JPH11209885A - Method for preventing microcell corrosion of buried pipeline - Google Patents

Method for preventing microcell corrosion of buried pipeline

Info

Publication number
JPH11209885A
JPH11209885A JP10026574A JP2657498A JPH11209885A JP H11209885 A JPH11209885 A JP H11209885A JP 10026574 A JP10026574 A JP 10026574A JP 2657498 A JP2657498 A JP 2657498A JP H11209885 A JPH11209885 A JP H11209885A
Authority
JP
Japan
Prior art keywords
anode
wall
concrete
concrete structure
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10026574A
Other languages
Japanese (ja)
Other versions
JP4132174B2 (en
Inventor
Noritaka Shimizuguchi
敬孝 清水口
Jiro Konuma
次郎 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP02657498A priority Critical patent/JP4132174B2/en
Publication of JPH11209885A publication Critical patent/JPH11209885A/en
Application granted granted Critical
Publication of JP4132174B2 publication Critical patent/JP4132174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method for effectively preventing the macrocell corrosion of a buried pipeline running through a reinforced-concrete structure without need to dig the soil or concrete wall by which the difficulty that the soil around the external wall of the structure is dug up from the ground and a galvanic anode or an insoluble anode is embedded to apply cathodic protection or that the concrete wall is cut through from the inside of the structure to set the electrode in the soil outside the external wall is solved. SOLUTION: A galvanic anode or an external-energizer insoluble anode is mounted on the internal wall, floor and ceiling of a reinforced-concrete structure which a buried pipeline pierces or on all these concrete wall faces, and the anode is connected to the pipeline in the structure. A zinc galvanic anode 3 formed into sheet is preferably used as the anode, and a grounding resistance reducing agent 4 is preferably applied on the sheet-shaped anode on the concrete wall face side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地下埋設配管がマ
ンホール、共同溝あるいは橋梁等の鉄筋コンクリート構
造物を貫通して設けられている該鋼管のマクロセル腐食
を防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing macrocell corrosion of a steel pipe in which an underground pipe is provided through a reinforced concrete structure such as a manhole, a common ditch or a bridge.

【0002】[0002]

【従来の技術】通常、地下土中に設けられたマンホー
ル、共同溝あるいは橋梁等の鉄筋コンクリート構造物を
土中埋設配管が貫通するような場合、該貫通部で配管が
構造物内の鉄筋と接触することによりC/S系マクロセ
ル腐食を生じて腐食されることが知られている。これを
防止するため、従来は前記構造物の外壁付近の土壌を地
上から掘削し流電陽極あるいは不溶性陽極を埋設し電気
防食法を施行する方法、あるいは特公平6−53940
号公報もしくは特開平7−26389号公報に記載され
ているように、構造物の内部よりコンクリート壁を貫通
掘削し電極を外壁の土壌に突出せしめることによって埋
設配管に防食電流を直接流入させて防食していた。
2. Description of the Related Art Generally, when a pipe buried in the ground penetrates a reinforced concrete structure such as a manhole, a common ditch or a bridge provided in the underground soil, the pipe comes into contact with a reinforcing steel in the structure at the penetrating portion. It is known that by doing so, C / S-based macrocell corrosion occurs and is corroded. Conventionally, in order to prevent this, a method of excavating soil near the outer wall of the structure from the ground and embedding a galvanic anode or an insoluble anode and enforcing a cathodic protection method, or Japanese Patent Publication No. 6-53940.
As described in Japanese Unexamined Patent Application Publication No. Hei 7-26389 or JP-A-7-26389, an anticorrosion current flows directly into a buried pipe by excavating a concrete wall from the inside of a structure and protruding an electrode into soil on an outer wall. Was.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、前述
した従来方法のうち前者の方法は、地上からの掘削を伴
い地上の障害物や配管以外の地下埋設物の状況が不明で
ある場合等多大の困難を来すものであった。また従来方
法のうち後者の方法は、鉄筋コンクリート構造物の壁の
掘削は地下水の流入する恐れがあり、壁が厚い場合には
機械掘削に頼る必要が在る等の問題点を有するものであ
った。いずれの場合も土壌、コンクリートの掘削作業に
伴う重機の搬入、掘削後の余剰土壌、コンクリート破砕
屑等の廃棄物処理を考慮しなければならず、突発的な地
下水の流入等の対処も考慮しなければならないものであ
った。
Problems to be Solved by the Invention However, the former method among the above-mentioned conventional methods involves a large amount of excavation from the ground and the situation of obstacles and underground buried objects other than pipes is unknown. It was difficult. Moreover, the latter method among conventional methods has a problem that the excavation of the wall of the reinforced concrete structure has a risk of inflow of groundwater, and when the wall is thick, it is necessary to rely on mechanical excavation. . In any case, the transportation of heavy equipment accompanying the excavation work of soil and concrete, the disposal of surplus soil after excavation, and the disposal of waste such as concrete debris must be taken into consideration, and the measures for sudden inflow of groundwater, etc. must also be taken into account. It had to be.

