-enthalpy diagram of the refrigerating cycle device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る冷凍サイクル装置に用いられる蒸発器の側面図。The side view of the evaporator used for the refrigerating cycle device concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る冷凍サイクル装置の圧力−エンタルピ線図。The pressure-enthalpy diagram of the refrigerating cycle device concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る冷凍サイクル装置に用いられる蒸発器の側面図。The side view of the evaporator used for the refrigerating cycle device concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る冷凍サイクル装置に用いられる蒸発器のインナースペーサ挿入管の縦断面図。The longitudinal cross-sectional view of the inner spacer insertion pipe | tube of the evaporator used for the refrigerating-cycle apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る冷凍サイクル装置の圧力−エンタルピ線図。The pressure-enthalpy diagram of the refrigerating cycle device concerning a 4th embodiment of the present invention. (a)〜(c)は本発明の冷凍サイクル装置に用いられるインナースペーサ挿入管の他の実施形態の縦断面図。(A)-(c) is a longitudinal cross-sectional view of other embodiment of the inner-spacer insertion pipe used for the refrigerating-cycle apparatus of this invention. 本発明の第5実施形態に係る冷凍サイクル装置の蒸発器の冷媒流路パス数の説明図。Explanatory drawing of the refrigerant | coolant flow path path | pass number of the evaporator of the refrigerating-cycle apparatus which concerns on 5th Embodiment of this invention. 従来の冷凍サイクル装置の構成図。The block diagram of the conventional refrigeration cycle apparatus. 従来の冷凍サイクル装置に用いられる蒸発器の斜視図。The perspective view of the evaporator used for the conventional refrigeration cycle apparatus. 従来の冷凍サイクル装置の圧力−エンタルピ線図。The pressure-enthalpy diagram of the conventional refrigeration cycle apparatus.

符号の説明Explanation of symbols

1…冷凍サイクル装置、2…圧縮機、3…凝縮器、4…膨張装置、5(5A、5B、5C)…蒸発器、6(6a、6b)…キャピラリチューブ。   DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 2 ... Compressor, 3 ... Condenser, 4 ... Expansion apparatus, 5 (5A, 5B, 5C) ... Evaporator, 6 (6a, 6b) ... Capillary tube.

Claims (7)

