JPH0534085A - Heat exchanger and manufacture thereof - Google Patents

Heat exchanger and manufacture thereof

Info

Publication number
JPH0534085A
JPH0534085A JP18664391A JP18664391A JPH0534085A JP H0534085 A JPH0534085 A JP H0534085A JP 18664391 A JP18664391 A JP 18664391A JP 18664391 A JP18664391 A JP 18664391A JP H0534085 A JPH0534085 A JP H0534085A
Authority
JP
Japan
Prior art keywords
heat
heat exchange
outer tube
heat exchanging
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18664391A
Other languages
Japanese (ja)
Inventor
Masumu Satou
益矛 佐藤
Shinji Mizuno
伸治 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP18664391A priority Critical patent/JPH0534085A/en
Publication of JPH0534085A publication Critical patent/JPH0534085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a heat exchanger capable of improving heat transfer efficiency while securing the purity of refrigerant. CONSTITUTION:Heat exchanging outer tubes 2 are penetrated through a multi- tude of parallel heat dissipating fins 1, then, the heat exchanging outer tubes 2 are expanded to increase the closely contacting property between the heat dissipating fins 1 and the heat exchanging outer tubes 2. Heat exchanging inner tubes 3 are fitted into the expanded heat exchanging outer tubes 2, then, hoses 4A, 4B, 4C are connected to the ends of the heat exchanging outer tubes 2. Refrigerant is supplied from the hose 4A and is discharged from the hose 4C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、並列配置された多数枚
の放熱フィンに貫通された熱交換パイプ内の冷媒の熱を
放熱フィンから放熱する熱交換器及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for radiating the heat of a refrigerant in a heat exchange pipe penetrating a large number of heat radiation fins arranged in parallel from the heat radiation fins and a method for manufacturing the same.

【0002】[0002]

【従来の技術】この種の熱交換器としては図9に示すよ
うにアルミニウム製の放熱フィン11に熱交換パイプ1
2を貫通接合した構成が一般的である。銅の熱伝導率は
アルミニウムよりも高いために放熱フィンとしては銅製
が望ましいが、価格的にはアルミニウムが有利であるた
めに多数枚の放熱フィン11としてはアルミニウムが用
いられる。これに対して放熱フィン11ほどには多くな
い熱交換パイプ12としては銅パイプを用いることが好
ましい。しかしながら、例えば純水による冷却を必要と
するレーザー加工機発振部の冷却に銅製の熱交換パイプ
を用いた熱交換器を使用とした場合には、熱交換パイプ
から銅イオンが水中に流出して純水性を維持することが
できない。このような冷媒の純粋性を維持するにはステ
ンレスが最適である。
2. Description of the Related Art As a heat exchanger of this type, as shown in FIG.
It is common to have a structure in which two are joined through. Since the heat conductivity of copper is higher than that of aluminum, it is preferable that the heat radiation fin is made of copper, but aluminum is used as the large number of heat radiation fins 11 because aluminum is advantageous in terms of cost. On the other hand, it is preferable to use a copper pipe as the heat exchange pipe 12, which is not as many as the heat radiation fin 11. However, for example, when a heat exchanger using a copper heat exchange pipe is used for cooling the oscillation part of a laser beam machine that requires cooling with pure water, copper ions flow out into the water from the heat exchange pipe. Pure water cannot be maintained. Stainless steel is optimal for maintaining the purity of such a refrigerant.

【0003】[0003]

【発明が解決しようとする課題】熱交換パイプ12は放
熱フィン11に明けられた挿通孔11aに挿通される
が、この挿通孔11aの径は熱交換パイプ12の外径よ
りも僅かに大きくしてある。この径の大きさ設定は並列
された多数枚の放熱フィン11に複数本の熱交換パイプ
12を無理なく挿通するための余裕を持たせる必要性か
ら行われるが、このような熱交換パイプ12の外径と挿
通孔11aの径との大きさ関係のために熱交換パイプ1
2と放熱フィン11との密着性は悪い。熱交換パイプ1
2と放熱フィン11との密着性は熱伝導性を大きく左右
し、熱交換効率が低下する。熱交換パイプ12が軟質性
の銅製であればパイプ内面に圧力を加え、拡管すること
によって密着性を高めることもできるが、硬質性のステ
ンレスの場合にはこの拡管は無理である。そのため、放
熱フィン11とステンレス製の熱交換パイプ12との密
着性を高めるために溶接あるいは接着しなければなら
ず、製造工程が複雑化する上にコスト的にも不利であ
る。
The heat exchange pipe 12 is inserted into the insertion hole 11a formed in the heat radiation fin 11, and the diameter of the insertion hole 11a is slightly larger than the outer diameter of the heat exchange pipe 12. There is. The size of the diameter is set because it is necessary to provide a large number of heat radiation fins 11 arranged in parallel with each other so as to allow a plurality of heat exchange pipes 12 to pass through without difficulty. Due to the size relationship between the outer diameter and the diameter of the insertion hole 11a, the heat exchange pipe 1
2 and the radiation fin 11 have poor adhesion. Heat exchange pipe 1
The adhesiveness between the heat radiation fins 2 and the radiation fins 11 greatly affects the thermal conductivity, and the heat exchange efficiency is reduced. If the heat exchange pipe 12 is made of soft copper, it is possible to increase the adhesion by applying pressure to the inner surface of the pipe to expand the pipe, but in the case of hard stainless steel, this pipe expansion is impossible. Therefore, it is necessary to weld or bond the radiation fins 11 and the heat exchange pipe 12 made of stainless steel in order to enhance the adhesion, which complicates the manufacturing process and is disadvantageous in cost.

【0004】本発明は冷媒の純粋性を確保しつつ熱交換
効率を向上し得る熱交換器及びその製造方法を提供する
ことを目的とする。
An object of the present invention is to provide a heat exchanger capable of improving the heat exchange efficiency while ensuring the purity of the refrigerant, and a method for manufacturing the heat exchanger.

【0005】[0005]

【課題を解決するための手段】そのために第1の発明で
は、並列された多数枚の放熱フィンに軟質金属製の熱交
換用外管を貫通接合し、冷媒と接触する熱交換用内管を
熱交換用外管内に貫通接合して熱交換器を構成した。
To this end, according to the first aspect of the present invention, a heat-exchange inner tube, which is in contact with a refrigerant, is formed by penetratingly joining a large number of heat-radiating fins in parallel with a heat-exchange outer tube made of a soft metal. A heat exchanger was constructed by penetrating and joining the outer tube for heat exchange.

【0006】第2の発明では、並列された多数枚の放熱
フィンに軟質金属製の熱交換用外管を貫通すると共に、
この貫通状態の熱交換用外管の内面に圧力を加えて拡管
し、熱交換用外管の内面及び冷媒と接触する熱交換用内
管の外面の少なくとも一方に潤滑油を付着し、熱交換用
外管の拡管及び潤滑油付着の後に熱交換用外管内に熱交
換用内管を嵌入接合して製造するようにした。
According to the second aspect of the invention, the heat exchange outer tube made of soft metal is penetrated through a large number of heat radiation fins arranged in parallel,
Pressure is applied to the inner surface of the heat exchanging outer tube to expand it, and lubricating oil is adhered to at least one of the inner surface of the heat exchanging outer tube and the outer surface of the heat exchanging inner tube in contact with the refrigerant for heat exchange. After the expansion of the outer pipe for application and the adhesion of the lubricating oil, the inner pipe for heat exchange is fitted and joined in the outer pipe for heat exchange.

【0007】第3の発明では、熱交換用外管の拡管及び
潤滑油付着の後に熱交換用外管内に直線性付与ロッドを
嵌入して熱交換用外管の直線性を高めると共に、熱交換
用外管から直線製付与ロッドを除去し、次いで冷媒と接
触する熱交換用内管を熱交換用外管内に嵌入接合して製
造するようにした。
According to the third aspect of the present invention, the linearity of the heat exchange outer tube is increased by inserting the linearity imparting rod into the heat exchange outer tube after the heat exchange outer tube is expanded and the lubricating oil is attached. The straightening rod was removed from the outer tube for heat exchange, and then the inner tube for heat exchange, which was in contact with the refrigerant, was fitted into the outer tube for heat exchange to be manufactured.

【0008】[0008]

【作用】冷媒と直接接触するのは熱交換用内管であり、
熱交換用内管に伝導した冷媒の熱は熱交換用内管と熱交
換用外管との接触部位を介して熱交換用外管に伝導す
る。熱交換用外管に伝導した熱は熱交換用外管と放熱フ
ィンとの接触部位を介して放熱フィンに伝達する。
[Function] It is the heat exchange inner tube that directly contacts the refrigerant,
The heat of the refrigerant conducted to the heat exchange inner pipe is conducted to the heat exchange outer pipe via the contact portion between the heat exchange inner pipe and the heat exchange outer pipe. The heat conducted to the heat exchange outer tube is transferred to the heat radiation fin via the contact portion between the heat exchange outer tube and the heat radiation fin.

【0009】熱交換用内管としてステンレスあるいはチ
タンを用いれば冷媒としての純水と熱交換用内管との間
で化学反応を起こすことはなく、冷媒の純粋性が確保さ
れる。即ち、熱交換用内管の材質としては使用される冷
媒との間で化学反応を起こさないものを任意に選択する
ことができる。
If stainless steel or titanium is used for the heat exchange inner tube, no chemical reaction occurs between pure water as the refrigerant and the heat exchange inner tube, and the purity of the refrigerant is ensured. That is, as the material of the heat exchange inner tube, a material that does not cause a chemical reaction with the refrigerant used can be arbitrarily selected.

【0010】放熱フィンと熱交換用外管との密着性は例
えば銅、アルミニウムといった軟質金属製の熱交換用外
管を拡管することによって向上し、熱交換用外管と放熱
フィンとの間の熱伝導性は良い。
The adhesion between the heat radiating fin and the heat exchanging outer tube is improved by expanding the heat exchanging outer tube made of a soft metal such as copper or aluminum. Good thermal conductivity.

【0011】多数枚の放熱フィンに貫通された熱交換用
外管の拡管は水圧、油圧あるいは球体嵌入によって行わ
れる。このように拡管された熱交換用外管の内面あるい
は熱交換用内管の外面に潤滑油を付着した後、熱交換用
内管が熱交換用外管に嵌入される。潤滑油の存在によっ
て熱交換用外管に対する熱交換用内管の嵌入は容易であ
り、しかも熱交換用内管と熱交換用外管との間の密着性
が潤滑油によって補償される。即ち、熱交換用内管と熱
交換用外管との間に空気層が存在すると熱伝導性が低下
するが、空気層を油層に代えれば熱伝導性が向上する。
特に潤滑油としては熱伝導性グリースが好ましい。
The expansion of the heat exchange outer tube penetrating the large number of heat radiation fins is performed by hydraulic pressure, hydraulic pressure, or spherical fitting. After the lubricating oil is attached to the inner surface of the heat exchanging outer tube or the outer surface of the heat exchanging inner tube thus expanded, the heat exchanging inner tube is fitted into the heat exchanging outer tube. Due to the presence of the lubricating oil, it is easy to fit the heat exchanging inner tube into the heat exchanging outer tube, and moreover, the adhesion between the heat exchanging inner tube and the heat exchanging outer tube is compensated by the lubricating oil. That is, if an air layer is present between the inner tube for heat exchange and the outer tube for heat exchange, the thermal conductivity is lowered, but if the air layer is replaced by an oil layer, the thermal conductivity is improved.
A heat conductive grease is particularly preferable as the lubricating oil.

