JP2007175774A - Laser welding method for continuous hot rolling process - Google Patents

Laser welding method for continuous hot rolling process Download PDF

Info

Publication number
JP2007175774A
JP2007175774A JP2006349003A JP2006349003A JP2007175774A JP 2007175774 A JP2007175774 A JP 2007175774A JP 2006349003 A JP2006349003 A JP 2006349003A JP 2006349003 A JP2006349003 A JP 2006349003A JP 2007175774 A JP2007175774 A JP 2007175774A
Authority
JP
Japan
Prior art keywords
welding
laser welding
steel
pickling
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006349003A
Other languages
Japanese (ja)
Other versions
JP4676421B2 (en
Inventor
In Su Woo
イン‐ス ウー
Joon Sik Park
ジョン‐シク パク
Bo Young Jeong
ボ‐ユン ジォン
Jong Bong Lee
ジョン‐ボン リー
Jeong Kil Kim
ジョン‐キル キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2007175774A publication Critical patent/JP2007175774A/en
Application granted granted Critical
Publication of JP4676421B2 publication Critical patent/JP4676421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method for making rolled stocks in which a low temperature transformed structure is produced after laser welding usable in continuous hot rolling process. <P>SOLUTION: The laser welding method for the continuous hot rolling process includes: a stage where the rolled stocks in which the low temperature transformed structure is produced are brought into contact with each other; and a stage where the contact part between the rolled stocks is subjected to laser welding using a welding material comprising, by weight, ≤0.1% C and 0 to 1.22% Cr in a welding stage. When continuous hot rolling is performed using the laser welding method, the hardened structure in the weld zone can be reduced, and the welding quality of the weld zone can be stably provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、連続製造工程において、圧延材を相互接合して連続的に生産する圧延材のレーザー溶接方法に関する。より詳細には、急加熱急冷却するレーザー溶接工程において、低温変態組織が発生する鋼種に対して溶接部の硬化組織を低減させ溶接部の溶接品質を安定的に提供できる連続製造工程のためのレーザー接合方法に関する。   The present invention relates to a laser welding method for rolled material that is continuously produced by mutually joining rolled materials in a continuous manufacturing process. More specifically, in a laser welding process in which rapid heating and rapid cooling are performed, a continuous manufacturing process that can stably provide the weld quality of the welded portion by reducing the hardened structure of the welded portion with respect to the steel type in which the low temperature transformation structure occurs. The present invention relates to a laser bonding method.

金属板材を生産する技術分野において、生産工程を連続化することによって、生産性と品質を向上させ、そして製造できる製品サイズを拡大化する要求が強まりつつある。   In the technical field of producing metal sheet materials, there is an increasing demand to improve productivity and quality by increasing the production process and to increase the size of products that can be manufactured.

かかる連続製造工程は、電気鋼板やフェライト系ステンレス鋼板のような高級鋼種にまでその適用が拡大されつつある。   Such a continuous manufacturing process is being applied to high-grade steel types such as electric steel sheets and ferritic stainless steel sheets.

連続製造工程の代表例には、酸洗いと連続圧延が繋がって同時進行するPCM(Pickling&Tandem cold rolling mill)工程がある。熱延コイルから得られる冷延コイルは、酸洗いと連続圧延(Tandem cold rolling mill)をそれぞれ施行する方法があるが、酸洗いと連続圧延が繋がって同時進行するPCM(Pickling&Tandem cold rolling mill)工程でも製造することが出来る。PCM工程は、酸洗いとTCMをそれぞれ施行する工程に比べ生産性を大きく向上させることができ、最近多く適用されている。   A typical example of the continuous manufacturing process is a PCM (Pickling & Tandem cold rolling mill) process in which pickling and continuous rolling are connected and proceed simultaneously. Cold rolled coils obtained from hot rolled coils have a method of performing pickling and continuous rolling (Tandem cold rolling mill), respectively, but a pickling and tandem cold rolling mill (PCM) process in which pickling and continuous rolling are connected and proceed simultaneously. But it can be manufactured. The PCM process can greatly improve productivity as compared with the processes of performing pickling and TCM, and has been applied a lot recently.

このような連続圧延分野において重要なのは、先行する圧延板材の後端と後行する圧延板材の先端とを相互接合する圧延板材の接合技術にある。連続圧延のために圧延板材を接合する技術には固相接合方法と溶接による接合方法がある。   What is important in such a continuous rolling field is a joining technique of a rolled sheet material in which the trailing end of the preceding rolled sheet material and the leading end of the following rolled sheet material are mutually joined. Techniques for joining rolled plate materials for continuous rolling include a solid phase joining method and a joining method by welding.

溶接による接合方法は、連続圧延ラインの入口側で、先行する圧延板材の後端と後行する圧延板材を相互溶接して溶接部を形成した後、続いて後続圧延ラインを通過することになる。この場合、溶接部の品質が良くない場合には、後続圧延ラインを通過する間に溶接部が板破断し生産が全面中断される深刻な問題を引き起こす。従って、連続圧延のためには熱延、冷延コイルの溶接部の品質特性を確保するのが重要な技術とみられる。特に、PCMラインでは、既存の酸洗ラインとTCMラインに比べ生産ラインが長くコイルを入れるルーパーの数が多いため、既存ラインに比べ厳しい溶接品質を要求している。   The joining method by welding is such that, at the entrance side of the continuous rolling line, the rear end of the preceding rolled sheet and the subsequent rolled sheet are mutually welded to form a weld, and then the subsequent rolling line is passed. . In this case, when the quality of the welded portion is not good, the welded portion breaks during passing through the subsequent rolling line, causing a serious problem that the production is completely interrupted. Therefore, for continuous rolling, it is considered to be an important technique to ensure the quality characteristics of the hot and cold rolled coil welds. In particular, the PCM line requires a stricter welding quality than the existing line because the production line is longer than the existing pickling line and the TCM line and the number of loopers in which the coil is inserted is large.

連続圧延ラインに適用される溶接方法には、短絡とフラッシング(Flashing)を繰り返し発生させるフラッシュバット溶接(Flash butt welding)と、高密度の熱源を利用するレーザー溶接がある。   As a welding method applied to the continuous rolling line, there are flash butt welding in which short-circuiting and flashing are repeatedly generated, and laser welding using a high-density heat source.

フラッシュバット溶接は、入熱量が大きいため被溶接材の選択に限界がある。その一例として電気鋼板、フェライト系ステンレス鋼、高炭素鋼などに対しては接合強度が確保されず、冷間圧延中に板破断が発生する場合がある。特に、高炭素鋼は炭素(C)の含有量が高いため、フラッシュバット溶接が非常に難しい材料と評価されている。また、溶接日程及び溶接条件を一定に設定して反復作業を実施した場合にも、個々の溶接部の品質特性にバラツキを示すなど再現性にも問題があるものと指摘されている。   In flash butt welding, the amount of heat input is large, so there is a limit to the selection of materials to be welded. As an example, joint strength is not ensured for electrical steel sheets, ferritic stainless steels, high carbon steels, and the like, and sheet breakage may occur during cold rolling. In particular, high carbon steel is evaluated as a material that is very difficult to flash butt weld because of its high carbon (C) content. In addition, it has been pointed out that there is a problem in reproducibility, such as variations in quality characteristics of individual welds, even when repeated work is performed with the welding schedule and welding conditions set constant.

レーザー溶接は、エネルギー密度が高く入熱量が少ないため、既存のフラッシュバット溶接に比べ優れた品質特性が得られるものと知られている。   Laser welding is known to provide superior quality characteristics compared to existing flash butt welding because of its high energy density and low heat input.

しかし、レーザー溶接で高炭素鋼を溶接して連続圧延する場合、溶接金属部に気孔やピンホールが発生し、溶接金属と溶接熱影響部に亀裂が発生する問題点がある。   However, when high carbon steel is welded and continuously rolled by laser welding, there is a problem that pores and pinholes are generated in the weld metal part and cracks are generated in the weld metal and the weld heat affected zone.

気孔やピンホールは、素材内の炭素含量と深い関係がある。溶接時に、溶融金属内の炭素が大気中の酸素と反応し、COガスを作りながら外部に放出できなかったガスが凝固時に残留し気孔が発生するものと知られている。   Porosity and pinholes are closely related to the carbon content in the material. It is known that during welding, the carbon in the molten metal reacts with oxygen in the atmosphere, and the gas that could not be released to the outside while producing CO gas remains during solidification and generates pores.

従って、溶融金属部の炭素含量を低減させることが重要で、適切な溶接材料を使用することにより、気孔発生を低減させることが出来る。   Therefore, it is important to reduce the carbon content of the molten metal part, and the generation of pores can be reduced by using an appropriate welding material.

溶接部の亀裂は、硬化組織と関係があり、高炭素鋼では、溶接時の急加熱と急冷却過程から生成されるマルテンサイト組織が主な原因とされている。溶接部の硬化組織は、溶接金属部と溶接熱影響部が同時に発生するため、その改善方法も複雑で様々である。   Cracks in the weld are related to the hardened structure, and in high carbon steel, the main cause is a martensite structure generated from the rapid heating and rapid cooling processes during welding. Since the weld metal portion and the weld heat affected zone are generated simultaneously in the hardened structure of the welded portion, the improvement methods are complicated and varied.

以上のように、硬化組織が発生する鋼材を連続圧延するための先行技術としては、次のような技術がある。   As described above, as a prior art for continuously rolling a steel material in which a hardened structure is generated, there are the following techniques.

先ず、特許文献1は、溶接部を熱処理することに関するものであって、固定式熱源を使用して、圧延材の炭素含有量に応じて特定の熱処理温度で一定時間維持する方法を開示している。しかし、この方法は熱処理の維持時間によって全体的な溶接施工時間が増加する問題点がある。   First, Patent Document 1 relates to heat-treating a welded portion, and discloses a method of using a fixed heat source and maintaining a specific heat treatment temperature for a certain time according to the carbon content of the rolled material. Yes. However, this method has a problem in that the overall welding time increases due to the heat treatment maintenance time.

さらに他の先行技術には、特許文献2がある。この技術は、溶接部をレーザー溶接で溶接した後、1分以内に400℃以上、AC1点以下の温度範囲で熱処理する方法に関する。しかし、この技術は、400℃以上、AC1点以下で硬化組織を完全に除去させるために非常に長い時間維持しなければならず、また、レーザー溶接のように急冷却される場合には、溶接後数秒以内に溶接部を急加熱して熱処理する必要があるため、熱処理施工方法が非常に複雑になるという問題点がある。 There is Patent Document 2 as another prior art. This technique relates to a method of performing heat treatment in a temperature range of 400 ° C. or more and AC 1 point or less within 1 minute after welding a welded portion by laser welding. However, this technique must be maintained for a very long time in order to completely remove the hardened structure at 400 ° C. or more and AC 1 point or less, and when rapidly cooled like laser welding, Since it is necessary to heat and heat the welded part within several seconds after welding, there is a problem that the heat treatment method is very complicated.

また他の先行技術には、特許文献3がある。この技術は、高炭素鋼板の接合部の間に、溶接性に優れた低炭素鋼を挿入して溶接する方法に関する。この技術は、他の溶接法に比べて溶接工程数が2倍以上増加する上に、リーダーストリップ(Leader strip)を毎回用意しなければならないという問題点があって、大量生産には適さない。   Moreover, there exists patent document 3 in another prior art. This technique relates to a method of inserting and welding low-carbon steel excellent in weldability between joints of high-carbon steel sheets. This technique is not suitable for mass production because the number of welding processes increases more than twice as compared with other welding methods and a leader strip must be prepared every time.

また他の先行技術には、特許文献4がある。この技術は、レーザー溶接部がフェライトとパーライトの混合領域を通過するうちに冷却されるよう熱処理する方法に関する。この技術は、レーザー溶接に関するものであって、アーク溶接に比べて急加熱し急冷却するため、フェライトとパーライトが混在する領域に変態させにくいという問題がある。特に、高炭素鋼に対して溶接する場合、硬化現象が著しく発生するという問題点がある。   As another prior art, there is Patent Document 4. This technique relates to a heat treatment method in which a laser weld is cooled while passing through a mixed region of ferrite and pearlite. This technique relates to laser welding, and has a problem that it is difficult to transform into a region where ferrite and pearlite are mixed because it is rapidly heated and rapidly cooled as compared with arc welding. In particular, when welding to high carbon steel, there is a problem that the hardening phenomenon is remarkably generated.

さらに他の先行技術には、特許文献5がある。この技術は、接合部に対してレーザー溶接が完了した後、圧延材を熱処理する方法に関する。しかし、この技術もレーザー溶接を適用するため、溶接部が急冷却され熱処理を行う直前にマルテンサイト組織に変態が完了し、微細亀裂が発生するという問題点がある。従って、この技術はPCMのように高品質を要求する生産ラインでは適用が困難である。   There is Patent Document 5 as another prior art. This technique relates to a method of heat-treating a rolled material after laser welding is completed on a joint. However, since this technique also applies laser welding, there is a problem that transformation is completed in the martensite structure immediately before the welded portion is rapidly cooled and heat treatment is performed, and microcracks are generated. Therefore, this technology is difficult to apply in production lines that require high quality, such as PCM.

また他の先行技術には、特許文献6がある。この技術は、高炭素鋼と低炭素鋼の異種接合部でフィラーワイヤ(Filler wire)を使用し、熱処理を行わず、低炭素鋼側にレーザービームを照射して溶接部の亀裂を防ぐ方法に関する。しかし、この技術は溶融されない高炭素鋼側の溶接熱影響部から発生する硬化組織を除去できないという問題点がある。   As another prior art, there is Patent Document 6. This technology relates to a method of using a filler wire at a dissimilar joint between high carbon steel and low carbon steel and preventing cracks in the weld by irradiating the low carbon steel with a laser beam without performing heat treatment. . However, this technique has a problem that the hardened structure generated from the weld heat affected zone on the high carbon steel side that is not melted cannot be removed.

さらに他の先行技術には、特許文献7がある。この技術は、フラッシュバット溶接に関するものであって、溶接部に熱処理を実施する方法に関する。溶接方法は異なるが、溶接部に熱処理を実施する上記技術と類似する技術として、特許文献8と特許文献9そして特許文献10がある。しかし、これら技術は何れも炭素が0.5%以上含まれている高炭素鋼板の溶接部の品質を、安定的に確保することが困難であるという問題点がある。   Still another prior art is Patent Document 7. This technique relates to flash butt welding, and relates to a method of performing heat treatment on a weld. Although the welding methods are different, there are Patent Literature 8, Patent Literature 9, and Patent Literature 10 as techniques similar to the above technique of performing heat treatment on the welded portion. However, all of these techniques have a problem that it is difficult to stably ensure the quality of the welded portion of the high carbon steel sheet containing 0.5% or more of carbon.

以上のように連続圧延のための鋼板の接合技術は多数あるが、殆どの場合が炭素の含有量が比較的低い高炭素鋼や、溶接品質が大して要求されない生産ラインに適用する方法である。   As described above, there are many steel plate joining techniques for continuous rolling, but in most cases, this is a method applied to a high carbon steel having a relatively low carbon content and a production line that does not require much welding quality.

従って、急加熱急冷却されるレーザー溶接工程において、溶接後に低温変態組織が発生する鋼種、例えば高炭素鋼や、DP、TRIP、CP鋼を、連続圧延するのに適用できる程度の溶接接合部の品質特性を確保できる技術が要求されている。   Therefore, in a laser welding process in which rapid heating and rapid cooling are performed, a steel type in which a low temperature transformation structure is generated after welding, such as high carbon steel, DP, TRIP, and CP steel, can be applied to continuous rolling. There is a demand for technology that can ensure quality characteristics.

日本特許公開公報平5−50276号Japanese Patent Publication No. Hei 5-50276 日本特許公開公報平5−132719号Japanese Patent Publication No. Hei 5-132719 日本特許公開公報平8−57502号Japanese Patent Publication No. Hei 8-57502 日本特許公開公報平8−215872号Japanese Patent Publication No. 8-215872 日本特許公開公報第2000−317642号Japanese Patent Publication No. 2000-317642 日本特許公開公報第2001−353587号Japanese Patent Publication No. 2001-353587 日本特許公開公報第2000−317642号Japanese Patent Publication No. 2000-317642 日本特許公開公報平5−132719号Japanese Patent Publication No. Hei 5-132719 日本特許公開公報第2000−317642号Japanese Patent Publication No. 2000-317642 日本特許公開公報第2004−76159号Japanese Patent Publication No. 2004-76159

従って本発明は、このような従来の問題点を解消するためのものであって、本発明の目的は、レーザー溶接部の硬化組織を低減させ溶接部の品質を安定的に確保して、連続製造工程に対する生産性を大幅に改善出来るレーザー溶接方法を提供することにある。   Therefore, the present invention is for solving such a conventional problem, and the object of the present invention is to reduce the hardened structure of the laser welded portion and stably ensure the quality of the welded portion. It is an object of the present invention to provide a laser welding method capable of greatly improving productivity for a manufacturing process.

上記の目的を達成すべく、本発明は、低温変態組織が発生する圧延材を相互に接触させる段階と、
上記圧延材の接触部分に対して溶接段階でC:0.1重量%以下、Cr:0−1.22重量%を含む溶接材料を使用してレーザー溶接する段階とを含む連続圧延のためのレーザー溶接方法を提供する。
In order to achieve the above object, the present invention includes a step of bringing the rolling materials in which a low temperature transformation structure is generated into contact with each other,
Laser welding using a welding material containing C: 0.1% by weight or less and Cr: 0-1.22% by weight in the welding stage with respect to the contact portion of the rolled material. Provide a laser welding method.

本発明において上記溶接材料は、炭素鋼またはNi合金が代表例であり、これらは線材または粉末または薄膜のうち何れか一つの形態を使用するのが好ましい。   In the present invention, the welding material is typically carbon steel or Ni alloy, and it is preferable to use any one of wire, powder or thin film.

また、本発明の一実施例による溶接方法は、上記溶接段階の前に上記圧延材の接触部分を600℃乃至800℃の範囲で予熱処理するのが好ましい。また、本発明の一実施例による溶接方法は、上記溶接段階の後に上記溶接部を800℃乃至1100℃の範囲で加熱して後熱処理するのが好ましい。本発明において予熱処理と後熱処理は、一緒に適用するのが最も好ましい。   In the welding method according to an embodiment of the present invention, it is preferable that the contact portion of the rolled material is preheated in the range of 600 ° C. to 800 ° C. before the welding step. In the welding method according to an embodiment of the present invention, it is preferable that after the welding step, the welded portion is heated in the range of 800 ° C. to 1100 ° C. and post-heat treated. In the present invention, the pre-heat treatment and the post-heat treatment are most preferably applied together.

本発明において、低温変態組織が発生する圧延材は、Cの含量が0.5重量%以上の高炭素鋼、DP鋼、TRIP鋼、CP鋼が挙げられる。上記高炭素鋼の例としては、重量%としてC:0.5%以上、Si:0.1〜0.5%、Mn:0.3〜0.6%、P:0.05%以下、S:0.05%以下、Cu:0.5%以下、Ni:3%以下、Cr:0.05〜0.5%、Al:0.05%以下を含み、その他の不可避な不純物と残りのFeから組成されるものである。   In the present invention, examples of the rolled material in which the low temperature transformation structure is generated include high carbon steel, DP steel, TRIP steel, and CP steel having a C content of 0.5% by weight or more. Examples of the high carbon steel include C: 0.5% or more, Si: 0.1-0.5%, Mn: 0.3-0.6%, P: 0.05% or less, S: 0.05% or less, Cu: 0.5% or less, Ni: 3% or less, Cr: 0.05-0.5%, Al: 0.05% or less, other inevitable impurities and the rest It is composed of Fe.

本発明による連続製造工程のためのレーザー溶接方法は、酸洗いと冷延する工程(PCM、Pickling&Tandem Cold Rolling Mill)、酸洗いとオイル塗布する工程(POL、Pickling&Oiling Line)、焼き鈍しと酸洗いする工程(APL、Annealing&Pickling Line)、酸洗いする工程(PL、Pickling Line)、冷延する工程(TCM、Tandem Cold Rolling Mill)等の何れか一つの工程に適用される。   The laser welding method for continuous manufacturing process according to the present invention includes pickling and cold rolling (PCM, Pickling & Tandem Cold Rolling Mill), pickling and oil coating (POL, Pickling & Oiling Line), annealing and pickling. (APL, Annealing & Pickling Line), a pickling step (PL, Pickling Line), a cold rolling step (TCM, Tandem Cold Rolling Mill), and the like.

本発明による連続製造工程のレーザー溶接方法は、これまで適用されていなかった連続製造工程のための溶接条件を提供し、低温変態組織が発生する鋼を連続的に生産できるようにする技術的効果がある。   The laser welding method of the continuous manufacturing process according to the present invention provides a welding condition for a continuous manufacturing process that has not been applied so far, and is capable of continuously producing steel in which a low temperature transformation structure is generated. There is.

また、本発明は低温変態組織が発生し得る圧延材を連続生産するために、溶接欠陥のない良好なレーザー溶接接合部を得ることができ、図3のように、レーザー溶接部が板破断せずに連続作業を可能とする技術的効果を提供する。   In addition, since the present invention continuously produces a rolled material capable of generating a low temperature transformation structure, it is possible to obtain a good laser weld joint having no welding defect. As shown in FIG. It provides a technical effect that enables continuous work without any problems.

また本発明は、鋼材の炭素含有量に関係なく溶接施工時間を一般鋼水準の25秒範囲に短縮することにより、連続製造工程での鋼材生産性を大幅に向上させる技術的効果がある。   In addition, the present invention has the technical effect of significantly improving the productivity of the steel material in the continuous production process by reducing the welding operation time to the range of 25 seconds of the general steel level regardless of the carbon content of the steel material.

以上のように、本発明の溶接条件を適用すると、低温変態組織が発生し得る鋼であっても、連続生産ラインに印加される強い圧縮荷重と、スタンドとの間にかかる引っ張り荷重にも耐えられるため、連続生産工程中にも溶接部の破断が起きない連続製造工程を遂行することを可能とする。   As described above, when the welding conditions of the present invention are applied, even a steel that can generate a low temperature transformation structure can withstand a strong compressive load applied to a continuous production line and a tensile load applied between the stands. Therefore, it is possible to perform a continuous manufacturing process in which the welded portion does not break even during the continuous production process.

以下、本発明の好ましい実施例を図面を参照にさらに詳しく説明する。
本発明において“低温変態組織が発生する圧延材”とは、レーザー溶接方法で相互接合させ溶接部を形成した後、冷却時に溶接部の組織が低温変態組織に相変態する圧延材を意味する。低温変態組織とは、マルテンサイト、ベイナイトが含まれた組織を意味する。レーザー溶接後に低温変態組織が発生する圧延材には、高炭素鋼または高強度鋼素材がある。
Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
In the present invention, the “rolled material in which a low temperature transformation structure is generated” means a rolling material in which a welded portion is formed by mutual joining by a laser welding method, and then the structure of the welded portion is transformed into a low temperature transformed structure during cooling. The low temperature transformation structure means a structure containing martensite and bainite. Rolled materials that generate a low temperature transformation structure after laser welding include high carbon steel or high strength steel materials.

高炭素鋼はCの含量が0.5重量%以上の鋼を意味する。高炭素鋼の代表例には、重量%(以下、本発明において%は特に説明が無い限り重量%を意味する。)として、C:0.5%以上、Si:0.1〜0.5%、Mn:0.3〜0.6%、P:0.05%以下、S:0.05%以下、Cu:0.5%以下、Ni:3%以下、Cr:0.05〜0.5%、Al:0.05%以下を含み、その他の不可避な不純物と残りのFeから成るものである。炭素含有量の側面でCが0.5%以上含まれている鋼であれば、何れも本発明で意味する高炭素鋼に含まれるものと解釈すべきであり、高炭素鋼に特殊な機能を付加するためMo、V、Ti、W、B、Nb、Sb等の元素が添加されているか否かは関係ない。   High carbon steel means steel having a C content of 0.5% by weight or more. In typical examples of high carbon steel, C: 0.5% or more, Si: 0.1-0.5, in terms of weight% (hereinafter,% means weight% unless otherwise specified) in the present invention. %, Mn: 0.3 to 0.6%, P: 0.05% or less, S: 0.05% or less, Cu: 0.5% or less, Ni: 3% or less, Cr: 0.05-0 .5%, Al: 0.05% or less, and other unavoidable impurities and the remaining Fe. Any steel that contains 0.5% or more of C in terms of carbon content should be interpreted as being included in the high carbon steel meant in the present invention. It does not matter whether an element such as Mo, V, Ti, W, B, Nb, or Sb is added.

高強度素材は、引っ張り強度が450MPaを有するよう設計された鋼であって、その例として低温変態組織を有する鋼を意味する。この低温変態組織鋼を有する鋼としては、DP鋼(Dual Phase鋼)とTRIP(Transformation Induced Plasticity、変態誘起塑性)鋼そしてCP鋼(Composite Phase鋼)などがある。これを通常変態組織鋼という。DP鋼は、軟らかいフェライトと強度が高いマルテンサイトという、2つの性質が異なる相が混合した鋼であって、少ない合金元素で優れた加工性と高い強度を同時に確保できる鋼種である。そしてTRIP鋼は、鋼中に延性に優れたフェライト相と強度に優れたベイナイト相、そして高温で存在する準安定オーステナイト相で構成されたもので、準安定オーステナイト相が変形されると、強度に優れたマルテンサイト相に変わる鋼種である。CP鋼は、マルテンサイトやベイナイトの組織に析出物が存在する鋼である。これら変態組織鋼は、低温変態組織を有するよう鋼成分が設計されたものであって、レーザー溶接後に変態組織に相変態することになる。   High-strength material means steel designed to have a tensile strength of 450 MPa, for example, steel having a low-temperature transformation structure. Examples of steel having this low-temperature transformation structure steel include DP steel (Dual Phase steel), TRIP (Transformation Induced Plasticity) steel, and CP steel (Composite Phase steel). This is called normal transformation structure steel. DP steel is a steel in which two phases with different properties of soft ferrite and martensite with high strength are mixed, and it is a steel type that can simultaneously ensure excellent workability and high strength with a small number of alloy elements. TRIP steel is composed of a ferrite phase with excellent ductility, a bainite phase with excellent strength, and a metastable austenite phase that exists at high temperatures. When the metastable austenite phase is deformed, the strength is increased. It is a steel grade that changes to an excellent martensite phase. CP steel is steel in which precipitates exist in the structure of martensite or bainite. These transformation structure steels are those whose steel components are designed to have a low temperature transformation structure, and are transformed into a transformation structure after laser welding.

このように高炭素鋼や低温変態組織を有するよう設計された鋼種は、連続圧延のためにレーザー溶接方法で接合した後、冷却時に溶接部においてマルテンサイトやベイナイトのような脆性の強い低温変態組織に相変態が起こることとなる。このように、低温変態組織が発生すると連続圧延工程で溶接部に亀裂が発生したり、板破断が起きるなど様々な問題点が発生する。   The steel grades designed to have high-carbon steel and low-temperature transformation structure in this way are jointed by laser welding for continuous rolling, and then have a brittle low-temperature transformation structure such as martensite and bainite in the weld during cooling. A phase transformation will occur. As described above, when the low temperature transformation structure is generated, various problems occur such as cracks in the welded portion and plate breakage in the continuous rolling process.

また、本発明において“溶接部”とは、連続圧延のために先行する圧延板材の後端と、後行する圧延板材の先端を、レーザー溶接機で相互溶接して形成される接合部であって、レーザーによって溶融された後、凝固する溶融金属部と、溶融はされないがレーザーの熱源によって熱影響を受ける溶接熱影響部(HAZ:Heat Affected Zone)を含むことを意味する。   Further, in the present invention, the “welded portion” is a joint formed by welding the rear end of the preceding rolled plate for continuous rolling and the front end of the subsequent rolled plate with a laser welding machine. This means that it includes a molten metal portion that is solidified after being melted by the laser, and a weld heat affected zone (HAZ) that is not melted but is thermally influenced by the heat source of the laser.

また、本発明において“連続製造工程”という用語は、熱間圧延や冷間圧延ラインで連続的に圧延材を圧延する工程を意味すると共に、圧延材を相互接合して2個以上のコイルが連結された状態で、研磨工程または溶融亜鉛メッキ工程または焼き鈍し工程などのように、連続的に通板する全ての連続ラインを含む意味として使用される。   Further, in the present invention, the term “continuous manufacturing process” means a process of continuously rolling a rolled material in a hot rolling or cold rolling line, and two or more coils are formed by interconnecting the rolled materials. In the connected state, it is used to mean all continuous lines that pass continuously, such as a polishing process, a hot dip galvanizing process, or an annealing process.

先ず、本発明による目的を達成するため、低温変態組織が発生するレーザー溶接部の組織検査、及びエリクセン(Erichsen)試験を通じて確認された、溶接部での硬化現象の発生原因について検討してみる。   First, in order to achieve the object according to the present invention, the cause of the hardening phenomenon in the weld zone, which was confirmed through the structural inspection of the laser weld zone where the low temperature transformation structure is generated and the Erichsen test, will be examined.

本発明の発明者等によって確認された結果によると、溶接部の硬化現象は溶接金属及び溶接熱影響部で各々発生し、低温変態組織が主な原因として働いていることが確認できた。   According to the results confirmed by the inventors of the present invention, it was confirmed that the hardening phenomenon of the weld occurred in the weld metal and the weld heat affected zone, respectively, and the low temperature transformation structure worked as the main cause.

このような低温変態組織は、溶接部の化学組成によって、一定水準に制御することが出来る。このために炭素含有量が圧延材より低い溶接材料を使用して溶接金属部の炭素含有量を低減させることが出来る。より好ましくは、溶接材料と共に熱処理によって硬度を減少させることが出来る。   Such a low temperature transformation structure can be controlled to a certain level by the chemical composition of the weld. For this reason, the carbon content of a weld metal part can be reduced using the welding material whose carbon content is lower than a rolling material. More preferably, the hardness can be reduced by heat treatment together with the welding material.

そして溶接部の品質特性は、上記のように溶接部の硬度によっても影響されるが、溶接部全体の硬度分布にも影響される。   The quality characteristics of the welded part are affected by the hardness of the welded part as described above, but are also affected by the hardness distribution of the entire welded part.

従って本発明では、溶接部を熱処理する技術をさらに提供して、溶接部の硬度を減少させつつも、溶接部全体の硬度分布を緩和させ、低温変態組織を有する鋼に対してレーザー溶接部の品質を安定的に確保することを可能とする。   Accordingly, the present invention further provides a technique for heat-treating the welded portion, while reducing the hardness of the welded portion, while relaxing the hardness distribution of the entire welded portion, It is possible to ensure quality stably.

また、PCMのような連続ラインでは、溶接と熱処理を分離して実施すると溶接施工時間が長くなるため、全体的な生産速度が低減する。そして圧延材の炭素含有量が増加するにつれ、熱処理時間も増加することになる。   Further, in a continuous line such as PCM, if welding and heat treatment are performed separately, the welding operation time becomes long, so that the overall production rate is reduced. And as the carbon content of the rolled material increases, the heat treatment time also increases.

従って、本発明ではこのような問題点を解決するため、図1のように熱処理装置を溶接機と共に一体型で構成して、圧延材の溶接部が溶接と同時に熱処理されるように溶接装置を構成する。   Therefore, in the present invention, in order to solve such a problem, the heat treatment apparatus is configured integrally with a welding machine as shown in FIG. 1 so that the welded portion of the rolled material is heat treated simultaneously with the welding. Constitute.

図1を参考に本発明による溶接装置を説明すると、本発明による溶接装置は大きく溶接機10と熱処理機20から成っている。これら装置は、何れも一体で形成されるのが好ましいが、必ずしもこれに制限されるのではない。図1は本発明による溶接装置を概略的に図示したものであるため、これら装置が一体で形成される構成は示されていないが、このようにこれら装置を一体で構成する技術は、通常の設備技術によって実施できるため、これら装置を一体で構成するための技術的構成に関する詳細な説明は省略する。   The welding apparatus according to the present invention will be described with reference to FIG. 1. The welding apparatus according to the present invention mainly comprises a welding machine 10 and a heat treatment machine 20. All of these devices are preferably formed integrally, but are not necessarily limited thereto. FIG. 1 schematically shows a welding apparatus according to the present invention, and therefore, a configuration in which these apparatuses are integrally formed is not shown. Since it can be implemented by equipment technology, a detailed description of the technical configuration for integrally configuring these devices will be omitted.

本発明による溶接機10は、レーザー14を発振させるレーザー発生機12と溶接材料を供給するフィラー供給機16から成る。また熱処理機20は、移動する圧延材を加熱させるための熱源として速やかに加熱できる手段であれば何れも適用可能で、高周波誘導コイルを使用するのが好ましい。このような熱処理機20は、溶接部の前に設置され溶接される前に圧延材40を加熱する予熱機22と溶接以後に圧延材50を加熱する後熱機24から成っている。   The welding machine 10 according to the present invention includes a laser generator 12 that oscillates a laser 14 and a filler supplier 16 that supplies a welding material. The heat treatment machine 20 is applicable to any means that can quickly heat as a heat source for heating the moving rolled material, and it is preferable to use a high-frequency induction coil. Such a heat treatment machine 20 includes a preheater 22 that heats the rolled material 40 before being welded and is installed before the welded portion, and a post-heater 24 that heats the rolled material 50 after welding.

本発明による溶接装置を用いて移動する圧延材を相互溶接する場合、先ず後行圧延材40の先端と先行圧延材50の後端とを接触させた後、予熱機22で加熱した状態で溶接機10で溶接し、相互接合された溶接部60は後熱機24によって後熱される。   In the case of mutually welding the moving rolled materials using the welding apparatus according to the present invention, first, the front end of the subsequent rolled material 40 and the rear end of the preceding rolled material 50 are brought into contact with each other, and then heated in the preheater 22. The welded portion 60 welded by the machine 10 and joined to each other is post-heated by the post-heater 24.

図1において符号30はガイドロールを示す。
本発明による溶接装置を用いて移動する圧延材を溶接する場合、圧延材も移動するが、これと共に溶接装置も移動することになる。この際、圧延材の移動方向と溶接装置の移動方向が同一だったり反対だったりすることが出来る。圧延材の移動方向と溶接装置の移動方向が同一の場合には、圧延材の移動速度が溶接装置の移動速度と同じかより速く移動するのが好ましい。
In FIG. 1, reference numeral 30 denotes a guide roll.
When welding the rolled material which moves using the welding apparatus by this invention, a rolled material also moves, but a welding apparatus will also move with this. At this time, the moving direction of the rolled material and the moving direction of the welding apparatus can be the same or opposite. When the moving direction of the rolled material and the moving direction of the welding apparatus are the same, it is preferable that the moving speed of the rolled material is the same as or faster than the moving speed of the welding apparatus.

図2は本発明の一実施例において移動式溶接装置とこれを用いて溶接する場合、圧延材の溶接部に対する熱サイクル履歴及びこれによる組織状態を模式的に示している。   FIG. 2 schematically shows a thermal cycle history for a welded portion of a rolled material and a resulting structure state in the case where welding is performed using the mobile welding apparatus in the embodiment of the present invention.

本発明ではレーザー溶接後に低温変態組織が発生する圧延材の連続圧延のため、溶接部の硬化現象を制御するための方法として、溶接部の化学組成を制御する方法と溶接部の熱処理方法を提供する。   The present invention provides a method for controlling the chemical composition of the welded portion and a heat treatment method for the welded portion as a method for controlling the hardening phenomenon of the welded portion for continuous rolling of the rolled material in which a low temperature transformation structure occurs after laser welding. To do.

以下では、このような方法について順番通り説明する。
先ず、溶接部の化学組成を制御する方法について説明する。
この方法は、溶接部の溶融金属を殆ど形成する溶接材料を制御する方法である。溶接材料はフィラー供給機16から溶接部60へ供給され、基本的にCの含量が0.1%以下で、Crの含量が0−1.22%の溶接材料が好ましい。このような溶接材料としては、炭素鋼と高靭性材料のNi合金が挙げられる。炭素鋼系列がより安定的に溶接品質を確保できるので好ましい。
Below, such a method is demonstrated in order.
First, a method for controlling the chemical composition of the weld will be described.
This method is a method for controlling the welding material that forms almost all the molten metal in the weld zone. The welding material is supplied from the filler supplier 16 to the welded portion 60. Basically, a welding material having a C content of 0.1% or less and a Cr content of 0 to 1.22% is preferable. Examples of such a welding material include carbon steel and Ni alloy of high toughness material. The carbon steel series is preferable because the welding quality can be secured more stably.

ステンレス鋼及びNi合金から成る溶接材料は、最適の溶接パラメータが導き出されない場合には、母材である高炭素鋼とのぬれ性が低下され、融点の差によって母材成分が完全に希釈されないため、間欠的に溶接部が脆化される現象が生じ得る。しかし、本発明の溶接材料からNi合金を除くのではない。   When the optimum welding parameters cannot be derived, the weld material made of stainless steel and Ni alloy has reduced wettability with the high-carbon steel, which is the base material, and the base material components are not completely diluted due to the difference in melting point. Therefore, a phenomenon that the welded portion is intermittently embrittled may occur. However, the Ni alloy is not removed from the welding material of the present invention.

本発明において溶接金属部の組成は、炭素の含有量が0.4%以下になるよう制御するのが好ましい。これはレーザー溶接の場合には、極小量の溶接材料を溶融させ溶接部に満たすため、通常のアーク溶接に比べ母材の希釈率が非常に大きいからである。   In the present invention, the composition of the weld metal part is preferably controlled so that the carbon content is 0.4% or less. This is because in the case of laser welding, since a very small amount of welding material is melted to fill the welded portion, the dilution rate of the base metal is very large compared to normal arc welding.

例えば、圧延材内の炭素の含有量が0.85%以上の高炭素鋼圧延材の場合に、希釈率を最大30%に設定し、溶接金属部の炭素含有量を0.4%以下に維持するためには、溶接材料の炭素含有量は約0.1wt%以下になるべきである。   For example, in the case of a high carbon steel rolled material having a carbon content in the rolled material of 0.85% or more, the dilution rate is set to a maximum of 30%, and the carbon content of the weld metal part is set to 0.4% or less. In order to maintain, the carbon content of the welding material should be about 0.1 wt% or less.

またクロム(Cr)は、圧延材内の炭素と反応して溶接金属と溶接熱影響部の付近でクロム炭化物を形成するので、クロム(Cr)の含有量は1.22%以下に制御するのが好ましい。   Chromium (Cr) reacts with carbon in the rolled material and forms chromium carbide in the vicinity of the weld metal and the weld heat affected zone, so the chromium (Cr) content is controlled to 1.22% or less. Is preferred.

従って本発明では、溶接機から供給される溶接材料は、C:0.1%以下、Cr:0−1.22%以下の炭素鋼またはNi合金が好ましい。炭素鋼はFeが主成分で、Ni合金はNiが主成分の溶接材料である。これらはC、Crを本発明の条件を満たしながら、通常の炭素鋼またはNi合金であれば適用可能である。溶接材料の形状は線材が好ましいが、粉末や薄膜形態の溶接材料も使用可能である。   Therefore, in the present invention, the welding material supplied from the welding machine is preferably carbon steel or Ni alloy of C: 0.1% or less and Cr: 0 to 1.22% or less. Carbon steel is a welding material mainly composed of Fe, and Ni alloy is a welding material mainly composed of Ni. These can be applied to normal carbon steel or Ni alloy while C and Cr satisfy the conditions of the present invention. Although the shape of the welding material is preferably a wire, a welding material in the form of powder or thin film can also be used.

次に、溶接部の熱処理方法について説明する。
本発明において溶接部の熱処理は、溶接接合部の亀裂を防ぐための溶接前に実施する予熱処理と、溶接後に溶接接合部の硬化現象を緩和させるために実施する後熱処理がある。
Next, the heat processing method of a welding part is demonstrated.
In the present invention, the heat treatment of the welded portion includes a preheat treatment performed before welding for preventing cracks in the welded joint portion, and a post-heat treatment performed to alleviate the hardening phenomenon of the welded joint portion after welding.

仮に、低温変態組織が発生する圧延材に対してレーザー溶接を実施し、接合された溶接部に対して後熱処理のみ実施した場合、溶接以後の溶接部は後熱処理する前に急冷却され、溶接部に亀裂が生じ得る。   If, for example, laser welding is performed on a rolled material in which a low temperature transformation structure is generated, and only post-heat treatment is performed on the welded joint, the welded portion after welding is rapidly cooled before post-heat treatment, and welding is performed. Cracks may occur in the part.

従って、低温変態組織が発生する溶接材料に対してレーザー溶接による急冷却熱サイクルを緩和させるため、溶接前に予熱処理を実施するのが好ましい。   Therefore, in order to relieve the rapid cooling heat cycle by laser welding with respect to the welding material in which the low temperature transformation structure is generated, it is preferable to perform pre-heat treatment before welding.

このような予熱処理の温度は、本発明の一実施例のように移動式熱処理機を適用する場合、マルテンサイト変態温度(Ms)のすぐ上では十分な予熱効果が得られないため、これより高い温度に予熱するのが好ましい。   The temperature of such pre-heat treatment is higher than the martensite transformation temperature (Ms) when a mobile heat treatment machine is applied as in one embodiment of the present invention. Preheating to a high temperature is preferred.

従って、本発明の一実施例によると、高炭素鋼の溶接部に対して予熱する場合、予熱処理の温度は600℃乃至800℃の範囲で実施するのが好ましい。予熱処理の温度が600℃以下で予熱処理すると、移動する圧延材に対して予熱のための十分な時間が確保できないため、溶接部に十分な品質特性が確保できず、予熱温度が800℃以上になると過度の入熱によって溶接部に変形が発生して良好な溶接部が確保できない。   Therefore, according to one embodiment of the present invention, when preheating a high carbon steel weld, it is preferable that the temperature of the preheat treatment is in the range of 600 ° C to 800 ° C. When preheating is performed at a preheating temperature of 600 ° C or lower, sufficient time for preheating cannot be secured for the moving rolled material, so that sufficient quality characteristics cannot be ensured in the welded portion, and the preheating temperature is 800 ° C or higher. If so, deformation is generated in the weld due to excessive heat input, and a good weld cannot be secured.

そして本発明において溶接部の後熱処理は、大きく二つの概念で実施する。
最初の概念は、AC1以下で比較的長時間維持して溶接部のマルテンサイト組織をテンパード(tempered)マルテンサイトに変化させ、延性を確保するテンパリング(Tempering)処理方法である。
In the present invention, the post-heat treatment of the welded portion is performed based on two concepts.
The first concept is a relatively long time maintained to weld martensitic structure with A C1 below is changed to Tenpado (tempered) martensite, a tempered (Tempering) processing method for ensuring ductility.

二番目の概念は、レーザー溶接時の冷却熱サイクルを積極的に制御して、フェライトとパーライト組織に変態させる方法である。   The second concept is a method of transforming into a ferrite and pearlite structure by actively controlling the cooling heat cycle during laser welding.

ここでテンパリング処理方法は、比較的長時間熱処理しなければならないので、これによる十分な延性を確保できることが長所であるが、生産速度が速いコイル生産ラインでは、後熱処理に長時間かかると生産性が低下する。従って、移動式熱源を用いたレーザー溶接システムでは、後者のレーザー溶接後の冷却サイクルを緩和させる方法がより好ましい。   Here, the tempering method has to be heat-treated for a relatively long time, so it is an advantage that sufficient ductility can be ensured by this, but in a coil production line with a high production speed, if the post-heat treatment takes a long time, the productivity Decreases. Therefore, in the laser welding system using a mobile heat source, the latter method of relaxing the cooling cycle after laser welding is more preferable.

溶接部の後熱処理の温度は、800乃至1100℃の範囲で加熱するのが好ましく、より好ましくは950〜1100℃の範囲である。また溶接部の後熱処理は、加熱後の維持時間をもたせず、自然冷却するのが好ましい。   The post-heat treatment temperature of the welded portion is preferably 800 to 1100 ° C, and more preferably 950 to 1100 ° C. Further, the post-heat treatment of the welded portion is preferably naturally cooled without having a maintenance time after heating.

溶接部の後熱処理温度が800℃以下の場合には、入熱量が不足し、冷却後の溶接部の組織にマルテンサイト組織が形成され、硬度低減効果が無い。また、後熱処理の温度が1100℃以上の場合には、入熱量が多すぎて溶接部の組織が粗大化され、一部分は冷却時に硬化組織のマルテンサイト組織が再生成され、溶接部の物理的特性が悪化する。   When the post-heat treatment temperature of the welded portion is 800 ° C. or lower, the heat input is insufficient, a martensite structure is formed in the structure of the welded portion after cooling, and there is no hardness reduction effect. Further, when the temperature of the post heat treatment is 1100 ° C. or higher, the heat input is too large and the structure of the welded portion is coarsened, and a part of the martensitic structure of the hardened structure is regenerated at the time of cooling, Characteristics deteriorate.

本発明のレーザー溶接方法は、圧延材を連続製造工程にて生産する全ての方法に適用できるものである。例えば、酸洗いと冷延する工程(PCM、Pickling&Tandem Cold Rolling Mill)、酸洗いとオイル塗布する工程(POL、Pickling&Oiling Line)、焼き鈍しと酸洗いする工程(APL、Annealing&Pickling Line)、酸洗いする工程(PL、Pickling Line)、冷延する工程(TCM、Tandem Cold Rolling Mill)等がある。   The laser welding method of the present invention can be applied to all methods for producing a rolled material in a continuous production process. For example, pickling and cold rolling (PCM, Pickling & Tandem Cold Rolling Mill), pickling and oil coating (POL, Pickling & Oiling Line), annealing and pickling (APL, Annealing & Pickling Line), pickling ( PL, Pickling Line), cold rolling process (TCM, Tandem Cold Rolling Mill) and the like.

以下では本発明による好ましい実施例について説明する。
本実施例では、表1のような組成を有する高炭素鋼熱間圧延材(主成分Fe)を使用した。圧延材の厚さは2.0mmであった。このような圧延材は、最大出力12kWのCOレーザー溶接機を用いて相互溶接した。
In the following, preferred embodiments according to the present invention will be described.
In this example, a high-carbon steel hot-rolled material (main component Fe) having a composition as shown in Table 1 was used. The thickness of the rolled material was 2.0 mm. Such rolled materials were welded together using a CO 2 laser welder with a maximum output of 12 kW.

Figure 2007175774
Figure 2007175774

そして本実施例で使用した溶接材料には、ワイヤ状態(Φ0.9mm)のフィラーを使用し、その化学組成は下記の表2に示したように、炭素鋼系列のER70S−G、ER80S−Gとステンレス鋼系列のER308、そしてニッケル合金系列のERNiCrMo03、ERNi等を使用した。炭素鋼系列のER70S−G、ER80S−Gの化学成分のうちFeが主成分であり、表2には表記していない。   The welding material used in this example uses a filler in a wire state (Φ0.9 mm), and its chemical composition is as shown in Table 2 below, and is a carbon steel series of ER70S-G and ER80S-G. And ER308 of stainless steel series, ERNiCrMo03, ERNi, etc. of nickel alloy series were used. Of the chemical components of carbon steel series ER70S-G and ER80S-G, Fe is the main component and is not shown in Table 2.

Figure 2007175774
Figure 2007175774

圧延材をレーザー溶接機で溶接する際のレーザー溶接の条件は、溶接部の気孔アンダーフィル(Underfill)のような溶接欠陥が発生しない条件にし、レーザーの出力は8.4kWで溶接速度は4.5m/minであり、接合部の間隔は0.15mmにした。   The laser welding conditions when the rolled material is welded with a laser welding machine are such that no weld defects such as pore underfill (Underfill) occur in the weld, the laser output is 8.4 kW, and the welding speed is 4. It was 5 m / min, and the interval between the joints was 0.15 mm.

溶接部に対する熱処理は、20w×200lmmの大きさの熱源を有する高周波誘導加熱炉を使用し、出力を変えつつ、溶接線に沿って移動させながら熱処理した。   The heat treatment for the welded portion was performed using a high-frequency induction heating furnace having a heat source having a size of 20 w × 200 lmm and moving along the welding line while changing the output.

熱処理条件は、加熱速度は約100℃/sで、予熱処理及び後熱処理の温度を変えながら熱処理した後、熱処理後には自然冷却(空冷)した。   The heat treatment conditions were a heating rate of about 100 ° C./s, heat treatment while changing the temperature of the pre-heat treatment and post-heat treatment, and then natural cooling (air cooling) after the heat treatment.

溶接部を熱処理する時、高周波誘導炉によって加熱された溶接部の温度は、R−typeの熱電対を溶融境界線に点溶接し、溶接による温度履歴を測定し、温度履歴曲線から最高到達温度を求め、この温度を熱処理温度と定めた。   When heat-treating the welded part, the temperature of the welded part heated by the high-frequency induction furnace is determined by spot welding an R-type thermocouple to the melting boundary, measuring the temperature history by welding, and reaching the maximum temperature from the temperature history curve. This temperature was determined as the heat treatment temperature.

本発明の一実施例によると、エリクセン高さ4mm以上でPCMラインの通板基準を満たしたところ、エリクセン試験機(Erichsen)を用いてエリクセン高さを評価し、エリクセン高さ4mmを基準に合格可否を決定した。溶接部の品質特性の評価方法は、溶接部の亀裂発生時点までの塑性変形された高さを測定して評価した。   According to an embodiment of the present invention, when the Erichsen height is 4 mm or more and the PCM line passing standard is satisfied, the Eriksen height is evaluated using an Erichsen tester (Erichsen), and the Eriksen height is 4 mm as a reference. Decided whether or not. The evaluation method of the quality characteristic of the welded portion was evaluated by measuring the height of plastic deformation up to the time of occurrence of cracks in the welded portion.

先ず、炭素含有量が0.85%のSK85鋼に対して、溶接材料及び熱処理条件による品質評価結果を下記の表3に示した。   First, the quality evaluation results according to the welding materials and heat treatment conditions for SK85 steel having a carbon content of 0.85% are shown in Table 3 below.

Figure 2007175774
Figure 2007175774

表3から分かるように、SK85鋼の溶接部に対して溶接材料を使用しなかったり、熱処理を実施しない場合には、溶接直後に溶接部から溶接亀裂が発生して通板可能な溶接接合部が得られなかった。   As can be seen from Table 3, when no welding material is used for the welded part of SK85 steel or heat treatment is not carried out, a welded joint that can pass through a weld crack generated immediately after welding. Was not obtained.

また、予熱処理または後熱処理のみを単独で実施した場合にも、通板が出来る程度の溶接部の品質特性を確保できなかった。   In addition, even when only the pre-heat treatment or the post-heat treatment was carried out alone, it was not possible to ensure the quality characteristics of the welded part to the extent that the plate could be passed.

これに対して、本発明のように予熱処理と後熱処理を全て実施した場合には、他の実施例に比べて溶接部の品質が改善されたことが分かる。   On the other hand, when all the pre-heat treatment and post-heat treatment are carried out as in the present invention, it can be seen that the quality of the welded portion is improved as compared with the other embodiments.

また、表3から分かるように、予熱処理温度を600〜800℃にし、これと共に後熱処理の温度を950〜1100℃の範囲で加熱した場合には、PCM連続圧延通板の限界基準であるエリクセン高さ4.0mmを超過する安定的な溶接品質特性を示している。   As can be seen from Table 3, when the pre-heat treatment temperature is set to 600 to 800 ° C. and the post-heat treatment temperature is heated in the range of 950 to 1100 ° C., Erichsen, which is a limit standard for PCM continuous rolling plate passing It shows stable weld quality characteristics exceeding 4.0mm in height.

そして溶接材料は、クロム(Cr)含有量が少ないER70S−G、ER80S−G、ERNiの場合には、限界基準であるエリクセン高さ4.0mmを超過したが、クロム(Cr)含有量がそれぞれ19.86%、21.17%含まれたER308、ERNiCrMo−3の場合には、同じ熱処理技術を適用しても満足するような水準の溶接品質が得られなかった。   In the case of ER70S-G, ER80S-G, and ERNi with low chromium (Cr) content, the welding material exceeded the limit standard of Erichsen height of 4.0 mm, but the chromium (Cr) content was respectively In the case of ER308 and ERNiCrMo-3 contained in 19.86% and 21.17%, satisfactory welding quality could not be obtained even when the same heat treatment technology was applied.

このような事実は、溶接材料に含まれたクロム(Cr)成分と圧延材の炭素成分が溶接中に反応してクロム−炭化物を粒界に生成させ、溶接部の粒界を脆化させるからである。   This is because the chromium (Cr) component contained in the welding material and the carbon component of the rolled material react during welding to generate chromium-carbides at the grain boundaries, and embrittle the grain boundaries of the weld. It is.

次に、炭素の含有量が0.5%のS50C鋼に対して、溶接材料及び熱処理条件による品質評価結果を下記の表4に示した。   Next, the quality evaluation results according to the welding materials and heat treatment conditions for S50C steel having a carbon content of 0.5% are shown in Table 4 below.

表4に示した実施例は、表3から確認された最高エリクセン値を示した熱処理温度条件、即ち予熱処理温度723℃と後熱処理温度1005℃で実施したものである。   The examples shown in Table 4 were carried out under the heat treatment temperature conditions showing the highest Erichsen values confirmed from Table 3, that is, the preheat treatment temperature 723 ° C. and the post heat treatment temperature 1005 ° C.

Figure 2007175774
Figure 2007175774

表4から分かるように、S50C鋼のレーザー溶接部の品質特性は、SK85鋼レーザー溶接部に比べて溶接材料及び熱処理方法に関係なく全体的に優れていることが分かる。   As can be seen from Table 4, it can be seen that the quality characteristics of the laser welded portion of S50C steel are generally superior to the SK85 steel laser welded portion regardless of the welding material and heat treatment method.

また、S50C鋼のレーザー溶接部の品質特性は、後熱処理のみを単独で実施した場合にも、限界基準であるエリクセン高さ4.0mmを超える値が得られることが分かる。   It can also be seen that the quality characteristics of the laser welded part of S50C steel can be obtained when the post-heat treatment alone is carried out alone and a value exceeding the Eriksen height of 4.0 mm, which is the limit standard, is obtained.

このような結果は、鋼材内の炭素含有量の減少によって硬化現象が低減されたことによるものとみられる。   Such a result seems to be due to the fact that the hardening phenomenon has been reduced by reducing the carbon content in the steel.

また表4を参照すると、予熱処理及び後熱処理を同時に適用した場合には、溶接部の品質特性がさらに向上されることが分かる。   Also, referring to Table 4, it can be seen that the quality characteristics of the weld are further improved when the pre-heat treatment and the post-heat treatment are applied simultaneously.

以上本発明の好ましい実施例について説明したが、本発明は以上のような実施例に示した高炭素鋼の連続圧延時溶接での溶接条件に特定されるのでなく、本発明の思想が適用される連続製造工程に必要な様々な溶接条件に適用することが出来る。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the welding conditions in the continuous rolling welding of the high carbon steel shown in the above embodiments, but the idea of the present invention is applied. It can be applied to various welding conditions necessary for a continuous manufacturing process.

従って、本願発明は特許請求範囲と発明の詳細な説明の範囲の中で多様に変形して実施するのが可能で、これも本発明の範囲に属する。   Accordingly, the present invention can be variously modified and implemented within the scope of the claims and the detailed description of the invention, and this also belongs to the scope of the present invention.

本発明の一実施例によるレーザー溶接装置を示す概念図である。It is a conceptual diagram which shows the laser welding apparatus by one Example of this invention. 本発明の一実施例によるレーザー溶接部の熱サイクルを示すグラフである。It is a graph which shows the thermal cycle of the laser welding part by one Example of this invention. 本発明の一実施例においてSK85鋼の圧延材に関するもので、PCM連続圧延以後のレーザー溶接部を示す写真である。It is a photograph which shows the laser welding part after the PCM continuous rolling regarding the rolling material of SK85 steel in one Example of this invention.

Claims (8)

圧延材を連続製造工程のためにレーザー溶接する方法において、
低温変態組織が発生する圧延材を相互に接触させる段階と、
上記圧延材の接触部分に対して溶接段階でC:0.1重量%以下、Cr:0−1.22重量%を含む溶接材料を使用してレーザー溶接する段階とを含む連続製造工程のためのレーザー溶接方法。
In a method of laser welding a rolled material for a continuous manufacturing process,
A step of bringing the rolling materials in which a low temperature transformation structure is generated into contact with each other;
And a step of laser welding using a welding material containing C: 0.1 wt% or less and Cr: 0 to 1.22 wt% at the welding stage to the contact portion of the rolled material. Laser welding method.
上記溶接材料は、炭素鋼またはNi合金から選択されることを特徴とする請求項1に記載の連続製造工程のためのレーザー溶接方法。   The laser welding method for a continuous manufacturing process according to claim 1, wherein the welding material is selected from carbon steel or Ni alloy. 上記溶接材料は、線材または粉末または薄膜の何れの形態であることを特徴とする請求項1に記載の連続製造工程のためのレーザー溶接方法。   The laser welding method for a continuous manufacturing process according to claim 1, wherein the welding material is in the form of a wire, a powder or a thin film. 上記溶接段階の前に、上記圧延材の接触部分を600℃乃至800℃の範囲で予熱処理することを特徴とする請求項1に記載の連続製造工程のためのレーザー溶接方法。   The laser welding method for a continuous manufacturing process according to claim 1, wherein the contact portion of the rolled material is preheated in a range of 600 ° C to 800 ° C before the welding step. 上記溶接段階の後に、上記溶接部を800乃至1100℃の範囲で加熱して後熱処理することを特徴とする請求項1または請求項4に記載の連続製造工程のためのレーザー溶接方法。   The laser welding method for a continuous manufacturing process according to claim 1 or 4, wherein after the welding step, the welded portion is heated in a range of 800 to 1100 ° C and post-heat treated. 上記低温変態組織が発生する圧延材は、Cの含量が0.5重量%以上の高炭素鋼、DP鋼、TRIP鋼、CP鋼から選択されることを特徴とする請求項1に記載の連続製造工程のためのレーザー溶接方法。   The continuous material according to claim 1, wherein the rolled material in which the low temperature transformation structure is generated is selected from high carbon steel, DP steel, TRIP steel, and CP steel having a C content of 0.5 wt% or more. Laser welding method for manufacturing process. 上記高炭素鋼は、重量%としてC:0.5%以上、Si:0.1〜0.5%、Mn:0.3〜0.6%、P:0.05%以下、S:0.05%以下、Cu:0.5%以下、Ni:3%以下、Cr:0.05〜0.5%、Al:0.05%以下を含み、その他の不可避な不純物と残りのFeから組成されることを特徴とする請求項6に記載の連続製造工程のためのレーザー溶接方法。   The high carbon steel is C: 0.5% or more, Si: 0.1-0.5%, Mn: 0.3-0.6%, P: 0.05% or less, S: 0% by weight. 0.05% or less, Cu: 0.5% or less, Ni: 3% or less, Cr: 0.05 to 0.5%, Al: 0.05% or less, and from other inevitable impurities and the remaining Fe The laser welding method for a continuous manufacturing process according to claim 6, wherein the composition is a composition. 上記連続製造工程は、酸洗いと冷延する工程(PCM、Pickling&Tandem Cold Rolling Mill)、酸洗いとオイル塗布する工程(POL、Pickling&Oiling Line)、焼き鈍しと酸洗いする工程(APL、Annealing&Pickling Line)、酸洗いする工程(PL、Pickling Line)、冷延する工程(TCM、Tandem Cold Rolling Mill)の何れか一つであることを特徴とする請求項1に記載の連続製造工程のためのレーザー溶接方法。   The above continuous production process includes pickling and cold rolling (PCM, Pickling & Tandem Cold Rolling Mill), pickling and oil coating (POL, Pickling & Oiling Line), annealing and pickling (APL, Annealing & Pickling Line), acid The laser welding method for a continuous manufacturing process according to claim 1, wherein the laser welding method is any one of a washing step (PL, Pickling Line) and a cold rolling step (TCM, Tandem Cold Rolling Mill).
JP2006349003A 2005-12-26 2006-12-26 Laser welding method for continuous manufacturing process Active JP4676421B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050130102A KR100711453B1 (en) 2005-12-26 2005-12-26 Welding method of high carbon steel for endless hot rolling

Publications (2)

Publication Number Publication Date
JP2007175774A true JP2007175774A (en) 2007-07-12
JP4676421B2 JP4676421B2 (en) 2011-04-27

Family

ID=38182319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349003A Active JP4676421B2 (en) 2005-12-26 2006-12-26 Laser welding method for continuous manufacturing process

Country Status (3)

Country Link
JP (1) JP4676421B2 (en)
KR (1) KR100711453B1 (en)
CN (1) CN1990155A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220179A (en) * 2008-02-19 2009-10-01 Toshiba Corp Method for joining double tube
JP2017177111A (en) * 2016-03-28 2017-10-05 中国電力株式会社 Steel member welding method and welding material
KR20190077732A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Heat treating method for welding part of steel plate
CN113146157A (en) * 2021-04-15 2021-07-23 鞍钢股份有限公司 Laser welding method for 600 MPa-grade cold-rolled dual-phase steel hot-rolled substrate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134852B1 (en) * 2010-02-16 2012-04-13 현대하이스코 주식회사 JIS S45C coil welding method for continuous cold rolling
CN102925904B (en) * 2012-11-30 2014-11-12 张家港浦项不锈钢有限公司 Thermal annealing acid-washing method of stainless steel wide and thick plate coil
EP3520945B1 (en) * 2018-02-05 2021-01-13 Ningbo Geely Automobile Research & Development Co. Ltd. Laser brazing process
CN109183029B (en) * 2018-11-16 2021-02-19 佛山市南海区科琎精密机械有限公司 Laser cladding process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106488A (en) * 1980-12-22 1982-07-02 Kawasaki Steel Corp Laser welding method
JPH05132719A (en) * 1991-11-13 1993-05-28 Kawasaki Steel Corp Method for welding high carbon steel sheet or strip
JP2005048271A (en) * 2003-07-31 2005-02-24 Jfe Steel Kk Method for welding high-carbon steel material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834587B2 (en) * 1991-01-14 1998-12-09 新日本製鐵株式会社 Butt laser welding of high carbon steel sheet
JPH08276207A (en) * 1995-04-03 1996-10-22 Sumitomo Metal Ind Ltd Strengthening method for weld zone of steel strip in continuous rolling
JP3461753B2 (en) 1999-04-16 2003-10-27 新日本製鐵株式会社 Continuous hot rolling method
KR100990721B1 (en) * 2003-10-07 2010-10-29 주식회사 포스코 Method for cooling a part of hot rolled steel strip by continuous hot rolling equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106488A (en) * 1980-12-22 1982-07-02 Kawasaki Steel Corp Laser welding method
JPH05132719A (en) * 1991-11-13 1993-05-28 Kawasaki Steel Corp Method for welding high carbon steel sheet or strip
JP2005048271A (en) * 2003-07-31 2005-02-24 Jfe Steel Kk Method for welding high-carbon steel material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220179A (en) * 2008-02-19 2009-10-01 Toshiba Corp Method for joining double tube
JP2017177111A (en) * 2016-03-28 2017-10-05 中国電力株式会社 Steel member welding method and welding material
KR20190077732A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Heat treating method for welding part of steel plate
KR102010080B1 (en) 2017-12-26 2019-10-21 주식회사 포스코 Heat treating method for welding part of steel plate
CN113146157A (en) * 2021-04-15 2021-07-23 鞍钢股份有限公司 Laser welding method for 600 MPa-grade cold-rolled dual-phase steel hot-rolled substrate
CN113146157B (en) * 2021-04-15 2023-03-03 鞍钢股份有限公司 Laser welding method for 600 MPa-grade cold-rolled dual-phase steel hot-rolled substrate

Also Published As

Publication number Publication date
KR100711453B1 (en) 2007-04-24
CN1990155A (en) 2007-07-04
JP4676421B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4486639B2 (en) Laser welding method for continuous production process, apparatus therefor, and rolled plate for laser welding
JP4676421B2 (en) Laser welding method for continuous manufacturing process
US9862058B2 (en) Method for laser welding one or more workpieces made of hardenable steel in a butt joint
KR101747586B1 (en) Methods for joining two blanks and blanks and products obtained
KR102088470B1 (en) Method for laser welding one or more workpieces of hardenable steel with a butt joint using a filler wire
WO2021100218A1 (en) Carbon steel material welding method
US7540402B2 (en) Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
Kang et al. Laser tailor-welded blanks for hot-press-forming steel with arc pretreatment
Guo et al. Laser welding of high strength steels (S960 and S700) with medium thickness
JP2019537666A (en) Multi-phase cold-rolled ultra-high strength steel
Ichiyama et al. Flash-butt welding of high strength steels
KR101242688B1 (en) Laser welding method of silicon steel
JP2007098462A (en) Flash butt welding method
JP3077576B2 (en) Method for producing low carbon martensitic stainless steel welded pipe
JP4619635B2 (en) Welding method for high carbon steel
JP2016079492A (en) Thick steel sheet for sour resistant weld steel pipe having excellent scale peeling resistance, manufacturing method therefor and weld steel pipe
JPH08309428A (en) Production of welded steel tube
WO2008086028A1 (en) Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method
JP7453600B2 (en) Spot welded joints and method for manufacturing spot welded joints
JP4586515B2 (en) Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same
KR102045642B1 (en) Lser welding method for endless hot rolling
Kim et al. Effect of Heat Treatment Conditions on Resistance Spot Weldability of 1.8 GPa-grade Al-Si Coated Hot Stamping Boron Steel
JP3242040B2 (en) Manufacturing method of high carbon steel ERW steel pipe for machine structure
JP2003170274A (en) Flash butt welding method for stainless steel plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250