圧縮機、放熱器、膨張装置、蒸発器を備えた冷凍サイクル装置において、
冷媒としてジメチルエーテルと二酸化炭素の混合冷媒を使用するとともに、
前記蒸発器の冷媒流路に圧力損失を増大させる圧力損失増大手段を設けたことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus equipped with a compressor, a radiator, an expansion device, and an evaporator,
While using a mixed refrigerant of dimethyl ether and carbon dioxide as the refrigerant,
A refrigeration cycle apparatus comprising pressure loss increasing means for increasing pressure loss in a refrigerant flow path of the evaporator.
前記圧力損失増大手段は絞り手段であることを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the pressure loss increasing means is a throttle means. 前記蒸発器は所定のフィンピッチを存して並設される複数枚の板状フィンに冷媒流路を形成する伝熱管を貫通させたフィンチューブ型熱交換器であり、
前記伝熱管を空気の主流方向に複数列設け、前記絞り手段によって分割された各蒸発器部分の冷媒入口を風下側に設けるとともに、
冷媒出口を風上側に設けたことを特徴とする請求項2に記載の冷凍サイクル装置。
The evaporator is a fin tube heat exchanger in which a plurality of plate-like fins arranged side by side with a predetermined fin pitch are penetrated by a heat transfer tube that forms a refrigerant flow path,
The heat transfer tubes are provided in a plurality of rows in the air main flow direction, and the refrigerant inlets of the respective evaporator parts divided by the throttle means are provided on the leeward side,
The refrigeration cycle apparatus according to claim 2, wherein a refrigerant outlet is provided on the windward side.
前記蒸発器は所定のフィンピッチを存して並設される複数枚の板状フィンと、
前記板状フィンを貫通して設けられたU字状伝熱管と、
前記U字状伝熱管の開口端同士を接続するリターンベンドとを備え、
前記絞り手段は、前記リターンベンドの管径をU字状伝熱管の管径よりも小さくして形成されることを特徴とする請求項2に記載の冷凍サイクル装置。
The evaporator has a plurality of plate-like fins arranged side by side with a predetermined fin pitch, and
A U-shaped heat transfer tube provided through the plate fin;
A return bend connecting the open ends of the U-shaped heat transfer tubes;
The refrigeration cycle apparatus according to claim 2, wherein the throttle means is formed by making the tube diameter of the return bend smaller than the tube diameter of the U-shaped heat transfer tube.
前記圧力損失増大手段は、前記蒸発器の冷媒流路内に設けられ冷媒流路の断面積を減少するインナースペーサであることを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the pressure loss increasing means is an inner spacer that is provided in a refrigerant flow path of the evaporator and reduces a cross-sectional area of the refrigerant flow path. 前記インナースペーサは、断面積の異なる複数種類のものを使用したことを特徴とする請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, wherein a plurality of types of inner spacers having different cross-sectional areas are used. 前記圧力損失増大手段は、前記蒸発器の冷媒流路パス数を冷媒入口側より出口側で減少させたものであることを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the pressure loss increasing unit decreases the number of refrigerant flow paths of the evaporator from the refrigerant inlet side to the outlet side.
JP2005349777A 2005-12-02 2005-12-02 Refrigerating cycle device Pending JP2007155192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005349777A JP2007155192A (en) 2005-12-02 2005-12-02 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005349777A JP2007155192A (en) 2005-12-02 2005-12-02 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2007155192A true JP2007155192A (en) 2007-06-21

Family

ID=38239805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349777A Pending JP2007155192A (en) 2005-12-02 2005-12-02 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2007155192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222357A (en) * 2008-02-18 2009-10-01 Daikin Ind Ltd Refrigeration device
JP2017141979A (en) * 2016-02-08 2017-08-17 株式会社前川製作所 Heat exchanger and heat pump system
CN112424541A (en) * 2018-07-27 2021-02-26 三菱电机株式会社 Refrigeration cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222357A (en) * 2008-02-18 2009-10-01 Daikin Ind Ltd Refrigeration device
JP2017141979A (en) * 2016-02-08 2017-08-17 株式会社前川製作所 Heat exchanger and heat pump system
CN112424541A (en) * 2018-07-27 2021-02-26 三菱电机株式会社 Refrigeration cycle device
EP3832227A4 (en) * 2018-07-27 2021-08-04 Mitsubishi Electric Corporation Refrigeration cycle device
CN112424541B (en) * 2018-07-27 2022-05-17 三菱电机株式会社 Refrigeration cycle device
US11371760B2 (en) 2018-07-27 2022-06-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
JP2004219052A (en) Heat exchanger
JP2000274982A (en) Heat exchanger and air-conditioning refrigerating device using the same
JP2006284134A (en) Heat exchanger
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
JP3576486B2 (en) Evaporators and refrigerators
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2007155192A (en) Refrigerating cycle device
JP6575895B2 (en) Heat exchanger
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
JP5627635B2 (en) Air conditioner
JP2006194476A (en) Outdoor heat exchanger
JP6053693B2 (en) Air conditioner
JP2007147221A (en) Heat exchanger with fin
JPH11337104A (en) Air conditioner
JP2005201492A (en) Heat exchanger
JP5646257B2 (en) Refrigeration cycle equipment
JP6104357B2 (en) Heat exchange device and refrigeration cycle device provided with the same
JP2012237518A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JP2018194294A (en) Refrigeration cycle device
JPH09257334A (en) Heat pump air conditioner
WO2011111602A1 (en) Air conditioner
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP2005090805A (en) Heat exchanger
KR20000031340A (en) Indoor heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080521