【0012】水圧、油圧あるいは球体嵌入による拡管で
は熱交換用外管の内面に直線性を付与することは難しい
が、熱交換用外管の拡管及び潤滑油付着の後に熱交換用
外管内に直線性付与ロッドを嵌入することによって熱交
換用外管の内面に直線性を容易に付与することができ
る。熱交換用外管の内面に直線性を付与することによっ
て熱交換用内管の嵌入が容易となり、しかも熱交換用外
管の内面と熱交換用内管の外面との密着性が向上する。
Although it is difficult to impart linearity to the inner surface of the outer tube for heat exchange by expanding the tube by hydraulic pressure, hydraulic pressure, or spherical fitting, it is possible to expand the inner tube of the outer tube for heat exchange and apply the lubricating oil to the outer tube for heat exchange to form a straight line. By inserting the property imparting rod, it is possible to easily impart linearity to the inner surface of the heat exchange outer tube. By imparting linearity to the inner surface of the heat exchanging outer tube, the heat exchanging inner tube can be fitted more easily, and moreover, the adhesion between the inner surface of the heat exchanging outer tube and the outer surface of the heat exchanging inner tube is improved.

【0013】[0013]

【実施例】以下、本発明を具体化した一実施例を図面に
基づいて説明する。図1は熱交換器全体を示し、並列さ
れた多数枚の放熱フィン1には複数本の熱交換用外管2
が貫通されており、各熱交換用外管2には熱交換用内管
3が嵌入されている。各熱交換用内管3の両端部はいず
れも熱交換用外管2から突出しており、且つ熱交換用内
管3の突出端部にはホース4A,4B,4Cが接続され
ている。図1ではホース4A〜4Cを鎖線によって簡略
的に図示してある。冷媒はホース4Aから供給され、ホ
ース4Cから排出される。5は吸引式の冷却ファンであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the entire heat exchanger. A plurality of heat radiation fins 1 arranged in parallel are provided with a plurality of heat exchange outer tubes 2.
Are penetrated, and the heat exchange inner tubes 3 are fitted into the respective heat exchange outer tubes 2. Both ends of each heat exchange inner pipe 3 project from the heat exchange outer pipe 2, and hoses 4A, 4B, 4C are connected to the protruding ends of the heat exchange inner pipe 3. In FIG. 1, the hoses 4A to 4C are simply shown by chain lines. The refrigerant is supplied from the hose 4A and discharged from the hose 4C. 5 is a suction type cooling fan.

【0014】放熱フィン1はアルミニウム製、熱交換用
外管2は銅製、熱交換用内管3はステンレス製であり、
この実施例では純水が冷媒として用いられる。図7は放
熱フィン1と熱交換用外管2との接合状態及び熱交換用
外管2と熱交換用内管3との接合状態を示す。熱交換用
外管2は放熱フィン1に明けられた挿通孔1aに挿通さ
れる。
The radiation fin 1 is made of aluminum, the heat exchange outer tube 2 is made of copper, and the heat exchange inner tube 3 is made of stainless steel.
In this embodiment, pure water is used as the refrigerant. FIG. 7 shows a joined state between the heat radiation fin 1 and the heat exchange outer tube 2 and a joined state between the heat exchange outer tube 2 and the heat exchange inner tube 3. The heat exchange outer tube 2 is inserted into an insertion hole 1 a formed in the heat radiation fin 1.

【0015】図2は多数枚の放熱フィン1に複数本の熱
交換用外管2を挿通した状態を示す。挿通孔1aの径E
は熱交換用外管2の外径よりも僅かに大きい。図2の挿
通状態では放熱フィン1と熱交換用外管2との接合部位
における密着性は悪く、この挿通状態では放熱フィン1
と熱交換用外管2との接合部位における熱伝導性は低
い。
FIG. 2 shows a state in which a plurality of heat exchange outer tubes 2 are inserted through a large number of heat radiation fins 1. Diameter E of insertion hole 1a
Is slightly larger than the outer diameter of the heat exchange outer tube 2. In the inserted state of FIG. 2, the adhesion between the radiation fins 1 and the heat exchange outer tube 2 is poor, and in this inserted state the radiation fins 1
The thermal conductivity at the joint between the heat exchange outer tube 2 and the heat exchange outer tube 2 is low.

【0016】放熱フィン1と熱交換用外管2との接合部
位における熱伝導性を高めるために図3及び図4に示す
ように拡管用球体6,7が用いられる。図3の拡管用球
体6の径d1 は拡管前の熱交換用外管2の内径d0 より
も僅かに大きい。拡管用球体6は熱交換用外管2の一端
から挿入され、他端まで挿通される。この挿通によって
熱交換用外管2の内径が球体6の径d1まで拡管する。
As shown in FIGS. 3 and 4, tube-expanding spheres 6 and 7 are used to enhance the thermal conductivity at the joint between the radiation fin 1 and the heat exchange outer tube 2. The diameter d 1 of the tube-expanding sphere 6 in FIG. 3 is slightly larger than the inner diameter d 0 of the heat exchange outer tube 2 before the tube expansion. The tube-expanding sphere 6 is inserted from one end of the heat exchange outer tube 2 to the other end. By this insertion, the inner diameter of the heat exchange outer tube 2 is expanded to the diameter d 1 of the spherical body 6.

【0017】図4の拡管用球体7の径d2 は図3の熱交
換用外管2の内径d1 よりも僅かに大きい。拡管用球体
7は拡管用球体6と同様に熱交換用外管2の一端から挿
入され、他端まで挿通される。この挿通によって熱交換
用外管2の内径が全長にわたって球体7の径d2 まで拡
管する。即ち、本実施例では熱交換用外管2が径の異な
る2種類の拡管用球体6,7を用いて2段階で拡管され
る。この2段階拡管によって熱交換用外管2の外径が挿
通孔1aの径Eよりも大きくなり、熱交換用外管2の外
周面が挿通孔1aの周縁に密着する。この密着により熱
交換用外管2と放熱フィン1との間の熱伝導性が向上す
る。熱交換用外管2と熱交換用内管3との密着性を高め
るための拡管は溶接あるいは接着による方式に比して遙
かに容易である。
The diameter d 2 of the tube expanding sphere 7 in FIG. 4 is slightly larger than the inner diameter d 1 of the heat exchange outer tube 2 in FIG. Similar to the tube expanding sphere 6, the tube expanding sphere 7 is inserted from one end of the heat exchange outer tube 2 to the other end. By this insertion, the inner diameter of the heat exchange outer tube 2 is expanded to the diameter d 2 of the sphere 7 over the entire length. That is, in this embodiment, the heat exchange outer tube 2 is expanded in two stages by using two kinds of expansion spheres 6 and 7 having different diameters. Due to this two-stage expansion, the outer diameter of the heat exchange outer tube 2 becomes larger than the diameter E of the insertion hole 1a, and the outer peripheral surface of the heat exchange outer tube 2 comes into close contact with the peripheral edge of the insertion hole 1a. This close contact improves the thermal conductivity between the heat exchange outer tube 2 and the heat radiation fin 1. The expansion of the heat exchange outer tube 2 and the heat exchange inner tube 3 to enhance the adhesion is much easier than the welding or adhesion method.

【0018】熱交換用外管2の全長にわたる拡管後、拡
管用球体6,7は熱交換用外管2から引き抜かれる。球
体6,7の挿通による拡管では球体6,7の挿入及び引
き抜きが容易であり、熱交換用外管2と放熱フィン1と
の密着性も良好である。しかしながら、球体6,7を完
全に直線移動することは難しく、球体6,7の拡管によ
って熱交換用外管2の内周面を真っ直ぐにすることはで
きない。熱交換用外管2の内周面の直線性は熱交換用内
管3の挿入容易性及び熱交換用外管2の内周面と熱交換
用内管3の外周面との密着性を左右する。
After expanding the entire length of the heat exchanging outer tube 2, the tube expanding spheres 6 and 7 are pulled out from the heat exchanging outer tube 2. When the tube is expanded by inserting the spheres 6 and 7, the spheres 6 and 7 can be easily inserted and withdrawn, and the adhesion between the heat exchange outer tube 2 and the radiation fins 1 is good. However, it is difficult to move the spheres 6 and 7 in a completely straight line, and it is impossible to straighten the inner peripheral surface of the heat exchange outer tube 2 by expanding the spheres 6 and 7. The linearity of the inner peripheral surface of the heat exchanging outer tube 2 determines the ease of insertion of the heat exchanging inner tube 3 and the adhesion between the inner peripheral surface of the heat exchanging outer tube 2 and the outer peripheral surface of the heat exchanging inner tube 3. It depends.

【0019】熱交換用外管2の内周面の直線性を出すた
めに図5に示すように直線性付与ロッド8が熱交換用外
管2内に挿入される。直線性付与ロッド8の径は拡管用
球体7の径d2 と同一にしてあり、直線性付与ロッド8
の長さは熱交換用外管2の長さの半分程度である。直線
性付与ロッド8の挿入先端の外周はテーパにしてあり、
熱交換用外管2内への挿入容易性が図られている。
A linearity imparting rod 8 is inserted into the heat exchange outer tube 2 as shown in FIG. 5 in order to obtain linearity of the inner peripheral surface of the heat exchange outer tube 2. The diameter of the linearity imparting rod 8 is the same as the diameter d 2 of the tube expanding sphere 7, and the linearity imparting rod 8 is
Is about half the length of the heat exchange outer tube 2. The outer periphery of the insertion end of the linearity imparting rod 8 is tapered,
The ease of insertion into the heat exchange outer tube 2 is achieved.

【0020】熱交換用外管2内へ直線性付与ロッド8を
挿入する際には直線性付与ロッド8の周面あるいは熱交
換用外管2の内面に潤滑油が塗布される。潤滑油を塗っ
ておくことによって直線性付与ロッド8の挿通が円滑と
なる。熱交換用外管2内へ直線性付与ロッド8を挿通す
れば熱交換用外管2の内周面が全長にわたって真っ直ぐ
になる。
When the linearity imparting rod 8 is inserted into the heat exchanging outer tube 2, lubricating oil is applied to the peripheral surface of the linearity imparting rod 8 or the inner surface of the heat exchanging outer tube 2. By applying the lubricating oil, the linearity imparting rod 8 can be smoothly inserted. When the linearity imparting rod 8 is inserted into the heat exchange outer tube 2, the inner peripheral surface of the heat exchange outer tube 2 becomes straight over the entire length.

【0021】熱交換用外管2に直線性を付与して直線性
付与ロッド8を引き抜いた後、図6に示すように熱交換
用内管3が熱交換用外管2に嵌入される。熱交換用内管
3の外径は直線性付与ロッド8の径d2 と同一である。
熱交換用内管3の両端の外周はテーパにしてあり、熱交
換用外管2への挿入容易性及び熱交換用内管3へのホー
ス4A,4B,4Cの接続容易性が図られている。
After imparting linearity to the heat exchange outer tube 2 and pulling out the linearity imparting rod 8, the heat exchange inner tube 3 is fitted into the heat exchange outer tube 2 as shown in FIG. The outer diameter of the heat exchange inner tube 3 is the same as the diameter d 2 of the linearity imparting rod 8.
The outer peripheries of both ends of the heat exchange inner pipe 3 are tapered to facilitate insertion into the heat exchange outer pipe 2 and connection of the hoses 4A, 4B, 4C to the heat exchange inner pipe 3. There is.

【0022】熱交換用外管2へ熱交換用内管3を挿入す
る際には熱交換用内管3の外周面あるいは熱交換用外管
2の内周面に潤滑油が塗布される。この潤滑油は熱交換
用外管2の直線性とあいまって熱交換用内管3の挿通を
円滑にする。
When the heat exchanging inner tube 3 is inserted into the heat exchanging outer tube 2, lubricating oil is applied to the outer peripheral surface of the heat exchanging inner tube 3 or the inner peripheral surface of the heat exchanging outer tube 2. This lubricating oil, together with the linearity of the heat exchange outer tube 2, facilitates the insertion of the heat exchange inner tube 3.

【0023】直線性付与ロッド8の径と熱交換用内管3
の外径とは同一であるため、図6に示すように熱交換用
外管2に熱交換用内管3を挿通した状態では熱交換用内
管3の外周面と熱交換用外管2の内周面との密着性は高
い。熱交換用内管3の外周面と熱交換用外管2の内周面
との間にクリアランスが存在する場合にも潤滑油がこの
クリアランスを満たし、空気の入り込む余地はない。空
気層の存在は熱伝導を大きく阻害するが、液状あるいは
粘液状の潤滑油は気体に比して格段に高い熱伝導性を有
する。従って、熱交換用外管2の内周面と熱交換用内管
3の外周面との間に潤滑油を介在することによって熱交
換用外管2と熱交換用内管3との間の熱伝導性が高めら
れる。このような潤滑油としては熱伝導性グリースが最
適である。
Diameter of linearity imparting rod 8 and inner tube 3 for heat exchange
Since the outer diameter of the heat exchange inner tube 3 is the same as the outer diameter of the heat exchange outer tube 2 as shown in FIG. Adhesion with the inner surface of is high. Even if there is a clearance between the outer peripheral surface of the heat exchanging inner tube 3 and the inner peripheral surface of the heat exchanging outer tube 2, the lubricating oil fills this clearance and there is no room for air to enter. The presence of the air layer greatly hinders heat conduction, but liquid or viscous liquid lubricating oil has significantly higher heat conductivity than gas. Therefore, by interposing the lubricating oil between the inner peripheral surface of the heat exchanging outer tube 2 and the outer peripheral surface of the heat exchanging inner tube 3, the heat exchanging outer tube 2 and the heat exchanging inner tube 3 are separated from each other. The thermal conductivity is enhanced. Thermally conductive grease is most suitable as such a lubricating oil.

【0024】図8は本実施例の熱交換器における熱伝導
抵抗を表す線図である。α1 は大気と放熱フィン1の表
面との間の熱伝導抵抗、α2 は放熱フィン1と熱交換用
外管2との間の熱伝導抵抗、α3 は熱交換用外管2と熱
交換用内管3との間の熱伝導抵抗、α4 は熱交換用内管
3の内周面と冷媒(純水)との間の熱伝導抵抗である。
β1 は放熱フィン1内の熱伝導抵抗、β2 は熱交換用外
管2内の熱伝導抵抗、β3 は熱交換用内管3内の熱伝導
抵抗である。1/Kは次式(1)で示すように熱伝導抵
抗α1 〜α4 ,β1 〜β3 の総和であり、Kは熱貫流率
である。 1/K=α1 +α2 +α3 +α4 +β1 +β2 +β3 ・・・(1) 図10は従来の熱交換器における熱伝導抵抗を表す線図
である。α5 は放熱フィン11とステンレス製の熱交換
パイプ12との間の熱伝導抵抗であり、1/kは次式
(2)で示すように熱伝導抵抗α1 ,α4 ,α5
β1 ,β3 の総和である。 1/k=α1 +α4 +α5 +β1 +β3 ・・・(2) 個々の熱伝導抵抗α1 〜α5 ,β1 〜β3を測定したと
ころ、本実施例の熱交換器における熱伝導抵抗α2 ,α
3 ,β2 と従来の熱交換器における熱伝導抵抗α5 との
間には次式(3)で表される関係があることが判明し
た。 α5 ≒2(α2 +α3 +β2 ) ・・・(3) 即ち、従来の熱交換器におけるステンレス製の熱交換パ
イプ12と放熱フィン11との間の接触部位における熱
伝導抵抗αが熱交換パイプ12と放熱フィン11との密
着性の悪さのために非常に大きく、全熱伝導抵抗1/
k,1/K間には次式(4)で表される大小関係があ
る。 1/k−1/K≒α2 +α3 +β2 ・・・(4) 即ち、本実施例の熱交換器の熱伝導抵抗は従来の熱交換
器よりも(α2 +α3 +β2 )程度小さくなり、熱伝導
効率が向上している。この熱伝導効率の向上は放熱フィ
ン1と接触する熱交換用外管2を軟質金属である銅製と
し、これを拡管して放熱フィン1と熱交換用外管2との
密着性を高めたことが主因である。しかも、冷媒(純
水)と接触するのはステンレス製の熱交換用内管3であ
り、冷媒の純粋性が確保される。従って、純水による冷
却を必要とするレーザー加工機発振部の冷却に本実施例
の熱交換器を用いることができる。
FIG. 8 is a diagram showing the heat conduction resistance in the heat exchanger of this embodiment. α 1 is the heat conduction resistance between the atmosphere and the surface of the heat radiation fin 1, α 2 is the heat conduction resistance between the heat radiation fin 1 and the heat exchange outer tube 2, and α 3 is the heat exchange outer tube 2 and the heat exchange resistance The heat conduction resistance between the exchange inner pipe 3 and α 4 is the heat conduction resistance between the inner peripheral surface of the heat exchange inner pipe 3 and the refrigerant (pure water).
β 1 is a heat conduction resistance in the heat radiation fin 1, β 2 is a heat conduction resistance in the heat exchange outer tube 2, and β 3 is a heat conduction resistance in the heat exchange inner tube 3. 1 / K is the sum of the heat conduction resistances α 1 to α 4 and β 1 to β 3 as shown in the following formula (1), and K is the heat transmission coefficient. 1 / K = α 1 + α 2 + α 3 + α 4 + β 1 + β 2 + β 3 (1) FIG. 10 is a diagram showing the heat conduction resistance in the conventional heat exchanger. α 5 is the heat conduction resistance between the radiation fin 11 and the stainless steel heat exchange pipe 12, and 1 / k is the heat conduction resistance α 1 , α 4 , α 5 , as shown in the following equation (2).
It is the sum of β 1 and β 3 . 1 / k = α 1 + α 4 + α 5 + β 1 + β 3 (2) When the individual heat conduction resistances α 1 to α 5 and β 1 to β 3 were measured, the heat in the heat exchanger of this example was measured. Conduction resistance α 2 , α
It was found that there is a relationship expressed by the following equation (3) between 3 , β 2 and the heat conduction resistance α 5 in the conventional heat exchanger. α 5 ≈ 2 (α 2 + α 3 + β 2 ) (3) That is, the heat conduction resistance α at the contact portion between the stainless steel heat exchange pipe 12 and the radiation fin 11 in the conventional heat exchanger is It is very large due to the poor adhesion between the exchange pipe 12 and the radiation fin 11, and the total heat conduction resistance 1 /
There is a magnitude relation expressed by the following equation (4) between k and 1 / K. 1 / k-1 / K≈α 2 + α 3 + β 2 (4) That is, the heat transfer resistance of the heat exchanger of this embodiment is about (α 2 + α 3 + β 2 ) more than that of the conventional heat exchanger. It becomes smaller and the heat transfer efficiency is improved. In order to improve the heat conduction efficiency, the heat exchange outer tube 2 that comes into contact with the heat radiation fins 1 is made of copper, which is a soft metal, and is expanded to enhance the adhesion between the heat radiation fins 1 and the heat exchange outer tube 2. Is the main reason. Moreover, it is the inner tube 3 for heat exchange made of stainless steel that comes into contact with the refrigerant (pure water), and the purity of the refrigerant is ensured. Therefore, the heat exchanger of this embodiment can be used for cooling the oscillation part of the laser beam machine which requires cooling with pure water.

【0025】なお、従来及び本実施例のいずれの熱交換
器においても多数枚の放熱フィンは幾分間隔を開けられ
ているが、従来の放熱フィン11に対するステンレス製
の熱交換パイプ12の非接触部位における熱はステンレ
スの熱伝導性の低さ故に放熱フィン11に伝達し難い。
しかしながら、本実施例では放熱フィン1に対する銅製
の熱交換用外管2の非接触部位における熱は銅の熱伝導
性の高さ故に放熱フィン11に伝達し易く、銅製の外管
にステンレス製の内管を嵌入する2重管構成は熱伝導効
率の向上に寄与する。
In each of the heat exchangers of the conventional and the present embodiments, although a large number of radiating fins are spaced apart from each other, the heat radiating fins 11 of the related art are not in contact with the heat exchanging pipe 12 made of stainless steel. The heat at the site is difficult to transfer to the heat radiation fins 11 due to the low thermal conductivity of stainless steel.
However, in this embodiment, the heat at the non-contact portion of the copper heat exchange outer tube 2 with respect to the heat radiation fins 1 is easily transferred to the heat radiation fins 11 due to the high thermal conductivity of copper, and the copper outer tube is made of stainless steel. The double tube structure in which the inner tube is fitted contributes to the improvement of heat transfer efficiency.

【0026】本発明は勿論前記実施例にのみ限定される
ものではなく、例えば熱交換用外管としては銅以外の軟
質金属を用いることができるが、この熱交換用外管とし
ては特に熱伝導性の高いものが望ましい。熱交換用内管
としては冷媒の種類に合わせて化学反応を起こさない材
質を適宜選択すればよい。
Of course, the present invention is not limited to the above-mentioned embodiment, and for example, a soft metal other than copper can be used as the heat exchange outer tube. Those with high properties are desirable. As the heat exchange inner tube, a material that does not cause a chemical reaction may be appropriately selected according to the kind of the refrigerant.

【0027】又、熱交換用外管を拡管する方法としては
水圧方式あるいは油圧方式を用いてもよく、水圧あるい
は油圧である程度拡管した後に球体形状あるいはロッド
形状の拡管用部材を挿通してさらに拡管する方式も可能
である。
As a method for expanding the outer pipe for heat exchange, a hydraulic system or a hydraulic system may be used. After expanding the pipe by water pressure or hydraulic pressure to some extent, a spherical or rod-shaped expanding member is inserted to further expand the pipe. A method of doing is also possible.

【0028】さらに拡管された熱交換用外管に直線性を
付与することなく熱交換用外管を挿通するようにした
り、熱交換用外管に対する直線性付与時にのみ、あるい
は熱交換用内管の挿入時にのみ潤滑油塗布を行なうよう
にしてもよい。
Further, the expanded heat exchange outer tube may be inserted through the heat exchange outer tube without imparting linearity, or only when the heat exchange outer tube is imparted with linearity, or the heat exchange inner tube. The lubricating oil may be applied only when the is inserted.

【0029】[0029]

【発明の効果】以上詳述したように本発明の熱交換器
は、並列された多数枚の放熱フィンに軟質金属製の熱交
換用外管を貫通接合し、冷媒と接触する熱交換用内管を
熱交換用外管内に貫通接合して構成したので、冷媒の純
粋性を確保しつつ高い熱伝導効率を達成し得るという優
れた効果を奏する。
As described above in detail, in the heat exchanger of the present invention, a large number of heat dissipating fins arranged in parallel are joined to the outer pipe for heat exchange made of a soft metal so as to make contact with the refrigerant. Since the pipe is formed by penetrating and joining the inside of the heat exchange outer pipe, there is an excellent effect that a high heat transfer efficiency can be achieved while ensuring the purity of the refrigerant.

【0030】第2の発明では、並列された多数枚の放熱
フィンに軟質金属製の熱交換用外管を貫通すると共に、
この貫通状態の熱交換用外管の内面に圧力を加えて拡管
し、熱交換用外管の内面及び冷媒と接触する熱交換用内
管の外面の少なくとも一方に潤滑油を付着し、熱交換用
外管内に熱交換用内管を嵌入接合して製造するようにし
たので、放熱フィンと熱交換用外管との密着性を容易に
高め得ると共に、熱伝導効率を向上し得るという優れた
効果を奏する。
According to the second aspect of the invention, the heat exchange outer tube made of soft metal is penetrated through a large number of heat radiation fins arranged in parallel, and
Pressure is applied to the inner surface of the heat exchanging outer tube to expand it, and lubricating oil is adhered to at least one of the inner surface of the heat exchanging outer tube and the outer surface of the heat exchanging inner tube in contact with the refrigerant for heat exchange. Since the inner tube for heat exchange is fitted and joined in the outer tube for use in manufacturing, it is possible to easily improve the adhesion between the heat radiation fin and the outer tube for heat exchange and to improve the heat conduction efficiency. Produce an effect.

【0031】第3の発明では、熱交換用外管の拡管及び
潤滑油付着の後に熱交換用外管内に直線性付与ロッドを
嵌入して熱交換用外管の直線性を高めるようにしたの
で、熱交換用外管と熱交換用内管との密着性が一層向上
するという優れた効果を奏する。
In the third aspect of the present invention, the linearity of the heat exchanging outer tube is increased by inserting the linearity imparting rod into the heat exchanging outer tube after expanding the heat exchanging outer tube and adhering the lubricating oil. The excellent effect of further improving the adhesion between the heat exchange outer tube and the heat exchange inner tube is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を具体化した一実施例を示す斜視図で
ある。
FIG. 1 is a perspective view showing an embodiment embodying the present invention.

【図2】 放熱フィンに熱交換用外管を挿通した状態を
示す要部斜視図である。
FIG. 2 is a perspective view of relevant parts showing a state in which a heat exchange outer tube is inserted into a heat radiation fin.

【図3】 放熱フィンに挿通された熱交換用外管を拡管
する方法を説明するための拡大斜視図である。
FIG. 3 is an enlarged perspective view for explaining a method of expanding the heat exchange outer tube inserted through the heat radiation fin.

【図4】 放熱フィンに挿通された熱交換用外管を拡管
する方法を説明するための拡大斜視図である。
FIG. 4 is an enlarged perspective view for explaining a method for expanding the heat exchange outer tube inserted through the heat radiation fin.

【図5】 拡管された熱交換用外管に直線性を付与する
方法を説明するための拡大斜視図である。
FIG. 5 is an enlarged perspective view for explaining a method of imparting linearity to the expanded outer tube for heat exchange.

【図6】 直線性を付与された熱交換用外管に熱交換用
内管を挿通した状態を示す要部斜視図である。
FIG. 6 is a perspective view of essential parts showing a state in which a heat exchange inner tube is inserted into a heat exchange outer tube having linearity.

【図7】 放熱フィン、熱交換用外管及び熱交換用内管
の接合状態を示す要部拡大縦断面図である。
FIG. 7 is an enlarged vertical cross-sectional view of a main part showing a joined state of a heat radiation fin, an outer pipe for heat exchange, and an inner pipe for heat exchange.

【図8】 熱伝導抵抗を説明するための線図である。FIG. 8 is a diagram for explaining heat conduction resistance.

【図9】 従来の放熱フィン及び熱交換パイプの接合状
態を示す要部拡大縦断面図である。
FIG. 9 is an enlarged vertical cross-sectional view of a main part showing a joined state of a conventional radiation fin and a heat exchange pipe.

【図10】 熱伝導抵抗を説明するための線図である。FIG. 10 is a diagram for explaining heat conduction resistance.

【符号の説明】[Explanation of symbols]

1…放熱フィン、2…熱交換用外管、3…熱交換用内
管。
DESCRIPTION OF SYMBOLS 1 ... Radiating fin, 2 ... Outer tube for heat exchange, 3 ... Inner tube for heat exchange.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】並列された多数枚の放熱フィンに軟質金属
製の熱交換用外管を貫通接合し、冷媒と接触する熱交換
用内管を熱交換用外管内に嵌入接合したことを特徴とす
る熱交換器。
1. A heat exchange outer pipe made of a soft metal is penetratingly joined to a large number of heat dissipating fins arranged in parallel, and a heat exchange inner pipe which is in contact with a refrigerant is fitted and joined into the heat exchange outer pipe. And a heat exchanger.
【請求項2】熱交換用外管の内周面と熱交換用内管の外
周面との間には潤滑油が介在されている請求項1に記載
の熱交換器。
2. The heat exchanger according to claim 1, wherein lubricating oil is interposed between the inner peripheral surface of the heat exchanging outer tube and the outer peripheral surface of the heat exchanging inner tube.
【請求項3】並列された多数枚の放熱フィンに軟質金属
製の熱交換用外管を貫通すると共に、この貫通状態の熱
交換用外管の内面に圧力を加えて拡管し、熱交換用外管
の内面及び冷媒と接触する熱交換用内管の外面の少なく
とも一方に潤滑油を付着し、熱交換用外管の拡管及び潤
滑油付着の後に熱交換用外管内に熱交換用内管を嵌入接
合することを特徴とする熱交換器の製造方法。
3. A heat exchanging outer pipe made of a soft metal is penetrated through a large number of heat dissipating fins arranged in parallel, and a pressure is applied to the inner surface of the heat exchanging outer pipe to expand the heat exchanging outer pipe. Lubricant is attached to at least one of the inner surface of the outer tube and the outer surface of the heat exchanging inner tube that comes into contact with the refrigerant, and after the heat exchanging outer tube is expanded and the lubricating oil is attached, the heat exchanging inner tube is replaced with the heat exchanging inner tube. A method for manufacturing a heat exchanger, characterized in that:
【請求項4】並列された多数枚の放熱フィンに軟質金属
製の熱交換用外管を貫通すると共に、この貫通状態の熱
交換用外管の内面に圧力を加えて拡管し、熱交換用外管
の内面及び拡管用ロッドの外面の少なくとも一方に潤滑
油を付着し、熱交換用外管の拡管及び潤滑油付着の後に
熱交換用外管内に直線性付与ロッドを嵌入して熱交換用
外管の直線性を高めると共に、熱交換用外管から直線製
付与ロッドを除去し、次いで冷媒と接触する熱交換用内
管を熱交換用外管内に嵌入接合することを特徴とする熱
交換器の製造方法。
4. A heat exchanging outer pipe made of a soft metal is penetrated through a large number of heat dissipating fins arranged in parallel, and pressure is applied to the inner surface of the heat exchanging outer pipe to expand the heat exchanging outer pipe. Lubricant is adhered to at least one of the inner surface of the outer tube and the outer surface of the pipe for expanding heat, and after the pipe for expanding the pipe for heat exchange and the adhesion of lubricating oil, the linearity imparting rod is inserted into the outer pipe for heat exchange for heat exchange. Heat exchange characterized by increasing the linearity of the outer tube, removing the straightening rod from the heat exchanging outer tube, and then fittingly joining the heat exchanging inner tube that contacts the refrigerant into the heat exchanging outer tube. Manufacturing method.
JP18664391A 1991-07-25 1991-07-25 Heat exchanger and manufacture thereof Pending JPH0534085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18664391A JPH0534085A (en) 1991-07-25 1991-07-25 Heat exchanger and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18664391A JPH0534085A (en) 1991-07-25 1991-07-25 Heat exchanger and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0534085A true JPH0534085A (en) 1993-02-09

Family

ID=16192182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18664391A Pending JPH0534085A (en) 1991-07-25 1991-07-25 Heat exchanger and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0534085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557954B1 (en) 1998-09-29 2003-05-06 Tomitaro Hattori Crawler pad for the tread board of a crawler track shoe
WO2009005284A3 (en) * 2007-07-02 2009-02-26 Neo Powertec Co Ltd Omega cooling apparatus for generator and manufacturing method thereby
CN103203420A (en) * 2013-04-25 2013-07-17 东方电气集团东方锅炉股份有限公司 Expanding connection method between heat exchange pipe and pipe plate and between heat exchange pipe and anti-scouring sleeve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557954B1 (en) 1998-09-29 2003-05-06 Tomitaro Hattori Crawler pad for the tread board of a crawler track shoe
WO2009005284A3 (en) * 2007-07-02 2009-02-26 Neo Powertec Co Ltd Omega cooling apparatus for generator and manufacturing method thereby
CN103203420A (en) * 2013-04-25 2013-07-17 东方电气集团东方锅炉股份有限公司 Expanding connection method between heat exchange pipe and pipe plate and between heat exchange pipe and anti-scouring sleeve
CN103203420B (en) * 2013-04-25 2014-12-03 东方电气集团东方锅炉股份有限公司 Expanding connection method between heat exchange pipe and pipe plate and between heat exchange pipe and anti-scouring sleeve

Similar Documents

Publication Publication Date Title
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
EP1215461A3 (en) Improved tube for use in serpentine heat exchanger
US2722733A (en) Method of making heat exchanger tube
JPH0534085A (en) Heat exchanger and manufacture thereof
JPH0648148B2 (en) Heat exchanger
JP2004279025A (en) Cross fin tube type heat exchanger
JP2002162177A (en) Heat exchanger element
JPS63259395A (en) Finned-tube type heat exchanger
JP2004239486A (en) Heat exchanger and its manufacturing method
JPH11221615A (en) Tube and its production
JPH09303986A (en) Method and structure for fitting-in between plate fin for heat-exchanger and pipe
KR100575278B1 (en) A tube for heat exchange with a capillary-type heat pipe
JP2001091179A (en) Plate fin tube type heat exchanger, method for manufacture thereof and refrigerator comprising it
JP2756605B2 (en) Heat exchanger manufacturing method
JP2001133169A (en) Combined member of copper pipe and aluminum pipe and heat exchanger provided with these pipes
JPH0639244Y2 (en) Heat exchanger pipe
JPH01312391A (en) Heat transfer pipe
JP3318096B2 (en) Heat transfer tube manufacturing method
JP2514456Y2 (en) Heat exchanger
JPS5883190A (en) Heat exchanger
JPS6314091A (en) Heat transfer pipe
JP4216422B2 (en) Heat exchanger and manufacturing method thereof
JPH045903Y2 (en)
JPH0297896A (en) Manufacture of heat exchanger
JP3130063B2 (en) Boiling heat transfer tube