JPS6315334Y2 - - Google Patents

Info

Publication number
JPS6315334Y2
JPS6315334Y2 JP13873385U JP13873385U JPS6315334Y2 JP S6315334 Y2 JPS6315334 Y2 JP S6315334Y2 JP 13873385 U JP13873385 U JP 13873385U JP 13873385 U JP13873385 U JP 13873385U JP S6315334 Y2 JPS6315334 Y2 JP S6315334Y2
Authority
JP
Japan
Prior art keywords
conductor
pipe
insulating
piping
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13873385U
Other languages
Japanese (ja)
Other versions
JPS6150763U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13873385U priority Critical patent/JPS6315334Y2/ja
Publication of JPS6150763U publication Critical patent/JPS6150763U/ja
Application granted granted Critical
Publication of JPS6315334Y2 publication Critical patent/JPS6315334Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【考案の詳細な説明】 この発明は配管構造に関し、土壌埋設配管と建
屋鉄筋等との間に形成されるマクロセルによる埋
設配管の腐食を防止することを目的とする。
[Detailed Description of the Invention] The present invention relates to a piping structure, and an object of the present invention is to prevent corrosion of the underground piping due to macro cells formed between the underground piping and building reinforcing bars.

水道管等の建屋における配管は通常鋼製であ
り、その土壌埋設部には腐食漏洩事故が頻繁に生
ずる。この主たる原因は建屋鉄筋等と土壌埋設配
管とのマクロセル腐食によるものであり、そのた
め鋼製配管の外表面には絶縁被覆を施している
が、十分な腐食防止にはなつていない。
Pipes such as water pipes in buildings are usually made of steel, and corrosion and leakage accidents frequently occur in the parts buried in the soil. The main cause of this is macrocell corrosion between building reinforcing bars and underground piping, and although insulation coatings are applied to the outer surfaces of steel piping, this is not sufficient to prevent corrosion.

第1図において1は配管、2は建屋の壁、3は
鉄筋、4は基礎コンクリート、3′はコンクリー
ト4中の鉄筋であり、鉄筋3と3′とは電気的に
連結しているものとする。また配管1は鋼製でそ
の表面に絶縁被覆が施してある。この鉄筋3′は
コンクリートのPH値が12程度であるため、開路電
位で0〜200mV(SEC)程度の電位をもつ。一
方、土壌中に埋設された埋設配管1′は開路電位
で−500〜−700mV(SEC)程度の電位をもつた
め、鉄筋3′と土壌中埋設配管1′との間に300〜
500mVもの電位差を生ずることになる。このよ
うな状態において、配管1が壁2を貫通すること
等により鉄筋3に接触する構造の場合、該電位差
による電池が構成され配管1′の被覆に塗膜欠陥
部等6がある場合、鉄筋3′→鉄筋3→接触点5
→地上の配管1→埋設配管1′→土壌→鉄筋3′と
いう経路で電流が流れる。この電流は埋設配管
1′の塗膜欠陥部等6から鉄筋3′に向つて土壌中
に流れ出し、この際この電流により塗膜欠陥部等
6において管体が激しく腐食する。
In Figure 1, 1 is a pipe, 2 is a building wall, 3 is a reinforcing bar, 4 is a foundation concrete, and 3' is a reinforcing bar in the concrete 4, and the reinforcing bars 3 and 3' are electrically connected. do. Further, the pipe 1 is made of steel and has an insulating coating applied to its surface. Since the PH value of concrete is about 12, this reinforcing bar 3' has an open circuit potential of about 0 to 200 mV (SEC). On the other hand, since the underground pipe 1' buried in the soil has an open circuit potential of about -500 to -700 mV (SEC), there is
This results in a potential difference of as much as 500mV. In such a state, in the case of a structure in which the pipe 1 comes into contact with the reinforcing bars 3 by penetrating the wall 2, etc., a battery is formed due to this potential difference, and if there is a coating defect 6 in the coating of the pipe 1', the reinforcing bars 3' → Rebar 3 → Contact point 5
The current flows through the following path: → above-ground pipe 1 → buried pipe 1' → soil → reinforcing steel 3'. This current flows into the soil from the paint film defects etc. 6 of the buried pipe 1' toward the reinforcing bars 3', and at this time, the pipe body in the paint film defects etc. 6 is severely corroded by this current.

この腐食度は肉厚3.5mmの配管がわずか1〜2
年で貫通する程大きいもので、建物まわりの小径
埋設配管の腐食漏洩事故の多くがこの原因による
ものと考えられている。
This corrosion rate is only 1 to 2% for a 3.5mm thick pipe.
It is so large that it can penetrate through the pipes in a year, and it is believed that many of the corrosion leakage accidents in small diameter buried pipes around buildings are due to this cause.

このようなマクロセル腐食を防止する手段とし
て第2図に示すように接触点5と埋設配管1′と
の間の地上配管1に絶縁継手7を介装させ、電流
をここで遮断する方法が採られている。
As a means of preventing such macrocell corrosion, a method has been adopted in which an insulating joint 7 is interposed in the above-ground piping 1 between the contact point 5 and the buried piping 1', and the current is interrupted here, as shown in FIG. It is being

この絶縁継手7は最も一般的には、第3図に示
すように、フランジ70,70間に合成樹脂等の
絶縁パツキング71を介装させ、フランジ70,
70をボルト・ナツト74と絶縁スリーブ72と
絶縁座金73とにより締結した構成となつてい
る。そして絶縁パツキング71の厚みは通常1〜
5mm程度である。
Most commonly, this insulating joint 7 has an insulating packing 71 made of synthetic resin or the like interposed between the flanges 70, 70, as shown in FIG.
70 is fastened with a bolt/nut 74, an insulating sleeve 72, and an insulating washer 73. The thickness of the insulation packing 71 is usually 1~
It is about 5mm.

しかし、このような絶縁継手7を用いても、配
管中を流れる流体が水道水やその他の導電性を有
するものの場合には、絶縁パツキング71が薄い
ため、マクロセルによる電流は完全に遮断され
ず、一部の電流はフランジ絶縁部の手前で液体側
へ流出し、絶縁部を超えて管体へ流入する。い
ま、配管内が水道水で満たされており、配管の口
径が50mmφであると仮定すると、この絶縁継手7
による抵抗は500Ω程度にしかならず、この程度
の抵抗では配管を流れる電流の大きさは多少軽減
されるが、塗膜欠陥部等6からは尚かなりの電流
が流出し、そのため腐食は十分に防止されない。
したがつて内部の流体の種類によつては上記のよ
うな構成の絶縁継手7だけでは根本的な解決とは
ならない。
However, even if such an insulating joint 7 is used, if the fluid flowing in the pipe is tap water or other conductive fluid, the insulating packing 71 is thin, so the current generated by the macro cell is not completely blocked. Some of the current flows out to the liquid side before the flange insulation and flows beyond the insulation into the tube body. Now, assuming that the inside of the pipe is filled with tap water and the diameter of the pipe is 50mmφ, this insulation joint 7
The resistance is only about 500Ω, and although this level of resistance reduces the magnitude of the current flowing through the pipe to some extent, a considerable amount of current still flows out from defective parts of the coating 6, so corrosion is not sufficiently prevented. .
Therefore, depending on the type of fluid inside, the insulating joint 7 having the above structure alone may not provide a fundamental solution.

そこで更に絶縁を向上させるためには、第4図
に示す長尺型の絶縁継手9が用いられる。この長
尺型絶縁継手9は第5図に示すように配管1内径
の10倍程度の適宜な長さを有する鋼管からなり、
その内面が合成樹脂10により絶縁ライニングさ
れ、その一端に絶縁ブツシユ11を介してネジソ
ケツト12′を、他端にネジソケツト12を取付
けた構成となつており、配管1,1′に該ネジソ
ケツト12,12′により接続する。このような
構成の長尺型絶縁継手9では、内面ライニングの
長さに相当する水の抵抗が配管1,1′間の電気
抵抗となり、例えば口径50mmφの継手中を水道水
が流れる場合約50000Ωの抵抗となるため、第2
図、第3図に示す絶縁継手7に比較してかなりの
効果がある。
Therefore, in order to further improve the insulation, an elongated insulating joint 9 shown in FIG. 4 is used. As shown in FIG. 5, this long type insulating joint 9 is made of a steel pipe having an appropriate length of about 10 times the inner diameter of the pipe 1.
Its inner surface is insulated and lined with synthetic resin 10, and a screw socket 12' is attached to one end of the tube through an insulating bush 11, and a screw socket 12 is attached to the other end. ′ to connect. In the elongated insulating joint 9 having such a configuration, the resistance of water corresponding to the length of the inner lining becomes the electrical resistance between the pipes 1 and 1', and for example, when tap water flows through a joint with a diameter of 50 mmφ, it is approximately 50,000Ω. The second
This is considerably more effective than the insulating joint 7 shown in FIGS.

しかし長尺型絶縁継手9は、管内流体が水道水
の場合でも配管径の約10倍の長さが必要であり、
口径50mmφの配管では50cm、口径150mmφの配管
になると150cmもの長さとなり、取付場所が制約
されること、設置作業が従来の継手より困難にな
ること、継手自体が高価になること等の実用上多
くの問題がある。
However, the long insulating joint 9 needs to be approximately 10 times the pipe diameter even when the fluid inside the pipe is tap water.
Piping with a diameter of 50 mmφ is 50 cm long, and piping with a diameter of 150 mmφ is as long as 150 cm, which limits the installation location, makes installation work more difficult than conventional fittings, and makes the fittings themselves more expensive. There are many problems.

更に管内流体が循環使用される冷却水等の場合
には導電率が水道水より高くなるため更に長い継
手が必要となり、このような場合絶縁継手のみに
よる腐食の防止は事実上不可能となる。
Furthermore, in the case of cooling water or the like where the fluid in the pipe is circulated, the electrical conductivity is higher than that of tap water, so a longer joint is required, and in such a case, it is virtually impossible to prevent corrosion only with insulating joints.

本考案は上気した従来技術の欠点を改善するた
めになされたもので、マクロセル腐食を有効に防
止し得る配管構造を提供しようとするものであ
る。
The present invention has been made to improve the drawbacks of the prior art, and is intended to provide a piping structure that can effectively prevent macrocell corrosion.

以下本考案の一実施例を図面に基づいて説明す
る。
An embodiment of the present invention will be described below based on the drawings.

第6図において、配管20は建屋の壁2を貫通
して鉄筋3に接触部21で接触し、建屋まわりで
土壌中に埋設されている。接触部21と土壌中に
埋設された埋設配管20′との間の地上配管20
aには絶縁継手22が介装されている。この絶縁
継手22の詳細は後述する。そして土壌中には導
体23が埋設され、この導体23はリード線24
を介して絶縁継手22と埋設配管20′の間の地
上配管20bに電気的に接続されている。
In FIG. 6, the pipe 20 penetrates the wall 2 of the building, contacts the reinforcing bars 3 at a contact portion 21, and is buried in the soil around the building. Above ground piping 20 between contact portion 21 and buried piping 20' buried in soil
An insulating joint 22 is interposed at a. Details of this insulating joint 22 will be described later. A conductor 23 is buried in the soil, and this conductor 23 is connected to a lead wire 24.
It is electrically connected to above-ground piping 20b between insulating joint 22 and buried piping 20' via.

導体23は鋼製、望ましくは炭素鋼製のものが
良く、配管20′との間に電位差を生じさせない
ようにする。また特に取扱い上または入手のし易
さから鋼管が適しているが、十分な面積と体積を
有するものであれば板材、角柱材、丸棒等どのよ
うなものであつても良い。この導体23の埋設場
所は出来る限り鉄筋3′に近接した場所が望まし
い。
The conductor 23 is preferably made of steel, preferably carbon steel, so as not to create a potential difference between it and the pipe 20'. In addition, a steel pipe is particularly suitable from the viewpoint of handling or ease of acquisition, but any material such as a plate material, a prismatic material, a round bar, etc. may be used as long as it has a sufficient area and volume. It is desirable that the conductor 23 be buried as close to the reinforcing bars 3' as possible.

導体23とリード線24とはテルミツト溶接で
接合されており、該接合部240は腐食、脱落防
止のために防食材241で覆われている。またリ
ード線24は外面が有効な防食効果を持つように
被覆材により被覆されている。地上配管20とリ
ード線24の接続場所は、地上配管20の絶縁部
と土壌の間のどの位置であつても良いが、この実
施例では土壌のフランジ30′に接続している。
The conductor 23 and the lead wire 24 are joined by thermite welding, and the joint 240 is covered with a corrosion-proofing material 241 to prevent corrosion and falling off. Further, the outer surface of the lead wire 24 is coated with a coating material so as to have an effective anti-corrosion effect. The above-ground pipe 20 and the lead wire 24 may be connected at any position between the insulating part of the above-ground pipe 20 and the soil, but in this embodiment, they are connected to a flange 30' of the soil.

なお、現場での作業性を考慮して、絶縁継手2
2と導体23とリード線24とを一体化したもの
を予め作成し、現地にて取付け、導体23を埋設
するようにしても良い。
In addition, in consideration of workability on site, insulated joint 2
2, the conductor 23, and the lead wire 24 may be made in advance and installed on site, and the conductor 23 may be buried.

また導体23からの電流流出を容易にするため
にバツクフイル材を用いることも可能である。
It is also possible to use a backfill material to facilitate current flow from the conductor 23.

上記構成において、鉄筋3′から配管20を流
れる電流は絶縁継手22において配管内部の流体
中を通過したのち、土壌配管20′の塗膜欠陥部
等25と接地抵抗の低い導体23から流出する。
この時、継手22を通過する電流は増加するが、
導体23の表面積は欠陥部等25の面積に比較し
て非常に大きいため、欠陥部等25から流出する
電流の電流密度は導体23がない場合よりも非常
に小さくなる。その結果、腐食速度が減少し、腐
食防止効果を得ることができる。
In the above configuration, the current flowing through the pipe 20 from the reinforcing bar 3' passes through the fluid inside the pipe at the insulating joint 22, and then flows out from the defective coating film 25 of the soil pipe 20' and the conductor 23 with low ground resistance.
At this time, the current passing through the joint 22 increases, but
Since the surface area of the conductor 23 is much larger than the area of the defective portion 25, the current density of the current flowing out from the defective portion 25 is much smaller than in the case where the conductor 23 is not present. As a result, the corrosion rate is reduced and a corrosion prevention effect can be obtained.

なお、この際、絶縁継手22の接触部21側の
配管20aの内面は絶縁継手22での電流ジヤン
プにより腐食する。そのため管厚を厚くする等腐
食により貫通孔が生じないような処置を施してお
くのが望ましいが、本考案においてはこの電流ジ
ヤンプによる配管の腐食を軽減するために、絶縁
継手22を特殊な構造としている。第7図はその
正面図である。20a,20bは配管であり、矢
印は腐食電流の流れ方向を示している。
At this time, the inner surface of the pipe 20a on the contact portion 21 side of the insulating joint 22 corrodes due to the current jump in the insulating joint 22. Therefore, it is desirable to take measures to prevent the formation of through holes due to corrosion, such as increasing the thickness of the pipe, but in the present invention, in order to reduce corrosion of the pipe due to this current jump, the insulating joint 22 is constructed with a special structure. It is said that FIG. 7 is a front view thereof. 20a and 20b are pipes, and arrows indicate the direction of flow of corrosion current.

配管20a,20bには夫々フランジ30,3
0′が一体に形成されており、このフランジ30,
30′間には導体31と絶縁材32とが介装され
ている。導体31は腐食電流上流側のフランジ3
0側に介し、これと接触させてある。そして該導
体31と腐食電流下流側のフランジ30′との間
に絶縁材32を介装してある。
The piping 20a, 20b has flanges 30, 3, respectively.
0' are integrally formed, and this flange 30,
A conductor 31 and an insulating material 32 are interposed between 30'. The conductor 31 is connected to the flange 3 on the upstream side of the corrosion current.
It is in contact with this via the 0 side. An insulating material 32 is interposed between the conductor 31 and the flange 30' on the downstream side of the corrosion current.

導体31は鋼製または鋼よりも自然電位が卑な
金属とし、フランジ30,30′の形状に合う円
環形状としている。導体31とフランジ30との
接触は金属体どうしであるためシール性が悪く漏
洩が生じ易くなる。そこで、この実施例において
は、第8図に示すように導体31のフランジ30
側に突起310を多数形成すると共に導体31と
フランジ30との間にシール用の粘弾性体311
を介してある。このような構成によれば、後述す
るボルト・ナツトによりフランジ30,30′を
締結した時、第8図bに示すように粘弾性体31
1がつぶされた突起310とフランジ30とが接
触し、電気的導通が図れる。同時に粘弾性体31
1により内部流体のシールが行われる。
The conductor 31 is made of steel or a metal whose natural potential is less noble than steel, and has an annular shape that matches the shape of the flanges 30, 30'. Since the contact between the conductor 31 and the flange 30 is between metal bodies, the sealing performance is poor and leakage is likely to occur. Therefore, in this embodiment, the flange 30 of the conductor 31 is
A large number of protrusions 310 are formed on the side, and a viscoelastic body 311 for sealing is provided between the conductor 31 and the flange 30.
It's through. According to such a configuration, when the flanges 30, 30' are fastened with bolts and nuts, which will be described later, the viscoelastic body 31 as shown in FIG. 8b.
The protrusion 310 in which 1 is crushed comes into contact with the flange 30, and electrical continuity is achieved. At the same time, the viscoelastic body 31
1 seals the internal fluid.

導体31とフランジ30′との間に介装される
絶縁材32は、この実施例では合成樹脂等の絶縁
性パツキングとなつており、フランジ30,3
0′の形状に合つた円環形状となつている。
The insulating material 32 interposed between the conductor 31 and the flange 30' is insulating packing made of synthetic resin or the like in this embodiment.
It has an annular shape that matches the shape of 0'.

以上のように導体31と絶縁材32を介装した
上、フランジ30,30′にボルト穴を形成し、
ここで絶縁スリーブ330と絶縁座金331を介
してボルト・ナツト33により両フランジを締結
した構成となつている。
After interposing the conductor 31 and the insulating material 32 as described above, bolt holes are formed in the flanges 30 and 30',
Here, both flanges are fastened together with bolts and nuts 33 via an insulating sleeve 330 and an insulating washer 331.

以上のような構成によれば、腐食電流は配管2
0a→フランジ30→突起310→導体31を通
つて、ここから配管20bへと配管内流体を通つ
てジヤンプする。したがつて導体31が配管20
aに代わつて腐食し、配管20aの腐食防止が図
れる。腐食した導体31は適宜交換すれば良い。
According to the above configuration, the corrosion current flows through the pipe 2.
0a→flange 30→protrusion 310→conductor 31, and from there, the fluid in the pipe jumps to pipe 20b. Therefore, the conductor 31 is the pipe 20
Corrosion occurs instead of a, and corrosion of the pipe 20a can be prevented. The corroded conductor 31 may be replaced as appropriate.

なお導体の形状は種々態様が可能であり、第9
図に示す実施例では、両端にフランジ340,3
40′を有する短管形状の導体34を採用してい
る。この実施例ではフランジ340に突起310
を形成し、粘弾性体311を介装すると共にフラ
ンジ30と接触させ、一方、フランジ340′と
フランジ30′との間に絶縁材32を介装してい
る。そしてフランジ340とフランジ30とをボ
ルト・ナツト33′により直接締結し、フランジ
340′とフランジ30′とを夫々絶縁スリーブ3
30と絶縁座金331とを介してボルト・ナツト
33により締結した構成としている。
It should be noted that the shape of the conductor can be in various forms.
In the embodiment shown, flanges 340, 3 are provided at both ends.
A short tube-shaped conductor 34 having a diameter of 40' is employed. In this embodiment, a protrusion 310 is provided on the flange 340.
A viscoelastic body 311 is interposed therebetween and brought into contact with the flange 30, while an insulating material 32 is interposed between the flanges 340' and 30'. Then, the flanges 340 and 30 are directly fastened with bolts and nuts 33', and the flanges 340' and 30' are respectively connected to the insulating sleeve 33'.
30 and an insulating washer 331, and are fastened with bolts and nuts 33.

この構成によれば、同様に導体34が腐食する
から配管20a自体の腐食が防止される。
According to this configuration, since the conductor 34 is similarly corroded, corrosion of the pipe 20a itself is prevented.

以上説明したように本考案による配管構造によ
れば、マクロセル腐食を有効に防止することが出
来、しかも取付け場所の制限がなくコストも安い
等の効果がある。
As explained above, the piping structure according to the present invention can effectively prevent macrocell corrosion, and has advantages such as no restrictions on installation locations and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は従来の配管構造の説明図、第
3図は絶縁継手の断面図、第4図は長尺型絶縁継
手を用いた場合の従来の配管構造の説明図、第5
図は長尺型絶縁継手の断面図、第6図は本考案に
よる配管構造の一実施例を示す説明図、第7図は
電流ジヤンプによる絶縁継手手前の配管の腐食を
防止するための絶縁継手の一実施例の正断面図、
第8図はその部分拡大図、第9図は絶縁継手の他
の実施例の正断面図である。 図中、20は配管、21は接触部、22は絶縁
継手、23は導体、24はリード線、30はフラ
ンジ、31は導体、32は絶縁材、33はボル
ト・ナツト、34は導体を各示す。
Figures 1 and 2 are explanatory diagrams of a conventional piping structure, Figure 3 is a cross-sectional view of an insulated joint, Figure 4 is an explanatory diagram of a conventional piping structure using a long type insulated joint, and Figure 5
The figure is a sectional view of a long type insulated joint, Figure 6 is an explanatory diagram showing an example of the piping structure according to the present invention, and Figure 7 is an insulated joint for preventing corrosion of the piping in front of the insulated joint due to current jump. A front sectional view of an embodiment of
FIG. 8 is a partially enlarged view thereof, and FIG. 9 is a front sectional view of another embodiment of the insulating joint. In the figure, 20 is a pipe, 21 is a contact part, 22 is an insulated joint, 23 is a conductor, 24 is a lead wire, 30 is a flange, 31 is a conductor, 32 is an insulating material, 33 is a bolt/nut, and 34 is a conductor. show.

Claims (1)

【実用新案登録請求の範囲】 1 建屋のコンクリート製基礎に接触する鉄筋等
に電気的に接触し且つ建屋まわりの土壌中に埋
設される鋼製の絶縁被覆埋設配管を有する配管
構造において、前記鉄筋等との接触部と埋設配
管との間の地上配管に電気的な絶縁部を形成す
ると共に鋼製導体を土壌中に埋設し、該導体を
前記絶縁部と埋設配管との間の地上配管に電気
的に接続し、前記絶縁部を接触部側の配管に接
触する導体と、該導体と埋設部側との間に介装
された絶縁材とで構成したことを特徴とする配
管構造。 2 導体と地上配管をリード線により電気的に接
続し、リード線と導体とリード線との接合部と
を腐食防止用被覆材で被覆した実用新案登録請
求の範囲第1項に記載の配管構造。
[Scope of Claim for Utility Model Registration] 1. In a piping structure having a steel insulation-coated buried pipe that electrically contacts reinforcing bars etc. that contact the concrete foundation of a building and is buried in the soil around the building, An electrically insulating part is formed in the above-ground piping between the contact part with the underground pipe and the buried pipe, and a steel conductor is buried in the soil, and the conductor is connected to the above-ground pipe between the insulating part and the buried pipe. A piping structure comprising: a conductor that is electrically connected and the insulating portion contacts the piping on the contact portion side; and an insulating material interposed between the conductor and the buried portion side. 2. The piping structure according to claim 1 of the utility model registration claim, in which the conductor and above-ground piping are electrically connected by a lead wire, and the lead wire and the joint between the conductor and the lead wire are covered with a corrosion-preventing coating material. .
JP13873385U 1985-09-12 1985-09-12 Expired JPS6315334Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13873385U JPS6315334Y2 (en) 1985-09-12 1985-09-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13873385U JPS6315334Y2 (en) 1985-09-12 1985-09-12

Publications (2)

Publication Number Publication Date
JPS6150763U JPS6150763U (en) 1986-04-05
JPS6315334Y2 true JPS6315334Y2 (en) 1988-04-28

Family

ID=30697130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13873385U Expired JPS6315334Y2 (en) 1985-09-12 1985-09-12

Country Status (1)

Country Link
JP (1) JPS6315334Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008473B2 (en) * 2017-11-06 2022-01-25 日鉄エンジニアリング株式会社 Foundation structure

Also Published As

Publication number Publication date
JPS6150763U (en) 1986-04-05

Similar Documents

Publication Publication Date Title
US3623968A (en) Sacrificial anode and pipe protected thereby
JP2001519478A (en) Cathodic protection method and apparatus
Ibrahim Corrosion control in electric power systems
US4692231A (en) Apparatus for cathodic protection of metal piping
JPS6315334Y2 (en)
JPH05180387A (en) Riser pipe in buried piping and raising method for same
Romer et al. Causes of external corrosion on buried water mains
JPS5913083A (en) Construction of piping
CN109737271A (en) A kind of flexible anode mounting structure for pipeline internal corrosion
CA1194449A (en) Method and apparatus for cathodic protection of metal piping
JPS6324077B2 (en)
JPS5932593Y2 (en) Cathodic protection structure on the underside of the bottom plate of outdoor storage tanks
JPH0745566Y2 (en) Anticorrosion insulation fitting
JP3077836B2 (en) Rise pipe and method of buried piping
JP3035856B2 (en) Rise pipe for buried piping
CN109457256A (en) Submerged pipeline cathodic protection reparation blanket type sacrificial anode device
Colson et al. Corrosion control
JPS609887A (en) Electrolytic protection method of underground buried material
EP0170129A1 (en) Method and apparatus for cathodic protection of metal piping
JPS6233449Y2 (en)
JP2607478Y2 (en) Cathodic protection electrode structure for buried piping
JP2780915B2 (en) Corrosion protection structure of metal body connected to reinforced concrete structure
Rothman et al. Detection and considerations of corrosion problems of prestressed concrete cylinder pipe
JPS57116780A (en) Method for preventing electrolytic corrosion of underground buried metallic pipe
JPS6018715Y2 (en) Insulated piping hanging fittings