【0004】本発明は上記した如き従来の問題点を有す
ることなく、鉄筋コンクリート構造物を貫通する埋設配
管のマクロセル腐食を有効に防止し得る方法を提供する
ことを目的とするものである。
An object of the present invention is to provide a method capable of effectively preventing macrocell corrosion of a buried pipe penetrating a reinforced concrete structure without having the conventional problems as described above.

【0005】[0005]

【課題を解決するための手段】一般に、コンクリート構
造物と土壌間で起こる腐食を解消する電位、いわゆるC
/Sマクロセル解消電位は−600mV以下(管対地電位測
定:飽和硫酸銅照合電極)が望ましいといわれている。
本発明者らは、土壌あるいはコンクリート壁の掘削作業
を要することなく、鉄筋コンクリート構造物の鉄筋と配
管が電気的に接触していることを前提として鉄筋を分極
させ、配管との電位差を小さくし、管対地電位をマクロ
セル解消電位以下にする方法について種々検討の結果、
本発明をなすに至ったものである。すなわち、本発明に
係る方法は、地下埋設配管が貫通する鉄筋コンクリート
構造物の該内壁、床、天井あるいはこれらすべてのコン
クリート壁面に流電陽極もしくは外部電源不溶性陽極を
取付け、該陽極と鉄筋コンクリート構造物内側の配管と
を結線することを特徴とする埋設配管のマクロセル腐食
防止方法であり、これにより前記問題点を解決したもの
である。本発明において、前記陽極はシート状に成形し
た亜鉛流電陽極であることが好ましく、またこれらシー
ト状陽極の鉄筋コンクリート壁面側には接地抵抗低減剤
を塗布することがより好ましい。
SUMMARY OF THE INVENTION In general, a potential for eliminating corrosion that occurs between a concrete structure and soil, a so-called C potential.
It is said that the / S macrocell elimination potential is desirably −600 mV or less (tube-to-ground potential measurement: saturated copper sulfate reference electrode).
The present inventors, without the need for soil or concrete wall excavation work, assuming that the reinforcing bar and the pipe of the reinforced concrete structure are in electrical contact, to polarize the reinforcing bar, reduce the potential difference with the pipe, As a result of various studies on the method of setting the tube-to-ground potential to be equal to or less than the macrocell dissolution potential,
The present invention has been accomplished. That is, the method according to the present invention comprises the steps of mounting a galvanic anode or an external power supply insoluble anode on the inner wall, floor, ceiling or all concrete walls of a reinforced concrete structure through which an underground pipe penetrates, and installing the anode and the inside of the reinforced concrete structure. A method for preventing macrocell corrosion of a buried pipe, characterized by connecting the pipe with the above pipe, which solves the above problem. In the present invention, the anode is preferably a sheet-shaped zinc galvanic anode, and more preferably, a grounding resistance reducing agent is applied to the reinforced concrete wall surface side of these sheet anodes.

【0006】[0006]

【発明の実施の形態】本発明は、地下埋設配管が貫通す
る鉄筋コンクリート構造物の大気中に露出した該内壁、
床、天井あるいはこれらすべてのコンクリート壁面に流
電陽極もしくは外部電源不溶性陽極を取付け、該陽極と
鉄筋コンクリート構造物内側に露出した配管とを結線す
ることによって、防食電流が前記陽極から鉄筋、配管を
経て陽極に帰還する陰極回路を形成し、これにより鉄筋
コンクリート構造物の鉄筋を分極させ、該配管との電位
差を小さくし、埋設配管のマクロセル腐食を防止するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reinforced concrete structure having an inner wall exposed to the atmosphere through which an underground pipe is penetrated.
By attaching a galvanic anode or an external power insoluble anode to the floor, ceiling or all these concrete walls, and connecting the anode to the piping exposed inside the reinforced concrete structure, the anticorrosion current is passed from the anode to the reinforcing steel and piping. A cathode circuit that returns to the anode is formed, thereby polarizing the reinforcing bars of the reinforced concrete structure, reducing the potential difference from the piping, and preventing macrocell corrosion of the buried piping.

【0007】[0007]

【実施例】本発明方法において鉄筋コンクリート構造物
がマンホールである場合の実施例につき説明する。図1
は実施例の概略側面図であり、図2はその断面図を示
す。これら図において、鉄筋コンクリート構造物のマン
ホール1のコンクリート壁2に一定の間隔でアンカーボ
ルト8を鉄筋と接触しないように電気ドリルで打ち込
み、該壁に亜鉛陽極シート板3を取付ける。なお、この
場合における陽極はいわゆる流電陽極による防食を応用
するものであり、陽極材として亜鉛に限らず配管材より
も卑な電位を有するマグネシウム等も適用でき、その形
状はブロック状等でも良いが壁の寸法に合わせたシート
状とすることが好ましい。また陽極は外部電源装置を備
えた不溶性陽極であってもよい。図において、亜鉛陽極
シート板3のコンクリート壁面側と接する側の片面に
は、例えば特許第2711455号発明に開示された如
き、塩化マグネシウムとベントナイトを混合したものに
水を加えてパテ状にした接地抵抗低減剤4を塗布するこ
とが好ましい。次に接地抵抗低減剤4を塗布した亜鉛陽
極シート板3を、接地抵抗低減剤4の塗布側面をコンク
リート壁面側となるようにしてアンカーボルト8に取付
けた後ナット9でコンクリート壁2に強固に締め付け張
付ける。該アンカーボルト8には予め通電用リード線5
を取付けておき該陽極シート板3に通電できるようにし
てある。また、配管には通電用ターミナルリード線7を
取付け、各々の通電用リード線5と通電用ターミナルリ
ード線7は結束し、マンホール入口16付近まで立ち上
げ、それら端部はビニールテープ15で保護しマンホール
入口16付近の壁に固定した。通電用リード線5を取付け
たボルト止め部10および亜鉛陽極シート板3のラップ部
11はエポキシ樹脂12でコーティングした。また通電用タ
ーミナルリード線7はテルミット溶接で配管に取付けた
後、アスファルトピッチ14で溶接部を被覆補修した。な
お、図示した実施例では通電用リード線5および通電用
ターミナルリード線7をそれぞれ一個所設けたように示
されているが、アンカーボルト8およびナット9の本数
は亜鉛陽極シート板3がコンクリート壁面に確りと張付
けるために複数個設置して良いことは当然であり、この
場合は各通電用リード線5を結線しこれと通電用ターミ
ナルリード線7とを結束するようにする。さらに、本発
明において、陽極はコンクリート構造物の該内壁、床、
天井あるいはこれらすべてのコンクリート壁面に取付け
るようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the reinforced concrete structure is a manhole in the method of the present invention will be described. FIG.
FIG. 2 is a schematic side view of the embodiment, and FIG. In these figures, anchor bolts 8 are driven at regular intervals into a concrete wall 2 of a manhole 1 of a reinforced concrete structure by an electric drill so as not to come into contact with a reinforcing bar, and a zinc anode sheet plate 3 is attached to the wall. In this case, the anode in this case applies corrosion prevention by a so-called galvanic anode. As the anode material, not only zinc but also magnesium or the like having a lower potential than the pipe material can be used, and the shape may be a block shape or the like. Is preferably in the form of a sheet according to the dimensions of the wall. The anode may be an insoluble anode provided with an external power supply. In the figure, one side of the zinc anode sheet plate 3 which is in contact with the concrete wall surface has a putty-like ground by adding water to a mixture of magnesium chloride and bentonite as disclosed in, for example, Japanese Patent No. 271455. It is preferable to apply the resistance reducing agent 4. Next, the zinc anode sheet plate 3 coated with the grounding resistance reducing agent 4 is attached to the anchor bolt 8 with the grounding side of the grounding resistance reducing agent 4 facing the concrete wall surface, and then firmly attached to the concrete wall 2 with the nut 9. Tighten and tighten. The anchor bolt 8 has a lead wire 5
Is mounted so that the anode sheet plate 3 can be energized. Also, energizing terminal leads 7 are attached to the piping, each energizing lead 5 and energizing terminal lead 7 are tied together, rise up to near the manhole entrance 16, and their ends are protected with vinyl tape 15. It was fixed to the wall near the entrance 16 of the manhole. Bolt fixing part 10 to which lead wire 5 for electric current is attached and lap part of zinc anode sheet plate 3
11 was coated with epoxy resin 12. Further, the terminal lead wire 7 for electric current was attached to the pipe by thermite welding, and the welded portion was covered and repaired with the asphalt pitch 14. In the illustrated embodiment, the energizing lead wire 5 and the energizing terminal lead wire 7 are shown as being respectively provided at one place. However, the number of anchor bolts 8 and nuts 9 is such that the zinc anode sheet plate 3 is a concrete wall surface. It is natural that a plurality of power supply leads 5 may be installed in order to securely attach the power supply leads. In this case, each of the power supply lead wires 5 is connected, and the power supply lead wires 5 are connected to the power supply terminal lead wires 7. Further, in the present invention, the anode is the inner wall of the concrete structure, the floor,
Attach to the ceiling or any of these concrete walls.

【0008】上記のような実施例において、亜鉛陽極シ
ート板3と配管6とをリード線で接続することにより、
防食電流が陽極から鉄筋、配管を通って陽極に帰る陰極
回路が形成されることになる。これによりコンクリート
構造物の鉄筋を分極させて配管との電位差を小さくし、
埋設配管のマクロセル腐食を防止することができる。
In the embodiment described above, the zinc anode sheet plate 3 and the pipe 6 are connected by a lead wire,
A cathode circuit is formed in which the anticorrosion current returns from the anode to the anode through a reinforcing bar and piping. As a result, the rebar of the concrete structure is polarized to reduce the potential difference from the pipe,
Macrocell corrosion of buried piping can be prevented.

【0009】陽極に接続された通電用リード線5および
配管に接続された通電用ターミナルリード線7はそれぞ
れマンホール入口16付近のコンクリート壁に固定されて
いるため、陽極による配管の電気防食が可能となるばか
りではなく、管対地電位を随時計測することが容易であ
り、防食の保守管理が容易となる。管対地電位(飽和硫
酸銅照合電極)は、施工前のマンホール壁外側の上流側
(図1で示す位置)の0m地点で-420mV、1m地点で-5
60mVであり、施工前のマンホール壁外側の下流側(図1
で示す位置)の0m地点で-530mV、1m地点で-630mVで
あった。しかるに、施工4ヶ月後、上流側0m地点で-5
60mV、1m地点で-650mVであり、下流側0m地点で-620
mV、1m地点で-740mVであった。この結果、マクロセル
腐食解消電位-600mVに対して上流側0m地点を除いて、
いずれも電位が卑の方向に分極し、防食効果が現われて
いることが分かった。施工6ヶ月後の測定では、上流側
0m地点も-605mVとなり他の地点もいずれも4ヶ月の測
定値よりも卑となり、防食解消電位-600mVをクリヤーし
該埋設配管のマクロセル腐食を防止するのに足る十分な
防食電位を示した。
Since the energizing lead wire 5 connected to the anode and the energizing terminal lead wire 7 connected to the pipe are fixed to the concrete wall near the manhole entrance 16, respectively, it is possible to prevent the pipe from being corroded by the anode. Not only that, it is easy to measure the tube-to-ground potential at any time, and the maintenance and management of anticorrosion becomes easy. The tube-to-ground potential (saturated copper sulfate reference electrode) was -420 mV at 0 m at the upstream side (position shown in Fig. 1) outside the manhole wall before construction, and -5 at 1 m.
60mV, downstream of the manhole wall before construction (Fig. 1
At the 0 m point, and -630 mV at the 1 m point. However, 4 months after construction, -5 at 0m upstream
60mV, -650mV at 1m point, -620 at 0m downstream
mV, it was -740mV at 1m point. As a result, except for the point 0 m upstream from the macrocell corrosion elimination potential -600 mV,
In each case, it was found that the electric potential was polarized in the base direction, and the anticorrosion effect appeared. In the measurement 6 months after the installation, the 0 m point on the upstream side is -605 mV, and the other points are all lower than the measured values of 4 months, and the anticorrosion elimination potential -600 mV is cleared to prevent macrocell corrosion of the buried piping. Sufficient anticorrosion potential.

【0010】[0010]

【発明の効果】以上のような本発明によれば、鉄筋コン
クリート構造物の壁を掘削することなく、埋設配管のマ
クロセル腐食を防止することができる。
According to the present invention as described above, it is possible to prevent macrocell corrosion of a buried pipe without excavating a wall of a reinforced concrete structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法をマンホール部に施工した陽極取付
け概略側面図である。
FIG. 1 is a schematic side view of an anode mounting in which a method of the present invention is applied to a manhole.

【図2】図1の断面図である。FIG. 2 is a sectional view of FIG.

【図3】本発明実施前後の管対地電位を示すものであ
る。
FIG. 3 shows tube-to-ground potentials before and after implementation of the present invention.

【符号の説明】[Explanation of symbols]

1 マンホール 2 壁 3 亜鉛陽極シート板 4 接地抵抗低減剤 5 通電用リード線 6 配管 7 通電用ターミナルリード線 8 アンカーボルト 9 ナット 10 ボルト締め部 11 ラップ部 12 エポキシ樹脂 13 テルミット溶接 14 アスファルト 15 ビニールテープ 16 マンホール入口 17 鉄筋 DESCRIPTION OF SYMBOLS 1 Manhole 2 Wall 3 Zinc anode sheet plate 4 Grounding resistance reducing agent 5 Lead wire for energization 6 Piping 7 Terminal lead wire for energization 8 Anchor bolt 9 Nut 10 Bolt tightening part 11 Lapping part 12 Epoxy resin 13 Thermit welding 14 Asphalt 15 Vinyl tape 16 Manhole entrance 17 Reinforcing bar

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F16L 1/024 F16L 58/00 58/00 1/02 R ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F16L 1/024 F16L 58/00 58/00 1/02 R

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地下埋設配管が貫通する鉄筋コンクリー
ト構造物の該内壁、床、天井あるいはこれらすべてのコ
ンクリート壁面に流電陽極もしくは外部電源不溶性陽極
を取付け、該陽極と鉄筋コンクリート構造物内側の配管
とを結線することを特徴とする埋設配管のマクロセル腐
食防止方法。
1. A current-flow anode or an external power-insoluble anode is attached to the inner wall, floor, ceiling or all concrete walls of a reinforced concrete structure through which a buried underground pipe penetrates, and the anode is connected to a pipe inside the reinforced concrete structure. A method for preventing macrocell corrosion of buried piping, characterized by connecting.
【請求項2】 前記陽極がシート状に成形された亜鉛流
電陽極である請求項1記載の埋設配管のマクロセル腐食
防止方法。
2. The method according to claim 1, wherein the anode is a zinc galvanic anode formed in a sheet shape.
【請求項3】 前記シート状陽極の鉄筋コンクリート壁
面側に接地抵抗低減剤を塗布したものを用いる請求項2
記載の埋設配管のマクロセル腐食防止方法。
3. A sheet-like anode coated with a grounding resistance reducing agent on a reinforced concrete wall side.
The method for preventing macrocell corrosion of buried piping as described.
JP02657498A 1998-01-23 1998-01-23 Macro cell corrosion prevention method for buried piping Expired - Fee Related JP4132174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02657498A JP4132174B2 (en) 1998-01-23 1998-01-23 Macro cell corrosion prevention method for buried piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02657498A JP4132174B2 (en) 1998-01-23 1998-01-23 Macro cell corrosion prevention method for buried piping

Publications (2)

Publication Number Publication Date
JPH11209885A true JPH11209885A (en) 1999-08-03
JP4132174B2 JP4132174B2 (en) 2008-08-13

Family

ID=12197332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02657498A Expired - Fee Related JP4132174B2 (en) 1998-01-23 1998-01-23 Macro cell corrosion prevention method for buried piping

Country Status (1)

Country Link
JP (1) JP4132174B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035448A (en) * 2005-07-27 2007-02-08 Tokyo Electric Power Co Inc:The Embedded structure grounding device
JP2016099003A (en) * 2014-11-25 2016-05-30 株式会社金澤製作所 Cutoff retainer for buried pipe or cable pipe comprising electric corrosion prevention means
KR20210001535U (en) * 2019-12-27 2021-07-07 주식회사 한국가스기술공사 Electric potential test box for gas pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035448A (en) * 2005-07-27 2007-02-08 Tokyo Electric Power Co Inc:The Embedded structure grounding device
JP4689387B2 (en) * 2005-07-27 2011-05-25 東京電力株式会社 Embedded structure grounding device
JP2016099003A (en) * 2014-11-25 2016-05-30 株式会社金澤製作所 Cutoff retainer for buried pipe or cable pipe comprising electric corrosion prevention means
KR20210001535U (en) * 2019-12-27 2021-07-07 주식회사 한국가스기술공사 Electric potential test box for gas pipe

Also Published As

Publication number Publication date
JP4132174B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US11519077B2 (en) Galvanic anode and method of corrosion protection
US20150159282A1 (en) Galvanic anode and method of corrosion protection
US20080155827A1 (en) Method for repairing metal structure
JP4132174B2 (en) Macro cell corrosion prevention method for buried piping
JP2016098596A (en) Simple repair method and simple repair structure of reinforced concrete structure without requiring cross section repair using sacrificial anode material
JPH0726389A (en) Method for executing electric corrosion protection for underground installation piping passing through reinforced concrete construction
JPS6324077B2 (en)
JP2000026174A (en) Method for preventing corrosion of reinforcing bar in concrete
JP2920806B2 (en) Water leakage repair method for reinforced concrete structures
JP2005068953A (en) Steel foundation structure
JPH02209494A (en) Galvanic anode material for preventing corrosion of reinforced concrete and method for electrolytically protecting reinforced concrete structure with the same
JP3193572B2 (en) Cathodic protection method for the outer surface of an existing iron tunnel and its electrode device for cathodic protection
JPH0653940B2 (en) Cathodic protection method for underground pipes that penetrates reinforced concrete structures.
JP7304570B2 (en) Anti-corrosion structure and anti-corrosion method for reinforced concrete structures
JPS5932593Y2 (en) Cathodic protection structure on the underside of the bottom plate of outdoor storage tanks
JPS609887A (en) Electrolytic protection method of underground buried material
JP2780915B2 (en) Corrosion protection structure of metal body connected to reinforced concrete structure
MILTENBERGER et al. Distributed Galvanic Anode Performance on Bridges in the US
JPH0352321Y2 (en)
JP2024112375A (en) Method for cathodic protection of metal structures and cathodic protection of metal structures
JP2776385B2 (en) Cathodic protection method for conducting pipes
JP2024109077A (en) Galvanic anode materials and corrosion prevention methods
JPS6320309B2 (en)
WO1992002664A1 (en) Anode member to be electrically charged for preventing corrosion of reinforced concrete and electric corrosion preventive method employing said member
JPS6315334Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees