JPH11209865A - Formation of metal coating layer - Google Patents

Formation of metal coating layer

Info

Publication number
JPH11209865A
JPH11209865A JP10023930A JP2393098A JPH11209865A JP H11209865 A JPH11209865 A JP H11209865A JP 10023930 A JP10023930 A JP 10023930A JP 2393098 A JP2393098 A JP 2393098A JP H11209865 A JPH11209865 A JP H11209865A
Authority
JP
Japan
Prior art keywords
coating layer
inductor
primary coating
heated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10023930A
Other languages
Japanese (ja)
Other versions
JP3846761B2 (en
Inventor
Yasuo Watanabe
康男 渡辺
Yoshinobu Soji
義信 曽地
Kazunori Nishibaba
和典 西馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP02393098A priority Critical patent/JP3846761B2/en
Publication of JPH11209865A publication Critical patent/JPH11209865A/en
Application granted granted Critical
Publication of JP3846761B2 publication Critical patent/JP3846761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent recesses on the surface caused by the application of excessive electromagnetic stirring force on the molten zone at the time of remelting a primary coating layer formed on the surface of a base metal by thermal spraying or the like by induction heating. SOLUTION: At the time of subjecting a primary coating layer 11 on the surface of a base metal 10 to induction heating by an inductor 12, the penetrating depth δ of induced current is regulated to >=1.5 times the thickness (d) of the primary coating layer 11, by which the degree in which the induced current density reduces as it is deepen from the surface is made gentle, thus, the induced current density I0 in the surface of the primary coating layer is made low, and electromagnetic stirring force operating on the molten metal is made small to block the excessive flow of the molten metal, so that the generation of defects such as recesses on the surface can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属管、金属条材
等の母材表面に、耐摩耗性、耐熱性、耐食性等を付与す
るための金属被覆層を形成する方法に関し、特に、金属
材料の溶射等によって一次被覆層を形成し、次いでその
一次被覆層を溶融処理して緻密な金属被覆層(二次被覆
層)とする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal coating layer for imparting abrasion resistance, heat resistance, corrosion resistance, etc. on the surface of a base material such as a metal pipe or a metal strip. The present invention relates to a method of forming a primary coating layer by thermal spraying of a material, and then subjecting the primary coating layer to a melting treatment to form a dense metal coating layer (secondary coating layer).

【0002】[0002]

【従来の技術】従来より、母材表面に形成した溶射被覆
層(一次被覆層)を再溶融することにより、溶射被覆層
中に含まれていた気孔やガスを取り除くとともに金属酸
化物をスラグに変えて溶融部の表面に浮き上がらせて緻
密な被覆層(二次被覆層)を形成し、且つ母材に確実に
結合させることが行われている。この溶射被覆層の再溶
融処理を行うための加熱方法としては、ガス炎による加
熱、誘導加熱、炉による加熱等があり、そのうち、ガス
炎による加熱が簡便に実施できるので広く使用されてい
た。
2. Description of the Related Art Conventionally, a thermal spray coating layer (primary coating layer) formed on the surface of a base material is re-melted to remove pores and gases contained in the thermal spray coating layer and to convert metal oxides into slag. Alternatively, a dense coating layer (secondary coating layer) is formed by floating on the surface of the fusion zone, and is securely bonded to the base material. As a heating method for performing the re-melting treatment of the thermal spray coating layer, there are heating with a gas flame, induction heating, heating with a furnace, and the like. Of these, heating with a gas flame can be easily carried out, so that it has been widely used.

【0003】最近、ボイラーチューブ等の溶射被覆層の
再溶融処理方法として、環状の誘導子で溶射被覆層の長
手方向の小領域を局部的に誘導加熱し、溶射被覆層を溶
融させると共に前記誘導子をボイラーチューブの長手方
向に沿って相対的に移動させ、これによって、溶射被覆
層に生じた溶融部を溶射被覆層に沿って移動させてゆ
き、溶射被覆層全体に再溶融処理を施す方法が、溶融部
に電磁攪拌力が作用し、気孔の少ない良好な被覆層を形
成できるため、ガス炎による加熱に取って変わりつつあ
る。
Recently, as a method for re-melting a sprayed coating layer such as a boiler tube, a small region in the longitudinal direction of the sprayed coating layer is locally induction-heated by an annular inductor to melt the sprayed coating layer and to conduct the induction heating. A method in which the melted portion generated in the thermal spray coating layer is moved along the thermal spray coating layer, thereby re-melting the entire thermal spray coating layer. However, since the electromagnetic stirring force acts on the melted portion and a good coating layer with few pores can be formed, heating by a gas flame is being replaced.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来は溶射
被覆層厚さが1〜2mm程度であり、この程度の厚さの
溶射被覆層に対しては誘導加熱で良好な再溶融処理を行
うことができたが、溶射被覆層の厚さを3〜5mmと厚
くすると次のような問題の生じることが判明した。すな
わち、図11に示すように、金属管1の表面の溶射被覆
層2を環状の誘導子3で加熱して溶融部4を形成し、そ
の誘導子3を金属管1の長手方向に移動させて再溶融処
理を行った場合、再溶融処理後の被覆層5の表面に凹み
6が生じることがあった。また、図12に示すように、
金属管1を回転させながら、誘導子3で誘導加熱して再
溶融処理を行うことがあるが、その場合には、再溶融処
理後の被覆層5の表面にらせん状の凹み7が生じ、ま
た、終端にくびれ8が生じることがあった。なお、この
くびれ8は、金属管1を回転させない場合にも生じてい
た。このような凹み6、7、くびれ8等は、被覆層5の
表面の平滑度を低下させ、製品品質を低下させるので、
重大な欠陥であり、可及的に低減させる必要があった。
However, conventionally, the thickness of the sprayed coating layer is about 1 to 2 mm, and a good remelting treatment by induction heating is performed on the sprayed coating layer having such a thickness. However, it has been found that the following problem occurs when the thickness of the thermal spray coating layer is increased to 3 to 5 mm. That is, as shown in FIG. 11, the thermal spray coating layer 2 on the surface of the metal tube 1 is heated by an annular inductor 3 to form a fusion zone 4, and the inductor 3 is moved in the longitudinal direction of the metal tube 1. When the re-melting treatment was performed by using the re-melting treatment, the surface of the coating layer 5 after the re-melting treatment might have dents 6. Also, as shown in FIG.
In some cases, the re-melting process is performed by induction heating with the inductor 3 while rotating the metal tube 1. In this case, a spiral recess 7 is generated on the surface of the coating layer 5 after the re-melting process. In addition, the constriction 8 sometimes occurred at the end. The constriction 8 also occurs when the metal tube 1 is not rotated. Such depressions 6, 7 and constriction 8 lower the smoothness of the surface of the coating layer 5 and lower the product quality.
This was a serious defect and needed to be reduced as much as possible.

【0005】本発明者等は、誘導加熱による再溶融処理
の際の上記した問題点を解決すべく、被覆層表面に凹み
やくびれ等が生じる原因を検討し、次の事項を見出し
た。すなわち、被覆層が厚くなり、従ってそれを溶融さ
せた溶融部の厚さが厚くなると、溶融金属が流れやすく
なり、そのため電磁攪拌力が過度に作用して溶融金属に
好ましくない流れを生じさせており、また、被覆層の厚
さが厚くなるため被覆層を溶融させるために要する電力
を増加させねばならず、それに伴って電磁攪拌力自体も
大きくなっており、この点からも溶融金属に好ましくな
い流れを生じさせてしまい、これらの結果、被覆層表面
の平滑度を低下させていた。従って、溶融部に作用する
電磁攪拌力を溶融部の厚さに応じて過度にならないよう
抑制することによってこれらの問題点を解決できる。一
方、溶融部に作用する電磁攪拌力は、適用される全誘導
電流の内、溶融部に流れる誘導電流の密度(特に表層の
誘導電流密度)の大きさに依存しており、従って、この
誘導電流密度を小さく抑制すればよく、また、誘導電流
密度は誘導子によって供給される被覆層の単位面積当り
の電力密度に比例するので、結局、電力密度を低く抑制
すればよい。
The present inventors have studied the causes of dents and constrictions on the surface of the coating layer and found the following items in order to solve the above-mentioned problems in the re-melting treatment by induction heating. That is, when the thickness of the coating layer is increased, and thus the thickness of the molten portion that melts the coating layer is increased, the molten metal is more likely to flow, so that the electromagnetic stirring force acts excessively to cause an undesirable flow in the molten metal. In addition, since the thickness of the coating layer is increased, the power required to melt the coating layer must be increased, and the electromagnetic stirring force itself is accordingly increased, which is preferable for the molten metal. As a result, a smooth flow on the surface of the coating layer was reduced. Therefore, these problems can be solved by suppressing the electromagnetic stirring force acting on the fusion zone so as not to be excessive according to the thickness of the fusion zone. On the other hand, the electromagnetic stirring force acting on the fusion zone depends on the magnitude of the density of the induction current flowing through the fusion zone (especially the induction current density on the surface layer) out of the total induction current applied. The current density may be reduced to a small value, and the induced current density is proportional to the power density per unit area of the coating layer supplied by the inductor.

【0006】しかしながら、単に電力密度を低くするの
みでは、被覆層の加熱、溶融に時間がかかり、処理速度
(一次被覆層に対する誘導子の相対的な移動速度)を低
下させなければならないとか、誘導子の長さを長くしな
ければならないといった問題が生じる。
However, simply lowering the power density takes time to heat and melt the coating layer, and the processing speed (the relative moving speed of the inductor with respect to the primary coating layer) must be reduced. There is a problem that the length of the child must be increased.

【0007】本発明は、かかる問題点に鑑みて為された
もので、母材表面に形成した一次被覆層を誘導加熱によ
って再溶融処理して緻密な金属被覆層を形成するに際
し、被覆層表面に凹みやくびれ等の欠陥が生じることを
防止して表面平滑度の高い金属被覆層を形成することの
可能な、また、処理速度が速く、且つ/或いは、短い誘
導子を使用可能な金属被覆層の形成方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in view of the fact that the primary coating layer formed on the surface of the base material is re-melted by induction heating to form a dense metal coating layer. Metal coating capable of forming a metal coating layer having a high surface smoothness by preventing the occurrence of defects such as dents and constrictions on the surface, and capable of using a high-speed and / or short inductor. It is an object to provide a method for forming a layer.

【0008】[0008]

【課題を解決するための手段】本願第一の発明は、母材
表面に溶射等によって形成した一次被覆層を誘導加熱に
よって再溶融処理するに際し、少なくとも前記一次被覆
層の溶融時における誘導電流の電流浸透深さを前記一次
被覆層の厚さの1.5倍以上とすることを特徴とする。
このように、電流浸透深さを一次被覆層厚さの1.5倍
以上とすると、従来行われているように電流浸透深さ
が、一次被覆層厚さと同程度か或いは浅い場合に比べ
て、単位面積当りの電力密度を一定とした場合におけ
る、母材を流れる誘導電流(その誘導電流による発熱熱
量も一次被覆層に伝達され溶融に使用される)が大きく
なり、その分、一次被覆層の誘導電流密度が小さくな
り、ひいては表層の誘導電流密度が小さくなる。これに
よって溶融層に作用する電磁攪拌力が小さくなり、従来
厚い被覆層を処理する際に生じていた被覆層の凹み、く
びれ等を防止できる。
According to a first aspect of the present invention, when a primary coating layer formed on a surface of a base material by thermal spraying or the like is re-melted by induction heating, at least an induced current at the time of melting of the primary coating layer is reduced. The current penetration depth is set to be 1.5 times or more the thickness of the primary coating layer.
As described above, when the current penetration depth is 1.5 times or more the primary coating layer thickness, the current penetration depth is equal to or less than the primary coating layer thickness as conventionally performed. When the power density per unit area is constant, the induced current flowing through the base material (the amount of heat generated by the induced current is also transmitted to the primary coating layer and used for melting), and the primary coating layer is correspondingly increased. And the induced current density of the surface layer is reduced. As a result, the electromagnetic stirring force acting on the molten layer is reduced, and dents, constrictions, and the like of the coating layer, which have conventionally occurred when processing a thick coating layer, can be prevented.

【0009】また、電流浸透深さを一次被覆層厚さの
1.5倍以上とした本発明では、従来のような電流浸透
深さが小さい場合と違って、表層の誘導電流密度(最大
電磁攪拌力に対応)を、電磁攪拌力が被覆層表面に凹み
やくびれが生じないような一定の大きさに抑制しさえす
れば、電力密度を高めても凹み等が生じないことから、
大電力を適用して処理速度を大きくできるとか、誘導子
を短くできるといった効果が得られる。
Further, in the present invention in which the current penetration depth is 1.5 times or more the thickness of the primary coating layer, unlike the conventional case where the current penetration depth is small, the induced current density (maximum electromagnetic As long as the electromagnetic stirring force is suppressed to a certain level such that no dent or constriction occurs on the surface of the coating layer, no dent or the like occurs even if the power density is increased,
The effect that the processing speed can be increased by applying large electric power and the inductor can be shortened can be obtained.

【0010】本願第二の発明は、一次被覆層を誘導加熱
によって再溶融処理するための誘導子を、移動方向に対
して前段誘導子と後段誘導子に電気的に分割し、その前
段誘導子と後段誘導子が加熱対象に対して付与する電力
配分を、前記前段誘導子で前記一次被覆層をその融点な
いしは融点近くまで昇温させ、融点ないしは融点近くま
で昇温した一次被覆層を前記後段誘導子で溶融処理する
ことができるように設定し、更に、前記前段誘導子が加
熱対象に供給する単位表面積当たりの電力密度を、一次
被覆層の敏速な加熱が可能なよう高く設定し、前記後段
誘導子が加熱対象に供給する単位表面積当たりの電力密
度を、溶融した一次被覆層に加わる電磁攪拌力が許容値
以下となるように低く設定したことを特徴とする。な
お、ここで、金属条材が合金の場合には溶融相の存否を
分ける固相線の温度を以て融点とする。本願第二の発明
ではこの構成により、電磁攪拌力の悪影響を受けない固
相状態の一次被覆層を、短い前段誘導子で敏速に融点な
いしは融点近くまで昇温させることができ、また、融点
ないしは融点近くまで昇温した一次被覆層を後段誘導子
が低い電力密度で加熱、溶融させるため、溶融部の誘導
電流密度が小さく、従って電磁攪拌力も小さく抑制され
ており、被覆層の凹み、くびれ等を防止しながら、所望
の溶融処理を行うことができる。しかも、後段誘導子が
一次被覆層に付与すべき熱量は小さくて良いので、低電
力密度でも処理時間をさほど必要とせず、また誘導子の
長さをあまり必要としない。このため、第二の発明で
も、被覆層の凹み、くびれ等を生じることなく敏速な溶
融処理が可能となり、また、誘導子全体の長さを短くで
きるといった効果が得られる。
In a second aspect of the present invention, an inductor for re-melting the primary coating layer by induction heating is electrically divided into a former inductor and a latter inductor in the moving direction, and the former inductor is provided. The power distribution to be applied to the object to be heated by the second-stage inductor is increased by the first-stage inductor to the melting point or near the melting point of the primary coating layer. It is set so that it can be melt-processed with an inductor, and further, the power density per unit surface area supplied to the object to be heated by the former-stage inductor is set high so as to enable rapid heating of the primary coating layer, The power density per unit surface area supplied to the object to be heated by the latter-stage inductor is set to be low so that the electromagnetic stirring force applied to the molten primary coating layer is not more than an allowable value. Here, in the case where the metal strip is an alloy, the melting point is defined as the temperature of the solid line that determines the presence or absence of the molten phase. In the second invention of the present application, with this configuration, the primary coating layer in the solid state, which is not adversely affected by the electromagnetic stirring force, can be quickly heated to the melting point or near the melting point by a short pre-stage inductor, and the melting point or Because the latter inductor heats and melts the primary coating layer, which has been heated to near the melting point, at a low power density, the induced current density in the melted area is small, and therefore the electromagnetic stirring force is also suppressed to a small extent. , And a desired melting process can be performed. In addition, since the amount of heat to be applied to the primary coating layer by the subsequent inductor may be small, even if the power density is low, the processing time is not required much, and the length of the inductor is not required much. For this reason, in the second invention as well, it is possible to perform prompt melting processing without causing dents, constrictions, and the like in the coating layer, and to obtain the effect of shortening the entire length of the inductor.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、母材の表面に、金属材料の一次被覆層を溶射
法等を用いて形成し、その後、前記一次被覆層の小領域
を局部的に誘導子を用いて誘導加熱し、前記一次被覆層
を溶融させると共にその誘導子を前記一次被覆層に沿っ
て相対的に移動させることによってその溶融部を一次被
覆層に沿って移動させてゆき、前記溶融部に作用する電
磁攪拌力を利用して、前記一次被覆層に存在していた気
孔及び酸化物を除去し、緻密な二次被覆層とする方法に
関する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the present invention, a primary coating layer of a metal material is formed on a surface of a base material using a thermal spraying method or the like, and thereafter, a small region of the primary coating layer is locally locally heated with an inductor to perform induction heating. By melting the coating layer and moving the inductor relatively along the primary coating layer, the molten portion is moved along the primary coating layer, and the electromagnetic stirring force acting on the melting portion is used. Then, the present invention relates to a method for removing pores and oxides present in the primary coating layer to form a dense secondary coating layer.

【0012】本発明において用いる母材の形態、材質等
は特に限定されるものでなく、表面に金属被覆層を形成
する必要のあるものであれば任意である。例えば、母材
の形態としては、管体、棒材、H型材、L型材等の任意
断面の条材、平板等を挙げることができ、また、材質と
しては、炭素鋼、低合金鋼、ステンレス鋼、鋳鋼、鋳
鉄、Ni基合金、Cu基合金等を挙げることができる。
母材の表面に形成する被覆層の材料としては、Ni基合
金、Co基合金、あるいはこれらにWC、Cr32
TiB2 等の硬質材微粒子を配合したもの等を挙げるこ
とができる。又、被覆層の材料には、再溶融が円滑に行
えるよう、B、Siなどのフラックス生成成分を配合し
て自溶性を具備させておくことが望ましい。母材に対し
て金属材料の一次被覆層を形成する方法は、溶射法が一
般的であるが、それ以外にも圧密法、遠心堆積法、スラ
リー塗布法等を採用しうる。一次被覆層の厚さは、所期
の厚さの被覆層(二次被覆層)が最終的に得られるよう
に定めるものであり、本発明は如何なる厚さの被覆層に
も適用しうるが、従来、凹みやくびれの発生といった問
題を生じていた2mmを越えるような厚膜被覆に適用し
て前記効果を得ることに特段の意義がある。
The form, material, and the like of the base material used in the present invention are not particularly limited, and are arbitrary as long as a metal coating layer needs to be formed on the surface. For example, examples of the form of the base material include a tube, a rod, an H-shaped material, a strip having an arbitrary cross section such as an L-shaped material, a flat plate, and the like. Examples of the material include carbon steel, low alloy steel, and stainless steel. Steel, cast steel, cast iron, Ni-based alloy, Cu-based alloy and the like can be mentioned.
As a material of the coating layer formed on the surface of the base material, a Ni-based alloy, a Co-based alloy, or WC, Cr 3 C 2 ,
Examples of such materials include hard material particles such as TiB 2 . In addition, it is desirable that a flux generating component such as B or Si is blended in the material of the coating layer so that re-melting can be smoothly performed so that the coating layer has self-solubility. As a method of forming a primary coating layer of a metal material on a base material, a thermal spraying method is generally used, but other methods such as a consolidation method, a centrifugal deposition method, and a slurry coating method may be employed. The thickness of the primary coating layer is determined so that a coating layer (secondary coating layer) having an intended thickness is finally obtained, and the present invention can be applied to coating layers of any thickness. It is of special significance to obtain the above-mentioned effect by applying to a thick film coating exceeding 2 mm, which has conventionally caused problems such as dents and constrictions.

【0013】上記したように、本発明では一次被覆層の
溶融処理のために、一次被覆層の小領域を局部的に誘導
子を用いて誘導加熱し、その誘導子を前記一次被覆層に
沿って相対的に移動させることによって、一次被覆層の
全長を溶融処理する。ここで使用する誘導子の形状は、
一次被覆層及び母材の形状に応じて適宜定めればよく、
例えば、母材が管体等の条材でその外周面に一次被覆層
が形成されている場合には、その条材を取り囲むように
配置された環状の誘導子(1周巻きないしは複数巻き)
を用い、母材が管体でその内周面に一次被覆層が形成さ
れている場合には、その管体内に、内周面に対向して配
置された環状の誘導子を用い、又、管体の内外面に形成
した一次被覆層に対してその内外に配置された誘導子で
溶融処理を行うこともできるが、管体や棒材の場合に
は、管体や棒材をその軸線を中心として回転させ、円周
方向に均等な処理が施されるようにすることが好まし
い。母材が板材であって、その板面に一次被覆層が形成
されている場合には、誘導子としてその平面にほぼ平行
な面内に配置される線状、U字状ないしは渦巻き状の誘
導子を、あるいは、板材を短辺方向に取り囲んだ環状の
誘導子を用いればよい。
As described above, in the present invention, in order to melt the primary coating layer, a small region of the primary coating layer is locally heated by induction using an inductor, and the inductor is heated along the primary coating layer. The entire length of the primary coating layer is melted by relatively moving the primary coating layer. The shape of the inductor used here is
It may be appropriately determined according to the shape of the primary coating layer and the base material,
For example, in the case where the base material is a strip such as a tubular body and the primary coating layer is formed on the outer peripheral surface thereof, an annular inductor (one or more turns) arranged so as to surround the strip.
In the case where the base material is a tubular body and the primary coating layer is formed on the inner peripheral surface thereof, an annular inductor disposed opposite to the inner peripheral surface is used in the tubular body, The primary coating layer formed on the inner and outer surfaces of the tube can be melted with an inductor placed inside and outside the tube.However, in the case of a tube or a rod, the tube or the rod is moved along its axis. Is preferably rotated around the center so that uniform processing is performed in the circumferential direction. When the base material is a plate material and a primary coating layer is formed on the plate surface, a linear, U-shaped or spiral guide disposed as an inductor in a plane substantially parallel to the plane. An inductor or an annular inductor surrounding a plate in the short side direction may be used.

【0014】次に、誘導子で加熱される小領域の大き
さ、誘導子による供給電力、誘導子と一次被覆層との相
対的移動速度等を、母材の代表例である管体を例に採っ
て説明する。図3は母材(金属管)10の外周面に形成
している一次被覆層11を溶融加熱する場合を概略的に
示すものであり、母材10の周囲に環状の誘導子12
(長さL)を配置している。この誘導子12を用いて一
次被覆層11を溶融処理するには、その誘導子12に通
電して一次被覆層11の誘導子12に対向する小領域
(長さLの領域)を誘導加熱しながら、その誘導子12
を母材10に対して相対的に移動させる(移動速度
V)。ここで、誘導子12が加熱対象(一次被覆層及び
その下の母材)の単位面積当たりに供給する電力密度P
e を円周方向、長手方向ともに均一とすると、一次被覆
層11上に想定した単位面積部分11aが、誘導子12
の下を通過する際、継続して一定の電力密度Pe を受け
て昇温してゆき、誘導子12を通り過ぎた時点で加熱さ
れなくなり、温度が低下してゆく。この温度変化を時間
軸に対して、簡単化して記録したのが図4のグラフに実
線で示す特性線14であり、時間t0 で単位面積部分1
1aに対する加熱が開始され、時間t1 で融点Tm に到
達し、時間t2 (=L/V)で、単位面積部分11aが
誘導子12を通り抜けて加熱が終了する(その時の到達
温度はTe )。従って、時間t1 〜時間t2 間で一次被
覆層が溶融処理され、気孔の除去などが行われる。な
お、誘導子による加熱中(時間t0 〜時間t2 )の昇温
特性は、厳密には、温度による放熱量の変化、誘導電流
密度の変化、相変化に要する熱量等によって、必ずしも
直線状とはならないが、特性線14では、簡略化して直
線で示した。
Next, the size of the small region heated by the inductor, the power supplied by the inductor, the relative moving speed between the inductor and the primary coating layer, and the like are described by taking a tube as a typical example of the base material. This will be explained. FIG. 3 schematically shows a case where the primary coating layer 11 formed on the outer peripheral surface of the base material (metal tube) 10 is melted and heated, and an annular inductor 12 is provided around the base material 10.
(Length L). In order to melt-treat the primary coating layer 11 using the inductor 12, the inductor 12 is energized and a small area (area of length L) of the primary coating layer 11 facing the inductor 12 is induction-heated. While the inductor 12
Is moved relatively to the base material 10 (moving speed V). Here, the power density P supplied by the inductor 12 per unit area of the object to be heated (the primary coating layer and the base material thereunder)
If e is uniform in both the circumferential direction and the longitudinal direction, the unit area portion 11a assumed on the primary coating layer 11
When passing under the, Yuki and raising the temperature continuously receives constant power density P e, is no longer heated when it passes the inductor 12, the temperature slide into decline. A characteristic line 14 shown by a solid line in the graph of FIG. 4 is a graph of this temperature change that is simplified with respect to the time axis, and the unit area portion 1 at time t 0.
Heating for 1a is started, to reach the melting point T m at time t 1, at time t 2 (= L / V) , the unit area portion 11a is finished heat passes through the inductor 12 (temperature reached at that time Te ). Therefore, the molten processed primary coating layer between the time t 1 ~ time t 2, such as removal of pores is performed. Strictly speaking, the temperature rise characteristics during heating by the inductor (time t 0 to time t 2 ) are strictly necessarily linear due to a change in heat release due to temperature, a change in induction current density, a heat amount required for a phase change, and the like. However, the characteristic line 14 is simplified and shown as a straight line.

【0015】ここで、電力密度Pe を大きくすると、特
性線15で示すように昇温速度が早くなり、電力密度P
e を小さくすると、特性線16で示すように昇温速度が
遅くなる。従って、一次被覆層11の材料物性に応じ
て、最終到達温度Te を設定するとか、溶融処理時間
(t1 〜t2 間)を適切な値に設定した場合、電力密度
e の値に応じて誘導子12の長さL及び処理速度Vが
定まることとなり、また、逆に、処理速度V及び誘導子
12の長さLを定めると、それに応じて必要な電力密度
e が定まることとなる。電力密度Pe は長手方向に必
ずしも一定とする必要はなく、誘導子12を長手方向
(移動方向)に分割し、それぞれの電力密度を変化させ
ることで、誘導子の長さLや処理速度Vを変えることも
できる。一方、一次被覆層11に加える電力密度P
e は、一次被覆層11が溶融した時、その溶融部に過大
な電磁攪拌力が作用しないように制限される。
Here, when the power density Pe is increased, as shown by a characteristic line 15, the heating rate is increased, and the power density Pe is increased.
When e is reduced, the rate of temperature rise decreases as indicated by the characteristic line 16. Therefore, depending on the material properties of the primary coating layer 11, Toka setting the finally reached temperature T e, if you set melt processing time (between t 1 ~t 2) to an appropriate value, the value of the power density P e Accordingly, the length L and the processing speed V of the inductor 12 are determined, and conversely, if the processing speed V and the length L of the inductor 12 are determined, the required power density Pe is determined accordingly. Becomes Power density P e need not necessarily be constant in the longitudinal direction, dividing the inductor 12 in the longitudinal direction (moving direction), by changing the respective power density, the length of the inductor L and the processing speed V Can also be changed. On the other hand, the power density P applied to the primary coating layer 11
e is restricted so that when the primary coating layer 11 is melted, an excessive electromagnetic stirring force does not act on the melted portion.

【0016】本願第一の発明は、上記したように誘導子
を一次被覆層に沿って相対的に移動させながら一次被覆
層を誘導加熱する際に、少なくとも一次被覆層の溶融時
における誘導電流の電流浸透深さを一次被覆層の厚さの
1.5倍以上とすることを特徴とする。ここで、誘導電
流の電流浸透深さとは、誘導電流密度I1 が、表面の誘
導電流密度I0 の1/eの大きさとなる位置の、表面か
らの距離(深さ)を意味している。すなわち、図2に示
すように、被加熱材20を誘導子21によって誘導加熱
した際に、その被加熱材20内を流れる誘導電流密度
は、曲線22で示すように、表面の誘導電流密度I0
ら指数関数的に減少しており、誘導電流密度I1 が、表
面の誘導電流密度I0 の1/eの大きさとなる位置の、
表面からの距離(深さ)δが、誘導電流の電流浸透深さ
である。ここで、被加熱材20の固有抵抗をρ(Ω−c
m)、比透磁率をμ、誘導加熱の周波数をf(Hz)と
すると、電流浸透深さδ(cm)は、数式1で表され
る。因に、表面から電流浸透深さδまでの間に、被加熱
材20の吸収電力の約90%が存在することとなる。
According to the first invention of the present application, when the primary coating layer is induction-heated while relatively moving the inductor along the primary coating layer as described above, at least the induction current at the time of melting of the primary coating layer is reduced. It is characterized in that the current penetration depth is 1.5 times or more the thickness of the primary coating layer. Here, the current penetration depth of the induced current means a distance (depth) from the surface at a position where the induced current density I 1 is 1 / e of the induced current density I 0 on the surface. . That is, as shown in FIG. 2, when the material to be heated 20 is induction-heated by the inductor 21, the induced current density flowing through the material to be heated 20 is, as shown by the curve 22, the induced current density I on the surface. 0 , the position where the induced current density I 1 is 1 / e of the surface induced current density I 0 ,
The distance (depth) δ from the surface is the current penetration depth of the induced current. Here, the specific resistance of the material to be heated 20 is ρ (Ω−c
m), the relative magnetic permeability is μ, and the frequency of the induction heating is f (Hz), the current penetration depth δ (cm) is expressed by Equation 1. However, about 90% of the absorbed power of the material to be heated 20 exists between the surface and the current penetration depth δ.

【0017】[0017]

【数1】 (Equation 1)

【0018】本願第一の発明は上記したように、母材表
面の一次被覆層を誘導加熱して溶融させている時におけ
る誘導電流の電流浸透深さδを一次被覆層の厚さdの
1.5倍以上とするものである(図1参照)。ここで、
上記した数式1に示すように、電流浸透深さδは固有抵
抗ρの関数であり、この固有抵抗ρとしては、溶融状態
にある一次被覆層11の固有抵抗を採用する。なお、溶
融状態にある一次被覆層11の固有抵抗は、固相状態で
ある母材10の固有抵抗に比べると大きく、従って、厳
密には母材10内に生じる誘導電流密度は曲線24から
少しずれた曲線となるが、その差はさほど大きくなく、
また、一次被覆層11内の(特に表層の)誘導電流密度
の大きさが、被覆層の凹み、くびれ等の発生に影響して
るので、図1に示す曲線24のように電流密度が変化す
ると仮定しても支障はない。
As described above, in the first invention of the present application, the current penetration depth δ of the induced current when the primary coating layer of the base material surface is induction-heated and melted is set to one of the thickness d of the primary coating layer. .5 times or more (see FIG. 1). here,
As shown in Equation 1, the current penetration depth δ is a function of the specific resistance ρ, and the specific resistance ρ employs the specific resistance of the primary coating layer 11 in a molten state. Note that the specific resistance of the primary coating layer 11 in the molten state is larger than the specific resistance of the base material 10 in the solid state, and therefore, strictly speaking, the induced current density generated in the base material 10 is slightly The curve is shifted, but the difference is not so large,
In addition, since the magnitude of the induced current density (especially on the surface layer) in the primary coating layer 11 affects the occurrence of dents, constrictions, and the like in the coating layer, when the current density changes as shown by a curve 24 in FIG. There is no problem in assuming.

【0019】数式1から明らかなように、電流浸透深さ
δは、ρとfの関数であり、そのうちρは、一次被覆層
の材質によって定まる定数である。従って、本発明の実
施に当たっては、誘導加熱を行うための周波数fを一次
被覆層の厚さに応じて低く設定することで、電流浸透深
さδを一次被覆層の厚さdの1.5倍以上とすることが
できる。例えば、一次被覆層11の材質をSFNi4
(自溶合金)とした場合、溶融時の固有抵抗ρは110
μΩ−cm程度であるので、一次被覆層11の厚さを
0.4cmとすると、電流浸透深さδを一次被覆層厚さ
の1.5倍以上とするには、周波数fを7.7kHz以
下とすればよい。
As is clear from Equation 1, the current penetration depth δ is a function of ρ and f, where ρ is a constant determined by the material of the primary coating layer. Therefore, in the practice of the present invention, the current penetration depth δ is set to 1.5 times the thickness d of the primary coating layer by setting the frequency f for performing induction heating low according to the thickness of the primary coating layer. It can be more than double. For example, the material of the primary coating layer 11 is SFNi4
(Self-fluxing alloy), the specific resistance ρ when molten is 110
Since the thickness of the primary coating layer 11 is 0.4 cm, the frequency f must be 7.7 kHz in order to make the current penetration depth δ 1.5 times or more the primary coating layer thickness. The following may be performed.

【0020】図1に曲線24で示すように、電流浸透深
さδを一次被覆層11の厚さdに比べてかなり大きくし
た電流分布を採用すると、母材10の表層部分(一次被
覆層11に接する部分)にもかなりの誘導電流が流れて
おり、この部分を発熱させ、それが一次被覆層11の溶
融にも利用される。従って、一次被覆層11の溶融に必
要な電力を、一次被覆層11を流れる誘導電流のみで得
る必要がなく、その分一次被覆層11を流れる誘導電流
を小さくできる。もし、電流浸透深さδを小さく、例え
ば、一次被覆層11の厚さに等しくすると、誘導子12
で同じ電力密度Pe を供給すると仮定した時の電流密度
分布は、図1に二点鎖線で示す曲線25のようになり、
曲線24の場合と比べて一次被覆層を流れる電流の密度
が大となる。この曲線25では表層の誘導電流密度
0 ′が、曲線24における表層の誘導電流密度I0
比べてかなり大きくなっている。
As shown by a curve 24 in FIG. 1, when a current distribution in which the current penetration depth δ is considerably larger than the thickness d of the primary coating layer 11 is employed, the surface portion of the base material 10 (the primary coating layer 11 A considerable amount of induced current also flows through the portion (contact portion), and this portion generates heat, which is also used for melting the primary coating layer 11. Therefore, it is not necessary to obtain the power required for melting the primary coating layer 11 only by the induced current flowing through the primary coating layer 11, and the induced current flowing through the primary coating layer 11 can be reduced accordingly. If the current penetration depth δ is small, for example, equal to the thickness of the primary coating layer 11, the inductor 12
In current density distribution when it is assumed that supplies the same power density P e is as shown in curve 25 shown in FIG. 1 by the two-dot chain line,
The density of the current flowing through the primary coating layer is higher than in the case of the curve 24. In the curve 25, the surface induced current density I 0 ′ is considerably larger than the surface induced current density I 0 in the curve 24.

【0021】このように、従来は、電流浸透深さδを浅
く、一次被覆層11の厚さ程度に設定していたことによ
り、表面の誘導電流密度I0 ′がきわめて大きくなって
おり、この誘導電流密度に応じた大きい電磁攪拌力が作
用するため、被覆層の表面に凹みやくびれが発生してい
たが、本願第一の発明では、同一の電力密度とした場
合、誘導電流密度が曲線24のように分布しており、一
次被覆層11を流れる誘導電流密度を小さく、特に表層
の誘導電流密度I0 を小さくでき、このためその部分に
作用する電磁攪拌力が小さくなり、従来発生していたよ
うな被覆層表面の凹みやくびれの発生を防止できる。ま
た、逆に、一次被覆層11の表層の誘導電流密度I0
許容最大値(電磁攪拌力によるへこみやくびれの発生を
防止できる時の最大値)となるように供給電力密度を設
定したとすると、本願第一の発明の場合が、電流浸透深
さδを浅くした場合に比べて、供給電力密度を大きく設
定でき、従って、一次被覆層11の加熱速度(図4のグ
ラフにおける特性線14の勾配)を大きくでき、処理速
度を早めるとか、誘導子12の長さを短くできる等の利
点が得られる。
As described above, since the current penetration depth δ is conventionally set to be shallow and about the thickness of the primary coating layer 11, the induced current density I 0 ′ on the surface is extremely large. Since a large electromagnetic stirring force according to the induced current density acts, dents and constrictions have occurred on the surface of the coating layer. However, in the first invention of the present application, when the same power density is used, the induced current density is curved. 24, the induced current density flowing through the primary coating layer 11 can be reduced, and particularly, the induced current density I 0 in the surface layer can be reduced, so that the electromagnetic stirring force acting on that portion is reduced. The occurrence of dents and constrictions on the surface of the coating layer can be prevented. Conversely, the supply power density is set such that the induced current density I 0 of the surface layer of the primary coating layer 11 becomes an allowable maximum value (a maximum value at which occurrence of dents and constrictions due to electromagnetic stirring force can be prevented). Then, in the case of the first invention of the present application, the supplied power density can be set to be larger than that in the case where the current penetration depth δ is made shallow, and therefore, the heating rate of the primary coating layer 11 (the characteristic line 14 Of the inductor 12 can be increased, the processing speed can be increased, and the length of the inductor 12 can be shortened.

【0022】本発明者が確認した結果、電力密度Pe
一定とした状態で、電流浸透深さδを一次被覆層11の
厚さdに等しい値から大きくしていった際、一次被覆層
の厚さdの1.5倍程度に達するまでは、表層の誘導電
流密度の値が急激に減少しており、このため、電流浸透
深さδを一次被覆層の厚さdの1.5倍以上に設定する
ことで、表層の誘導電流密度I0 を効果的に小さくで
き、その部分に作用する電磁攪拌力を減少させることが
できる。従って、本願第一の発明では、電流浸透深さδ
を一次被覆層の厚さdの1.5倍以上とするという限定
を採用する。なお、この電流浸透深さδは、大きくする
ほど、表層の誘導電流密度I0 を小さくすることは可能
であるが、あまり大きくすると、発生熱量が一次被覆層
11の溶融以外に使用され(母材10の深い部分の加熱
に使用され)、一次被覆層11の加熱効率が低下して好
ましくない。この点を考慮すると、電流浸透深さδは、
一次被覆層11の厚さの5倍程度に留めることが好まし
い。
[0022] As a result of the present inventor has confirmed, while a constant power density P e, when began to increase the current penetration depth δ from a value equal to the thickness d of the primary coating layer 11, the primary coating layer Until the thickness d reaches about 1.5 times the thickness of the surface layer, the value of the induced current density in the surface layer sharply decreases. Therefore, the current penetration depth δ is reduced to 1.5 times the thickness d of the primary coating layer. By setting it to twice or more, the induced current density I 0 in the surface layer can be effectively reduced, and the electromagnetic stirring force acting on that portion can be reduced. Therefore, in the first invention of the present application, the current penetration depth δ
Is 1.5 times or more the thickness d of the primary coating layer. It should be noted that the greater the current penetration depth δ, the smaller the induced current density I 0 in the surface layer can be. However, if the current penetration depth δ is too large, the generated heat will be used for purposes other than melting of the primary coating layer 11 (base It is used for heating a deep part of the material 10), and the heating efficiency of the primary coating layer 11 is undesirably reduced. Considering this point, the current penetration depth δ is
It is preferable to keep the thickness of the primary coating layer 11 at about five times.

【0023】次に、本願第二の発明では、上記したよう
に誘導子を一次被覆層に沿って相対的に移動させながら
一次被覆層を誘導加熱する方法おいて、図5に示すよう
に、誘導子12を、移動方向に対して前段誘導子12a
と後段誘導子12bに電気的に分割し、その前段誘導子
12aと後段誘導子12bが加熱対象(一次被覆層11
及び母材10)に対して付与する電力配分を、前段誘導
子12aで一次被覆層11を、その融点ないしは融点近
くまで昇温させ、融点ないしは融点近くまで昇温した一
次被覆層11を後段誘導子12bで溶融処理することが
できるように設定し、更に、前段誘導子12aが加熱対
象に供給する単位表面積当たりの電力密度Peaを、一次
被覆層の敏速な加熱が可能なよう高く設定し、後段誘導
子12bが加熱対象に供給する単位表面積当たりの電力
密度Pebを、溶融した一次被覆層11に加わる電磁攪拌
力が許容値以下となるように低く設定したことを特徴と
する。このように設定すると、一次被覆層11上に想定
した任意の単位面積部分11aが、誘導子12の下を通
過する際の温度変化は、たとえば図6のクラフに示す特
性線30のようになる。すなわち、時間t0 で加熱が開
始され、前段誘導子12aの下を通過する間(時間t1
=La /Vまで)は急速な加熱が行われ、前段誘導子1
2aの出口部分では融点Tm に接近した温度Ti に到達
し、その後は、後段誘導子12bによってゆっくりと昇
温し、時間t2 で融点Tm に到達し、時間t3 (=L/
V)で加熱が終了する(最終到達温度はTe )。従っ
て、時間t2 〜時間t3 間で一次被覆層が溶融処理さ
れ、気孔の除去などが行われる。
Next, in the second invention of the present application, in the method of induction heating the primary coating layer while relatively moving the inductor along the primary coating layer as described above, as shown in FIG. The inductor 12 is connected to the former inductor 12a with respect to the moving direction.
And the latter-stage inductor 12b, and the former-stage inductor 12a and the latter-stage inductor 12b are heated (the primary coating layer 11).
The power distribution to be applied to the base material 10) is increased by raising the temperature of the primary coating layer 11 to its melting point or near its melting point by the former inductor 12a, and then increasing the temperature of the primary coating layer 11 to its melting point or near its melting point by the subsequent induction. And the power density P ea per unit surface area supplied by the former-stage inductor 12a to the object to be heated is set to be high so that the primary coating layer can be quickly heated. The power density P eb per unit surface area supplied by the latter-stage inductor 12b to the object to be heated is set low so that the electromagnetic stirring force applied to the molten primary coating layer 11 is equal to or less than an allowable value. With such a setting, a temperature change when an arbitrary unit area portion 11a assumed on the primary coating layer 11 passes below the inductor 12 becomes, for example, a characteristic line 30 shown in the cluff of FIG. . That is, heating is started at time t 0 , and the heating is performed under the pre-stage inductor 12 a (time t 1
= L a / V), rapid heating is performed, and the former inductor 1
At the outlet of 2a, the temperature reaches the temperature T i close to the melting point T m , and then the temperature is slowly increased by the latter-stage inductor 12b, reaches the melting point T m at the time t 2 , and reaches the time t 3 (= L /
The heating is completed at V) (the final temperature is Te ). Therefore, the molten processed primary coating layer between the time t 2 ~ time t 3, etc. removal of pores is performed.

【0024】ここで、後段誘導子12bによる一次被覆
層11の溶融処理時には、電力密度Pebを低く押さえ
て、溶融部に加わる電磁攪拌力が許容値以下となるよう
にしているので、被覆層表面に凹みやくびれを生じさせ
ることなく処理が可能であり、その前の、一次被覆層1
1が固相状態で電磁攪拌力を受けない時には、大電力密
度Peaを加えるので、短い前段誘導子12aで敏速に昇
温させることができ、結局、比較的短い誘導子12を用
いて所定の処理が可能となる。もし、電力密度を前段、
後段に分割しなければ、全体を後段の電力密度Pebで処
理しなけれならず、その場合、昇温速度は低いので、誘
導子12の長さを長くするか、或いは処理速度Vを小さ
くしなければならない。本願第二の発明では、この問題
点を解消できる。
Here, during the melting treatment of the primary coating layer 11 by the latter-stage inductor 12b, the power density P eb is kept low so that the electromagnetic stirring force applied to the molten portion is less than the allowable value. Processing can be performed without causing dents or constrictions on the surface, and the primary coating layer 1
When 1 is not subjected to electromagnetic stirring force in the solid state, a large power density Pea is applied, so that the temperature can be quickly raised by the short former-stage inductor 12a. Can be performed. If the power density
If it is not divided into the latter stage, the whole must be treated with the latter power density P eb , and in this case, since the heating rate is low, the length of the inductor 12 is increased or the treating speed V is decreased. There must be. In the second invention of this application, this problem can be solved.

【0025】本願第二の発明を効果的に実施するには、
前段誘導子12aの出口での一次被覆層11の温度Ti
を、融点Tm としてもよいが、この段階では溶融が進ま
ない方が良いので、前段誘導子12aの出口での温度T
i を、融点Tm の90〜95%程度の値(絶対温度比)
に設定するのが良い。この温度から融点Tm 迄の昇温に
ついては、後段誘導子によってもさしたる時間を要しな
い。
In order to effectively implement the second invention of the present application,
Temperature T i of primary coating layer 11 at the exit of pre-stage inductor 12a
May be the melting point T m , but it is better that the melting does not proceed at this stage.
i the 90-95% of the value of the melting point T m (absolute temperature ratio)
It is good to set. The Atsushi Nobori from the temperature to the melting point T m is not required to Sashitaru time by subsequent inductor.

【0026】前記したように、後段誘導子12bの電力
密度Pebは、溶融部に加わる電磁攪拌力が許容値以下と
なるように、従って、表層での誘導電流密度が許容値以
下となるように設定するが、その際、電流浸透深さδは
特に限定されない。しかしながら、表層での誘導電流密
度は、図1で説明したように、同じ電力密度Pebに対し
ても、電流浸透深さδが異なると変化しており、換言す
れば、表層での誘導電流密度を同じとした場合に、電流
浸透深さδを大きくすることで、電力密度Pebを大きく
設定できる。従って、本願第二の発明の実施に当たって
も、後段誘導子12bによる電流浸透深さδを、一次被
覆層11の厚さの1.5倍以上とすることが好ましい。
一方、前段誘導子12aでは電磁攪拌力による悪影響は
生じないので、表層の誘導電流密度を小さく押さえる必
要はなく、従って、電流浸透深さδは一次被覆層11の
加熱効率を考慮して、一次被覆層11の厚さにほぼ等し
く設定すればよい。ただし、前段誘導子12aと後段誘
導子12bを共通の電源装置に接続する場合には、印加
周波数が同一となり、電流浸透深さδは同一となるの
で、たとえば、前段と後段の所要時間が最小となるよう
に浸透深さ(即ち印加周波数)を選定すればよい。
As described above, the power density P eb of the latter-stage inductor 12b is set so that the electromagnetic stirring force applied to the molten portion is equal to or less than the allowable value, and therefore, the induced current density in the surface layer is equal to or less than the allowable value. In this case, the current penetration depth δ is not particularly limited. However, as described with reference to FIG. 1, the induced current density at the surface layer changes when the current penetration depth δ is different even for the same power density Peb . In other words, the induced current density at the surface layer is different. When the density is the same, the power density P eb can be set large by increasing the current penetration depth δ. Therefore, even in the implementation of the second invention of the present application, it is preferable that the current penetration depth δ by the latter-stage inductor 12b be 1.5 times or more the thickness of the primary coating layer 11.
On the other hand, in the former-stage inductor 12a, there is no adverse effect due to the electromagnetic stirring force, so it is not necessary to keep the induced current density in the surface layer small. Therefore, the current penetration depth δ is determined by taking the heating efficiency of the primary coating layer 11 into consideration. The thickness may be set substantially equal to the thickness of the coating layer 11. However, when the front-stage inductor 12a and the rear-stage inductor 12b are connected to a common power supply, the applied frequency is the same and the current penetration depth δ is the same. The penetration depth (that is, the applied frequency) may be selected such that

【0027】なお、図5では、前段誘導子12aと後段
誘導子12bを近接させた状態としているが、両者は必
ずしも近接させて配置する必要はなく、適当に間隔をあ
けて配置してもよい。間隔をあけた場合の方が、両誘導
子12a、12bの干渉作用が回避され、好ましい。
In FIG. 5, the front-stage inductor 12a and the rear-stage inductor 12b are close to each other, but they need not always be arranged close to each other, and may be arranged at an appropriate interval. . The case in which there is an interval is preferable because the interference between the two inductors 12a and 12b is avoided.

【0028】前段誘導子12aと後段誘導子12bと
は、共通の電源装置により稼働させるようにすれば電源
装置コストが小さくて済み、一方、それぞれ別個の電源
装置で稼働させるようにすれば、ぞれぞれ、所望の印加
周波数(電流浸透深さ)、所望の電力密度に設定するこ
とができて生産速度の向上が容易になる。多くの場合、
共通の電源装置で十分対応できるので、以下、共通の電
源装置を使用する場合における電力配分並びに電力密度
の設定について説明する。
The former inductor 12a and the latter inductor 12b can be operated by a common power supply, so that the cost of the power supply can be reduced. On the other hand, if they are operated by separate power supplies, respectively. In each case, a desired application frequency (current penetration depth) and a desired power density can be set, and the production speed can be easily improved. In many cases,
Since the common power supply can sufficiently cope with the situation, the power distribution and the setting of the power density when the common power supply is used will be described below.

【0029】図7は、管体からなる母材10の外周面に
形成した一次被覆層11を溶融処理するための誘導子1
2を、前段誘導子12aと後段誘導子12bに分割し、
且つそれらを共通の電源装置35に接続して使用する場
合の例を示すものである。この実施例では前段誘導子1
2aと後段誘導子12bが共に、母材10を取り囲んで
配置された環状のものであり、電源装置35に対して並
列に接続されている。ここで、前段誘導子12a、後段
誘導子12bのコイル巻数をNa 、Nb 、コイル幅をF
a 、Fb 、前、後段誘導子に対面する加熱対象のインピ
ーダンス比(詳細は後述)をβ、加熱電力をP0 とする
と、前段誘導子12a、後段誘導子12bに配分される
電力Pa 、Pb 及びその比λ1 は、数式2、数式3、数
式4となる。
FIG. 7 shows an inductor 1 for melting a primary coating layer 11 formed on the outer peripheral surface of a base material 10 made of a tubular body.
2 is divided into a front-stage inductor 12a and a rear-stage inductor 12b,
Also, an example is shown in which they are used by connecting them to a common power supply device 35. In this embodiment, the former inductor 1
Both 2a and the latter-stage inductor 12b are annular and are arranged so as to surround the base material 10, and are connected in parallel to the power supply device 35. Here, the front stage inductor 12a, the number of coil turns of the subsequent inductor 12b N a, N b, the coil width F
a , F b , β is the impedance ratio of the heating target facing the front and rear inductors (details will be described later), and P 0 is the heating power. Power P a distributed to the front and rear inductors 12a and 12b , Pb and their ratio λ 1 are given by Equations 2, 3 and 4.

【0030】[0030]

【数2】 (Equation 2)

【0031】[0031]

【数3】 (Equation 3)

【0032】[0032]

【数4】 (Equation 4)

【0033】また、前段誘導子12a、後段誘導子12
bに対面する一次被覆層11の単位表面積当たりの電力
密度Pea、Peb及びその比λ2 は、数式5、数式6、数
式7となる。
The first-stage inductor 12a and the second-stage inductor 12
The power densities P ea , P eb per unit surface area of the primary coating layer 11 facing b, and the ratio λ 2 thereof are represented by Expressions 5, 6, and 7.

【0034】[0034]

【数5】 (Equation 5)

【0035】[0035]

【数6】 (Equation 6)

【0036】[0036]

【数7】 (Equation 7)

【0037】以上の数式2〜7を基にして、前、後段誘
導子のそれぞれのコイル巻数、コイル幅、前、後段誘導
子に対面する加熱対象のインピーダンス比等を調整する
ことで、前、後段誘導子に対する所望の電力配分(Pa
/P0 、Pb /P0 )、電力密度Pea、Peb等を得るこ
とができる。例えば、図6に示すグラフに線30で示す
昇温特性を得る場合、前段誘導子12aの出口温度が適
正値(Ti )となるようにするには、昇温温度が電力P
a 、Pb に比例するものとして、数式2を用いて、コイ
ル巻数Na 、Nb 、インピーダンス比βを設定すればよ
い。すなわち、前段誘導子12aの出口温度Ti を、融
点Tm の95%程度に、最終温度Te の90%程度に設
定する場合には、 Pa /P0 =0.90 となるように、数式2からコイル巻数N1 、N2 、イン
ピーダンス比βを設定すればよい。なお、数式2から求
めるものは目安であり、正確には、数値計算(FEM
等)や、実負荷試験で求めるとよい。
By adjusting the number of coil turns and coil width of each of the front and rear inductors and the impedance ratio of the object to be heated facing the front and rear inductors based on the above formulas 2 to 7, Desired power distribution (P a
/ P 0 , P b / P 0 ), power density P ea , P eb, etc. For example, when obtaining the temperature rising characteristic indicated by the line 30 in the graph shown in FIG. 6, in order to make the outlet temperature of the former-stage inductor 12a to be an appropriate value (T i ), the temperature rising temperature must be equal to the electric power P
The number of coil turns N a and N b and the impedance ratio β may be set using Equation 2 as being proportional to a and P b . That is, the outlet temperature T i of the previous inductor 12a, approximately 95% of the melting point T m, when set to about 90% of the final temperature T e, as a P a / P 0 = 0.90 From equation (2), the number of coil turns N 1 and N 2 and the impedance ratio β may be set. It should be noted that what is obtained from Equation 2 is a guide, and more precisely, a numerical calculation (FEM)
Etc.) or an actual load test.

【0038】また、後段誘導子12bでは、過大な電磁
攪拌力が作用しないよう、電力密度Pebを小さく押さ
え、ゆっくりと昇温させ、また、必要な攪拌時間を与え
ることが必要であり、このため、電力密度Pebを正確に
設定することが好ましい。この電力密度Pebの設定は数
式6を用いて行うことができる。
Further, in the latter-stage inductor 12b, it is necessary to keep the power density Peb small, to raise the temperature slowly, and to give a necessary stirring time so that an excessive electromagnetic stirring force does not act. Therefore, it is preferable to accurately set the power density P eb . The setting of the power density P eb can be performed using Expression 6.

【0039】ここで、インピーダンス比β及び後段誘導
子12bのコイル巻数Nb が、前段誘導子12aの出口
温度及び後段誘導子12bによる電力密度Pebに及ぼす
影響をグラフ化して示すと、図8、図9のようになる。
図8、図9において、縦軸に示すuは、最終温度Te
対する出口温度Ti の比率、すなわち、 u=Ti /Te であり、また、Peb′は、全電力P0 を1巻のコイルで
供給する場合の電力密度に対する後段誘導子12bによ
る電力密度Pebの比率、すなわち、 Peb′=Peb/(P0 /πDF) である。図8は前段誘導子12aのコイル巻数Na
1、図9はコイル巻数Naを2とした場合のものであ
る。
[0039] Here, the coil turns N b of the impedance ratio β and subsequent inductor 12b is, when shown graphically the effect on power density P eb by the outlet temperature and subsequent inductor 12b of the preceding inductors 12a, FIG. 8 FIG.
8 and 9, u shown on the vertical axis is the ratio of the outlet temperature T i to the final temperature T e , that is, u = T i / T e , and P eb ′ is the total power P 0 . The ratio of the power density P eb by the latter-stage inductor 12b to the power density when supplied by a single-turn coil, that is, P eb ′ = P eb / (P 0 / πDF). Figure 8 is a number of coil turns N a of the front inductors 12a 1, 9 is one in the case of the 2 number of coil turns N a.

【0040】図8、図9から分かるように、前段誘導子
12aのコイル巻数Na を小さくし、後段誘導子12b
のコイル巻数Nb を大きくすることで、前段誘導子12
aの電力配分を大きくして前段誘導子の出口温度Ti
高めることができ、また、後段誘導子12bによる電力
密度Pebを低くすることができる。また、インピーダン
ス比βを大きくすることでも同様な傾向が得られる。従
って、コイル巻数Na、Nb やインピーダンス比βの調
整により所望の昇温特性を得ることができる。特に、コ
イル巻数Nb を大きくした場合には電力密度Pebが小さ
くなり、且つその変化が少なくなるので、電力密度Peb
をこまかく設定でき、好ましい。
[0040] Figure 8, as seen from FIG. 9, to reduce the number of coil turns N a of the preceding inductors 12a, subsequent inductor 12b
By increasing the number of coil turns N b, front inductor 12
by increasing the power distribution of a can increase the outlet temperature T i of the previous inductor, also, it is possible to lower the power density P eb by subsequent inductor 12b. A similar tendency can be obtained by increasing the impedance ratio β. Therefore, it is possible to coil turns N a, by adjusting the N b and the impedance ratio β obtain the desired heating characteristics. In particular, the power density P eb becomes small when increasing the number of coil turns N b, and since the change is small, the power density P eb
Can be set finely, which is preferable.

【0041】上記した数式2〜7で使用したインピーダ
ンス比βは、 β=(後段誘導子のコイル1巻き当たりのインピーダン
スZb )/(前段誘導子のコイル1巻き当たりのインピ
ーダンスZa )とした。
The impedance ratio β used in the above formulas 2 to 7 is β = (impedance Z b per coil of the rear inductor) / (impedance Z a per coil of the previous inductor). .

【0042】ここで、加熱対象を含んだコイルの等価回
路は、図10に示すように表すことができ、従って、イ
ンピーダンスZa 、Zb は、コイル自体のインピーダン
ス(Rc 、Xc )、加熱対象のインピーダンス(R、
X)、コイルと加熱対象との間の空隙のインピーダンス
(Xg )を含んだものとなる。このうち、加熱対象のイ
ンピーダンス(R、X)はそれぞれ加熱対象の抵抗率の
平方根(√ρ)に比例しており、且つその抵抗率ρは、
加熱対象(一次被覆層11)が固相の場合よりも液相の
場合の方がかなり大きいので、他のファクタを同じとす
れば、後段誘導子12bにおけるインピーダンスZb
前段誘導子12aにおけるインピーダンスZa よりもか
なり大きく、従って、インピーダンス比βは、1よりも
少し大きい値となる。空隙のインピーダンス(Xg
は、空隙の面積に比例しており、この空隙の面積は適宜
変更できるので、この空隙の面積を変えることでインピ
ーダンス比βを自在に変えることができる。例えば、図
7に示すように、前段誘導子12aよりも後段誘導子1
2bの空隙を大きくすることで、インピーダンス比βを
大きく、例えば、4〜6にもできる。ただし、空隙の面
積を大きくすると、加熱効率が低下するので、その効率
も考慮して空隙の幅を定めることとなる。更に、コイル
幅FA 、FB を変えてもインピーダンスは変化する(コ
イル幅を小さくすると、インピーダンスは大となる)の
で、コイル幅FA 、FB を変えることによってもインピ
ーダンス比βを調整できる。従って、前記したように、
前段誘導子12a、後段誘導子12bの巻数やコイル幅
等の設定時には、このインピーダンス比βを適当な値と
なるように調整することで、所望の昇温特性を得るよう
に設定することができる。
Here, the equivalent circuit of the coil including the object to be heated can be represented as shown in FIG. 10. Therefore, the impedances Z a and Z b are the impedances (R c , X c ) of the coil itself, The impedance (R,
X), and the impedance (X g ) of the gap between the coil and the object to be heated. Among them, the impedance (R, X) of the object to be heated is proportional to the square root (√ρ) of the resistivity of the object to be heated, and the resistivity ρ is
Since towards the case of the liquid phase than in the case of heating the object (the primary coating layer 11) is solid phase quite large, if the other factors the same, the impedance impedance Z b in the subsequent stage inductor 12b is in front inductors 12a much larger than Z a, therefore, the impedance ratio beta, a slightly larger than 1. Air gap impedance (X g )
Is proportional to the area of the gap, and the area of the gap can be appropriately changed. Therefore, the impedance ratio β can be freely changed by changing the area of the gap. For example, as shown in FIG.
By increasing the gap 2b, the impedance ratio β can be increased, for example, to 4 to 6. However, when the area of the gap is increased, the heating efficiency is reduced, so that the width of the gap is determined in consideration of the efficiency. Furthermore, coil width F A, (A small coil width, the impedance becomes large) be changed F B impedance varying so, may adjust the impedance ratio β by varying coil width F A, the F B . Therefore, as mentioned above,
At the time of setting the number of turns, coil width, and the like of the front inductor 12a and the rear inductor 12b, the impedance ratio β can be adjusted to an appropriate value to obtain a desired temperature rising characteristic. .

【0043】[0043]

【実施例】図7に示すように、管体からなる母材10に
対する誘導子12として、前段誘導子12aと後段誘導
子12bに分割し、且つ共通の電源装置35に並列に接
続する構成のものを、母材10のサイズを、外径52m
m、肉厚6mmとし、数式2〜7を基にして設計し、次
の仕様を得た。 前段誘導子12a:コイル巻数Na =2 コイル幅Fa =10mm コイルと管体との間隔=10mm 後段誘導子12b:コイル巻数Nb =6 コイル幅Fb =10mm コイルと管体との間隔=20mm 前段誘導子12aと後段誘導子12bの間隔(中心間距離)=45mm
As shown in FIG. 7, an inductor 12 for a base material 10 consisting of a tube is divided into a front inductor 12a and a rear inductor 12b and connected in parallel to a common power supply unit 35. Thing, the size of the base material 10, the outer diameter 52m
m, the thickness was 6 mm, and the design was made based on Formulas 2 to 7, and the following specifications were obtained. Front inductor 12a: coil turns N a = 2 coil width F a = 10 mm coils and tube and spacing = 10 mm later stage inductor 12b: coil turns N b = 6 coil width F b = 10 mm distance between the coil and the tube = 20mm Distance between center inductor 12a and rear inductor 12b (center-to-center distance) = 45mm

【0044】この仕様の誘導子12では、インピーダン
ス比β=6であり、従って、図9において、この誘導子
12によるu(=Ti /T0 )及びPeb′[=Peb
(P0/πDF)]は、それぞれ点P、Qで示す値とな
る。
In the inductor 12 of this specification, the impedance ratio β = 6. Therefore, in FIG. 9, u (= T i / T 0 ) and P eb ′ [= P eb /
(P 0 / πDF)] are values indicated by points P and Q, respectively.

【0045】この誘導子12Aによる溶融処理対象とし
て、一次被覆層材質をSFNi4(JIS H8303
に規定のNi基自溶性合金。融点:1000±20°
C)とし、その厚さdをそれぞれ1、2、3、4、5m
mとした試料1、2、3、4、5を用意した。そして、
各試料に対して誘導子12Aを用い、且つ加工速度(誘
導子12Aに対する試料の移動速度)を5mm/sと
し、且つ表1に示す加工条件で溶融処理を行った。な
お、被覆層11の固有抵抗ρは110μΩ−cmである
ので、電流浸透深さδは、数式1から計算すると、周波
数9.8kHzの時、δ=5.33mm、周波数4.5
kHzの時、δ=7.86mmとなる。この値から、被
膜厚さdに対する倍率(δ/d)を求めたので、その値
も表1に記載する。
The material of the primary coating layer is SFNi4 (JIS H8303) to be subjected to the melting treatment by the inductor 12A.
Specified Ni-based self-fluxing alloy. Melting point: 1000 ± 20 °
C) and the thickness d is 1, 2, 3, 4, 5 m, respectively.
Samples 1, 2, 3, 4, and 5 were prepared. And
Melting treatment was performed on each sample using the inductor 12A, at a processing speed (movement speed of the sample with respect to the inductor 12A) of 5 mm / s, and under the processing conditions shown in Table 1. In addition, since the specific resistance ρ of the coating layer 11 is 110 μΩ-cm, the current penetration depth δ is calculated from Expression 1, when the frequency is 9.8 kHz, δ = 5.33 mm, and the frequency is 4.5.
At kHz, δ = 7.86 mm. From this value, the magnification (δ / d) with respect to the coating thickness d was determined, and the value is also shown in Table 1.

【0046】各溶融処理時における各温度を測定し、ま
た、後段誘導子12bに対向する試料の単位表面積当た
りの電力密度Pebを計算で求め、その結果も表1に記載
する。更に、各溶融処理後の被覆層表面品質を目視検査
し、その結果も表1に記載する。表1の品質欄における
「○」は表面が平滑で良好な外観を呈していた場合を、
「×」は表面に凹み或いはくびれが生じていた場合を示
す。
Each temperature during each melting process was measured, and the power density P eb per unit surface area of the sample facing the latter-stage inductor 12b was calculated. The results are also shown in Table 1. Further, the surface quality of the coating layer after each melting treatment was visually inspected, and the results are also shown in Table 1. "O" in the quality column of Table 1 indicates that the surface was smooth and had a good appearance,
“X” indicates a case where a dent or constriction has occurred on the surface.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から良く分かるように、いずれの試料
に対する溶融処理においても、前段誘導子出口温度Ti
は、融点にきわめて近い温度となっており、従って、コ
イル巻数2の短い前段誘導子12aによって一次被覆層
11を敏速に加熱、昇温させることができ、その後ろの
後段誘導子12bにおいて小さい電力密度で被覆層を加
熱し、溶融処理している。このため、溶融部に作用する
電磁攪拌力が小さくなり、良好な処理が行われている
(テスト1〜3、6〜8)。しかしながら、テスト4、
5では小さい電力密度で被覆層を加熱し、溶融処理して
いるにもかかわらず、表面品質が悪くなっている。これ
は、電流浸透深さの被覆層厚さに対する倍率が小さいた
め(1.33及び1.07)、表層の電流密度が高くな
り、大きい電磁攪拌力が作用しているためと思われる。
かくして、電流浸透深さの被覆層厚さに対する倍率を大
きく(例えば、1.5倍以上に)することにより、電磁
攪拌力を小さくして、表面品質の低下を防止できること
が分かる。
As can be clearly understood from Table 1, in any of the melting processes for the samples, the pre-stage inductor outlet temperature T i is used.
Is very close to the melting point. Therefore, the primary coating layer 11 can be quickly heated and heated by the former inductor 12a having a short number of turns of two coils, and the lower power The coating layer is heated at a density and melted. For this reason, the electromagnetic stirring force acting on the fusion zone is reduced, and good processing is performed (tests 1 to 3, 6 to 8). However, test 4,
In No. 5, although the coating layer is heated at a low power density and subjected to the melting treatment, the surface quality is deteriorated. This is presumably because the current penetration depth is small in magnification with respect to the thickness of the coating layer (1.33 and 1.07), the current density in the surface layer is high, and a large electromagnetic stirring force is acting.
Thus, it can be seen that increasing the magnification of the current penetration depth with respect to the coating layer thickness (for example, 1.5 times or more) can reduce the electromagnetic stirring force and prevent the surface quality from deteriorating.

【0049】[0049]

【発明の効果】以上のように、本願第一の発明は、少な
くとも一次被覆層を誘導加熱して溶融させている時にお
ける誘導電流の電流浸透深さを一次被覆層の厚さの1.
5倍以上とすることにより、一次被覆層の誘導電流密度
を、特に表層の誘導電流密度を小さくでき、これによっ
て溶融層に作用する電磁攪拌力を小さくして被覆層の凹
み、くびれ等の発生を防止でき、良好な品質の金属被覆
層を形成できるという効果を有している。
As described above, in the first invention of the present application, at least when the primary coating layer is induction-heated and melted, the current penetration depth of the induced current is set at 1.10 times the thickness of the primary coating layer.
By making it 5 times or more, the induced current density of the primary coating layer, especially the surface layer, can be reduced, thereby reducing the electromagnetic stirring force acting on the molten layer and causing dents, constrictions, etc. in the coating layer. This has the effect of preventing the formation of a metal coating layer of good quality.

【0050】また、本願第二の発明は、一次被覆層を誘
導加熱によって再溶融処理するための誘導子を、移動方
向に対して前段誘導子と後段誘導子に電気的に分割し、
前段誘導子を高電力密度、後段誘導子を低電力密度とす
ることで、一次被覆層を前段誘導子で融点ないしは融点
近くまで敏速に昇温させ、後段誘導子では、溶融部に作
用する電磁攪拌力を小さく押さえた状態で溶融処理する
ことができ、良好な品質の金属被覆層を比較的短い誘導
子を用いて、或いは処理速度を高くして、形成できると
いう効果を有している。
In the second invention of the present application, an inductor for re-melting the primary coating layer by induction heating is electrically divided into a former-stage inductor and a later-stage inductor with respect to the moving direction.
By making the first stage inductor a high power density and the second stage inductor a low power density, the primary coating layer is quickly heated to the melting point or near the melting point by the first stage inductor. The melt processing can be performed with the stirring power kept small, and the metal coating layer of good quality can be formed using a relatively short inductor or at a high processing speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】母材表面の一次被覆層を誘導子で誘導加熱する
状態を説明する概略断面図及びその一次被覆層及び母材
内における誘導電流密度分布を示すグラフ
FIG. 1 is a schematic cross-sectional view illustrating a state in which a primary coating layer of a base material surface is induction-heated by an inductor, and a graph showing an induced current density distribution in the primary coating layer and the base material.

【図2】一般的な被加熱材を誘導子で誘導加熱する状態
を説明する概略断面図及びその被加熱材内における誘導
電流密度分布を示すグラフ
FIG. 2 is a schematic cross-sectional view illustrating a state in which a general material to be heated is induction-heated by an inductor, and a graph showing an induced current density distribution in the material to be heated.

【図3】管体からなる母材表面の一次被覆層を誘導子で
加熱する状態を説明する概略断面図
FIG. 3 is a schematic cross-sectional view illustrating a state in which a primary coating layer of a base material formed of a tubular body is heated by an inductor.

【図4】図3に示す状態で一次被覆層を加熱する際の昇
温特性を示すグラフ
FIG. 4 is a graph showing a temperature rise characteristic when the primary coating layer is heated in the state shown in FIG. 3;

【図5】管体からなる母材表面の一次被覆層を誘導子で
且つ本願第二の発明を適用して加熱する状態を説明する
概略断面図
FIG. 5 is a schematic cross-sectional view illustrating a state in which a primary coating layer formed of a tubular body is heated by using an inductor and applying the second invention of the present application.

【図6】図5に示す状態で一次被覆層を加熱する際の昇
温特性を示すグラフ
FIG. 6 is a graph showing a temperature rise characteristic when the primary coating layer is heated in the state shown in FIG.

【図7】管体からなる母材表面の一次被覆層を、共通の
電源装置に接続された前段誘導子及び後段誘導子で加熱
する状態を説明する概略断面図
FIG. 7 is a schematic cross-sectional view illustrating a state in which a primary coating layer made of a tubular body is heated by a front inductor and a rear inductor connected to a common power supply device.

【図8】図7に示す構成の前段誘導子、後段誘導子を用
いた場合の、且つ前段誘導子の巻数を1とした場合の、
後段誘導子の巻数Nb に対するu、Peb′の関係を示す
グラフ
FIG. 8 shows a case where the former inductor and the latter inductor having the configuration shown in FIG. 7 are used, and when the number of turns of the former inductor is one;
U for the number of turns N b in the subsequent stage inductor, a graph showing the relationship between P eb '

【図9】図7に示す構成の前段誘導子、後段誘導子を用
いた場合の、且つ前段誘導子の巻数を2とした場合の、
後段誘導子の巻数Nb に対するu、Peb′の関係を示す
グラフ
FIG. 9 shows a case where the former inductor and the latter inductor having the configuration shown in FIG. 7 are used, and when the number of turns of the former inductor is two.
U for the number of turns N b in the subsequent stage inductor, a graph showing the relationship between P eb '

【図10】図7に示す構成の前段誘導子、後段誘導子の
インピーダンスを説明する回路図
FIG. 10 is a circuit diagram illustrating impedances of a first-stage inductor and a second-stage inductor having the configuration shown in FIG. 7;

【図11】従来の方法で管体外周の被覆層を処理する状
態を示す概略側面図
FIG. 11 is a schematic side view showing a state in which a coating layer on the outer periphery of a tube is treated by a conventional method.

【図12】図11とは異なる従来の方法で管体外周の被
覆層を処理する状態を示す概略側面図
FIG. 12 is a schematic side view showing a state in which the coating layer on the outer periphery of the tube is treated by a conventional method different from that in FIG. 11;

【符号の説明】[Explanation of symbols]

10 母材(管体) 11 一次被覆層 12 誘導子 12a 前段誘導子 12b 後段誘導子 35 電源装置 Reference Signs List 10 base material (tube) 11 primary coating layer 12 inductor 12a front-stage inductor 12b rear-stage inductor 35 power supply device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 母材の表面に、金属材料の一次被覆層を
溶射法等を用いて形成し、その後、前記一次被覆層の小
領域を局部的に誘導子を用いて誘導加熱し、前記一次被
覆層を溶融させると共にその誘導子を前記一次被覆層に
沿って相対的に移動させることによってその溶融部を一
次被覆層に沿って移動させてゆき、前記溶融部に作用す
る電磁攪拌力を利用して、前記一次被覆層に存在してい
た気孔及び酸化物を除去し、緻密な二次被覆層とする方
法において、少なくとも前記一次被覆層の溶融時におけ
る誘導電流の電流浸透深さを前記一次被覆層の厚さの
1.5倍以上とすることを特徴とする金属被覆層の形成
方法。
1. A primary coating layer of a metal material is formed on a surface of a base material by a thermal spraying method or the like, and thereafter, a small area of the primary coating layer is locally induction-heated using an inductor, and By melting the primary coating layer and moving the inductor relatively along the primary coating layer, the molten portion is moved along the primary coating layer, and the electromagnetic stirring force acting on the molten portion is increased. Utilizing, removing pores and oxides that were present in the primary coating layer, in a method of forming a dense secondary coating layer, at least the current penetration depth of the induced current at the time of melting of the primary coating layer. A method for forming a metal coating layer, wherein the thickness is 1.5 times or more the thickness of the primary coating layer.
【請求項2】 母材の表面に、金属材料の一次被覆層を
溶射法等を用いて形成し、その後、前記一次被覆層の小
領域を局部的に誘導子を用いて誘導加熱し、前記一次被
覆層を溶融させると共にその誘導子を前記一次被覆層に
沿って相対的に移動させることによってその溶融部を一
次被覆層に沿って移動させてゆき、前記溶融部に作用す
る電磁攪拌力を利用して、前記一次被覆層に存在してい
た気孔及び酸化物を除去し、緻密な二次被覆層とする方
法において、前記誘導子を、移動方向に対して前段誘導
子と後段誘導子に電気的に分割し、その前段誘導子と後
段誘導子が加熱対象に対して付与する電力配分を、前記
前段誘導子で前記一次被覆層をその融点ないしは融点近
くまで昇温させ、融点ないしは融点近くまで昇温した一
次被覆層を前記後段誘導子で溶融処理することができる
ように設定し、更に、前記前段誘導子が加熱対象に供給
する単位表面積当たりの電力密度を、一次被覆層の敏速
な加熱が可能なよう高く設定し、前記後段誘導子が加熱
対象に供給する単位表面積当たりの電力密度を、溶融し
た一次被覆層に加わる電磁攪拌力が許容値以下となるよ
うに低く設定したことを特徴とする金属被覆層の形成方
法。
2. A primary coating layer of a metal material is formed on a surface of a base material by using a thermal spraying method or the like, and thereafter, a small region of the primary coating layer is locally subjected to induction heating using an inductor, and By melting the primary coating layer and moving the inductor relatively along the primary coating layer, the molten portion is moved along the primary coating layer, and the electromagnetic stirring force acting on the molten portion is increased. Utilizing the method to remove pores and oxides present in the primary coating layer and to form a dense secondary coating layer, wherein the inductor is formed into a former inductor and a latter inductor in the moving direction. It is electrically divided, and the power distribution to be given to the heating target by the former inductor and the latter inductor is increased by heating the primary coating layer to the melting point or near the melting point with the former inductor, and the melting point or the melting point is near. The primary coating layer heated to It is set so that it can be melt-processed with an inductor, and further, the power density per unit surface area supplied to the object to be heated by the former-stage inductor is set high so as to enable rapid heating of the primary coating layer, A method for forming a metal coating layer, wherein the power density per unit surface area supplied to the object to be heated by the second-stage inductor is set low so that the electromagnetic stirring force applied to the molten primary coating layer is below an allowable value.
【請求項3】 前記後段誘導子による誘導電流の電流浸
透深さを前記一次被覆層厚さの1.5倍以上とすること
を特徴とする請求項2記載の金属被覆層の形成方法。
3. The method for forming a metal coating layer according to claim 2, wherein a current penetration depth of the induced current by the latter-stage inductor is 1.5 times or more the thickness of the primary coating layer.
【請求項4】 前記前段誘導子と後段誘導子を共通の電
源装置に対して並列に接続し、それぞれのコイル巻数、
コイル幅、前、後段誘導子に対面する加熱対象のインピ
ーダンス比等を調整することで、前、後段誘導子に対す
る所望の電力配分及び電力密度を得ることを特徴とする
請求項2又は3記載の金属被覆層の形成方法。
4. The former-stage inductor and the latter-stage inductor are connected in parallel to a common power supply, and the number of turns of each coil is
The desired power distribution and power density for the front and rear inductors are obtained by adjusting a coil width, an impedance ratio of a heating target facing the front and rear inductors, and the like. A method for forming a metal coating layer.
【請求項5】 前記母材が金属管であり、一次被覆層が
その金属管の外周面に形成されている、請求項1から4
のいずれか1項に記載の金属被覆層の形成方法。
5. The metal tube according to claim 1, wherein the base material is a metal tube, and a primary coating layer is formed on an outer peripheral surface of the metal tube.
The method for forming a metal coating layer according to any one of the above.
JP02393098A 1998-01-21 1998-01-21 Method for forming metal coating layer Expired - Fee Related JP3846761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02393098A JP3846761B2 (en) 1998-01-21 1998-01-21 Method for forming metal coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02393098A JP3846761B2 (en) 1998-01-21 1998-01-21 Method for forming metal coating layer

Publications (2)

Publication Number Publication Date
JPH11209865A true JPH11209865A (en) 1999-08-03
JP3846761B2 JP3846761B2 (en) 2006-11-15

Family

ID=12124253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02393098A Expired - Fee Related JP3846761B2 (en) 1998-01-21 1998-01-21 Method for forming metal coating layer

Country Status (1)

Country Link
JP (1) JP3846761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418601A (en) * 2022-08-26 2022-12-02 南京市特种设备安全监督检验研究院 High-frequency induction heating heavy fusible link and method for preparing anti-explosion coating of anti-explosion forklift fork

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418601A (en) * 2022-08-26 2022-12-02 南京市特种设备安全监督检验研究院 High-frequency induction heating heavy fusible link and method for preparing anti-explosion coating of anti-explosion forklift fork

Also Published As

Publication number Publication date
JP3846761B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
Lin et al. Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel
Tseng et al. Performance of activated TIG process in austenitic stainless steel welds
JPS6254022A (en) Production of welded steel pipe usable in transport of acidic gas and/or oil
CN109604858A (en) For repairing the flux-cored wire and its melting and coating process of the hollow sufficient roll sleeve of continuous casting
CN104805435A (en) Preparation method of metal protective coating for inner wall surface of inner bore part
JP6860083B2 (en) Piercer plug and its manufacturing method
CN109468633A (en) The method that a kind of pair of roll is repaired
JP4327907B2 (en) Continuous caster roll stainless steel surface cladding
Park et al. Improvement of circumferential ductility by reducing discontinuities in a high-Mn TWIP steel weldment
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
WO1991019824A1 (en) Composite roll for use in rolling and manufacture thereof
JP2007175774A (en) Laser welding method for continuous hot rolling process
US3204917A (en) Layered mold
JPH11209865A (en) Formation of metal coating layer
US20220143900A1 (en) Method and apparatus for in-situ thermal management and heat treatment of additively manufacturing components
Moore et al. Surface alloying using high-power continuous lasers
KR100276309B1 (en) Built up welding method
Satelkar et al. Activated pulsed-tungsten inert gas welding of DSS 2205
Ishio et al. Trial fabrication of heavy section base metals and welded joints for ITER TF coil
JP6210172B2 (en) Hardened steel manufacturing method
JP2000120939A (en) Wear resistant metallic pipe and manufacture thereof
JPH0520510B2 (en)
JPS58153731A (en) Method of reducing residual weld stress
JP3875555B2 (en) Method for coating self-fluxing alloy on inner surface of metal cylinder
JP3929205B2 (en) Method for melting the primary coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees