JPH11201905A - Surface inspecting device - Google Patents

Surface inspecting device

Info

Publication number
JPH11201905A
JPH11201905A JP393498A JP393498A JPH11201905A JP H11201905 A JPH11201905 A JP H11201905A JP 393498 A JP393498 A JP 393498A JP 393498 A JP393498 A JP 393498A JP H11201905 A JPH11201905 A JP H11201905A
Authority
JP
Japan
Prior art keywords
light
reflected light
reflected
image
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP393498A
Other languages
Japanese (ja)
Inventor
Tsutomu Morimoto
勉 森本
Shingo Suminoe
伸吾 住江
Yasuhiro Wasa
泰宏 和佐
Katsuya Takaoka
克也 高岡
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP393498A priority Critical patent/JPH11201905A/en
Publication of JPH11201905A publication Critical patent/JPH11201905A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface inspecting device capable of accurately detecting only the projected and recessed state of the surface of an object to be inspected without being affected by a lowly reflective part such as a stain on the surface of the object to be inspected. SOLUTION: A light source 2 is constituted so that the location of the light source 2 can be moved to La and Lb. By this, reflected light only from a different part of a defect part (projected and recessed part) among reflected light from the surface 1 of an object to be inspected is shielded by a pinhole 6, light reception at the CCD camera 8 is blocked, and the part appears as a dark part in each image obtained by a CCD camera 8. In other words, a different part of the same projected and recessed part appears as a dark part in every image. A lowly reflective part on the surface 1 of the object to be inspected appears as a dark part in an image as well at this time, but this commonly appears in every image. An image processing device 11 calculates the differences in the luminance distribution of above-mentioned each image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,検査対象物の表面
に平行光を投光し,上記検査対象物の表面で反射された
反射光の輝度分布に基づいて上記検査対象物の表面の凹
凸状態を検査する表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for projecting parallel light onto a surface of an object to be inspected, and forming irregularities on the surface of the object to be inspected based on a luminance distribution of light reflected on the surface of the object. The present invention relates to a surface inspection device for inspecting a state.

【0002】[0002]

【従来の技術】平面物体の表面における微小な角度の変
位,即ち凹凸状態を測定する方法として,従来よりシュ
リーレン法を応用したものが提案されている。上記シュ
リーレン法とは,一般的には,気体,液体等の屈折率の
勾配の変化を知るための定性的な測定法として知られる
もので,透明な気体,液体等の検査対象物に平行光を投
光し,上記検査対象物を透過した光をレンズや凹面鏡で
一点に集め,その集光面にナイフエッジ等をおいてその
一部を遮って上記透過光を受光し,得られた画像の明暗
分布により検査対象物の屈折率の勾配の変化を検出する
ものである。上記検査対象物の一部に屈折率の変化があ
ると,そこを通る光は曲げられてナイフエッジで遮られ
るため,画像上の暗部として現れる。以上のようなシュ
リーレン法を応用した表面検査装置が,本出願人によっ
て特願平8−085103として既に出願されている。
この表面検査装置A0は,図9に示すように,上記シュ
リーレン法を応用した反射型の光学系を構成している。
図9に示す表面検査装置A0において,光源52から発
せられた白色光は,ピンホール53を経て点光源とな
り,レンズ54により平行光となる。そして,ハーフミ
ラー55により反射され,検査対象物表面51に対して
垂直に照射される。検査対象物表面51で反射された光
はハーフミラー55を透過した成分がレンズ56を経
て,レンズ57を通り,受光面58で観察される。その
際,検査対象物表面51の平滑面(健全部)に平行入射
した光はここで正反射し(図10(a)),受光面58
で明部となって現れる。一方,検査対象物表面51の凹
凸部分に平行入射した光は,ここで正反射方向からずれ
た方向に反射されるため(図10(b)),レンズ5
6,57から外れて受光面58に到達できず,明部(健
全部)の中の暗部(欠陥)として観察される。尚,表面
に凹凸があってもその偏向角が小さい場合には,図11
に斜線で示すように反射光が受光面58上に集光されて
しまい,検出が難しくなるため,図11に2点鎖線で示
すように集光点Aにピンホール59を設けることによ
り,凹凸部からの反射光を完全に遮断することができ
る。
2. Description of the Related Art As a method for measuring a minute angular displacement on a surface of a planar object, that is, a state of unevenness, a method applying the Schlieren method has been conventionally proposed. The above-mentioned Schlieren method is generally known as a qualitative measurement method for knowing a change in the refractive index gradient of a gas, a liquid, or the like. The light transmitted through the object to be inspected is collected at one point by a lens or a concave mirror, and a part of the light-collecting surface is cut off with a knife edge or the like, and the transmitted light is received. Is used to detect a change in the gradient of the refractive index of the object to be inspected based on the light / dark distribution. If there is a change in the refractive index of a part of the inspection object, the light passing therethrough is bent and blocked by the knife edge, so that it appears as a dark part on the image. A surface inspection apparatus to which the above-described Schlieren method is applied has already been filed by the present applicant as Japanese Patent Application No. 8-081033.
As shown in FIG. 9, the surface inspection apparatus A0 constitutes a reflection type optical system to which the above-described Schlieren method is applied.
In the surface inspection apparatus A0 shown in FIG. 9, white light emitted from the light source 52 becomes a point light source via the pinhole 53, and becomes parallel light by the lens. Then, the light is reflected by the half mirror 55 and is irradiated perpendicularly to the inspection object surface 51. The light reflected on the inspection object surface 51 passes through the half mirror 55, passes through the lens 56, passes through the lens 57, and is observed on the light receiving surface 58. At this time, light incident parallel to the smooth surface (healthy portion) of the inspection object surface 51 is specularly reflected here (FIG. 10A), and the light receiving surface 58 is detected.
Appears as a bright part. On the other hand, light incident parallel to the uneven portion of the inspection object surface 51 is reflected here in a direction deviated from the regular reflection direction (FIG. 10B).
6, 57 and cannot reach the light receiving surface 58, but are observed as dark portions (defects) in bright portions (sound portions). If the deflection angle is small even if the surface has irregularities,
Since the reflected light is condensed on the light receiving surface 58 as shown by the diagonal lines and detection becomes difficult, by providing the pinhole 59 at the converging point A as shown by the two-dot chain line in FIG. The reflected light from the section can be completely blocked.

【0003】[0003]

【発明が解決しようとする課題】上述のように,上記従
来の表面検査装置A0では,「観測画像の暗部=検査対
象物表面の凹凸部」との仮定のもとで検査が行われる。
しかしながら,実際には「観測画像の暗部」は必ずしも
「検査対象物表面の凹凸部」であるとは限らない。例え
ば,検査対象物表面に反射率の低い部分,例えば油分等
によるシミや金属の酸化部分等が存在すると,その低反
射部についても,凹凸部と同様,観測画像上に暗部とし
て現れる。ところが,上記従来の表面検査装置では,
「観測画像の暗部」が「検査対象物表面の凹凸部」によ
るものなのか,或いは上記「低反射部」によるものなの
かという区別ができないため,「検査対象物表面の凹凸
部」のみを正確に検出することができないという問題点
があった。本発明は上記事情に鑑みてなされたものであ
り,その目的とするところは,検査対象物表面のシミな
どの低反射部に影響されることなく,検査対象物表面の
凹凸状態のみを正確に検出することが可能な表面検査装
置を提供することである。
As described above, in the above-described conventional surface inspection apparatus A0, the inspection is performed on the assumption that "dark portion of the observed image = uneven portion of the surface of the inspection object".
However, actually, the “dark portion of the observed image” is not always the “irregular portion of the surface of the inspection object”. For example, if there is a portion having a low reflectance on the surface of the inspection object, for example, a stain due to oil or the like, or an oxidized portion of a metal, the low reflection portion also appears as a dark portion on the observed image, like the uneven portion. However, in the above conventional surface inspection device,
It is not possible to distinguish whether the “dark part of the observed image” is due to the “irregularities on the surface of the inspection object” or the above “low-reflection part”. There was a problem that it could not be detected. The present invention has been made in view of the above circumstances, and an object thereof is to accurately detect only the irregularities on the surface of an inspection object without being affected by low reflection parts such as spots on the surface of the inspection object. It is to provide a surface inspection device capable of detecting.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,検査対象物の表面に平行光を投光する投光
光学系と,上記投光光学系から投光され上記検査対象物
の表面で反射された反射光の光軸方向に配置され,上記
反射光を受光する受光面とを具備し,上記受光面で受光
した反射光の輝度分布に基づいて上記検査対象物の表面
の凹凸状態を検査する表面検査装置において,上記検査
対象物の表面からの反射方向の異なる複数の反射光をそ
れぞれ個別に上記受光面に入射させる反射光選択手段
と,上記反射光選択手段によって上記受光面で個別に受
光された上記複数の反射光の輝度分布の差に基づいて,
上記表面の凹凸状態を検出する検出手段とを具備してな
ることを特徴とする表面検査装置として構成されてい
る。上記反射光選択手段は,例えば,上記投光光学系か
ら上記検査対象物の表面への入射角を複数段階に変更す
る入射角変更手段を具備して構成することができる。こ
の上記入射角変更手段は,例えば上記投光光学系を構成
する光源,若しくはミラーの位置を移動させることによ
り上記検査対象物の表面への入射角を変更するように構
成できる。また,上記検査対象物の表面からの反射光の
うち,所定の反射光のみを選択して上記受光面に入射さ
せる遮蔽手段を具備している場合には,上記反射光選択
手段は,上記遮蔽手段による反射光の選択範囲を変化さ
せるように構成することもできる。このとき,上記遮蔽
手段は,例えばピンホール,ナイフエッジ等によりによ
り構成される。更には,上記反射光選択手段からの反射
方向の異なる複数の反射光を,複数の受光面で同時に受
光するように構成すれば,検査時間が短縮できる。
In order to achieve the above object, the present invention provides a light projecting optical system for projecting parallel light onto a surface of an object to be inspected, and a light projecting optical system projected from the light projecting optical system. A light-receiving surface for receiving the reflected light, the light-receiving surface being arranged in an optical axis direction of the reflected light reflected on the surface of the object; and a surface of the inspection object based on a luminance distribution of the reflected light received on the light-receiving surface. In the surface inspection apparatus for inspecting the uneven state of the object, a plurality of reflected lights having different reflection directions from the surface of the inspection object are individually incident on the light receiving surface; Based on the difference in the luminance distribution of the plurality of reflected lights individually received on the light receiving surface,
A surface inspection apparatus is provided, comprising: a detecting means for detecting the surface unevenness state. The reflected light selecting means may be configured to include, for example, an incident angle changing means for changing an incident angle from the light projecting optical system to the surface of the inspection object in a plurality of steps. The incident angle changing means may be configured to change an incident angle on the surface of the inspection object by, for example, moving a position of a light source or a mirror constituting the light projecting optical system. Further, in the case where there is provided shielding means for selecting only predetermined reflected light from the reflected light from the surface of the inspection object and making it incident on the light receiving surface, the reflected light selecting means includes The selection range of the reflected light by the means may be changed. At this time, the shielding means is constituted by, for example, a pinhole, a knife edge or the like. Furthermore, the inspection time can be shortened if a plurality of reflected lights from the reflected light selecting means having different reflection directions are simultaneously received by a plurality of light receiving surfaces.

【0005】[0005]

【作用】本発明に係る表面検査装置によれば,投光光学
系から検査対象物の表面に照射された平行光の反射光が
受光面で受光され,撮像されるに際し,反射光選択手段
により,反射方向のそれぞれ異なる複数の反射光が個別
に上記受光面に入射され,それぞれ個別の画像が得られ
る。上記反射光選択手段を,例えば入射角変更手段(例
えば移動可能な光源,回転可能なミラー等)により構成
した場合には,上記投光光学系から上記検査対象物表面
への入射角が複数段階に変更されることにより上記反射
光の反射方向が変更される。これにより,上記各画像で
は,上記検査対象物表面からの反射光のうち,欠陥部
(凹凸部)の異なる一部分からの反射光のみが,ピンホ
ール,ナイフエッジ等の遮蔽手段に遮られるなどして上
記受光面での受光が阻止され,その部分が暗部として現
れる。即ち,各画像毎に同一凹凸部の異なる部分が暗部
として現れる。その際,検査対象物表面の低反射部につ
いても画像上に暗部として現れるが,これは全画像に共
通に現れる。検査手段では,上記各画像の輝度分布の差
が計算される。計算された輝度分布の差は,上記凹凸部
にあたる部分のみが大きな値となり,平滑部及び低反射
部はほぼ0となる。従って,この輝度分布の差に基づい
て検査対象物の表面の凹凸状態を検査することにより,
検査対象物表面のシミなどの低反射部に影響されること
なく,検査対象物表面の凹凸状態のみを正確に検出する
ことが可能となる。
According to the surface inspection apparatus of the present invention, the reflected light of the parallel light radiated from the light projecting optical system to the surface of the inspection object is received by the light receiving surface, and when the image is taken, the reflected light selecting means is used. , A plurality of reflected lights having different reflection directions are individually incident on the light receiving surface, and individual images are obtained. When the reflected light selecting means is constituted by, for example, an incident angle changing means (for example, a movable light source, a rotatable mirror, etc.), the incident angle from the light projecting optical system to the surface of the inspection object is changed in a plurality of steps. , The reflection direction of the reflected light is changed. As a result, in each of the above images, of the reflected light from the surface of the inspection object, only the reflected light from different portions of the defective portion (irregularities) is blocked by a shielding means such as a pinhole or a knife edge. Thus, light reception on the light receiving surface is blocked, and that portion appears as a dark portion. That is, different portions of the same uneven portion appear as dark portions for each image. At this time, the low-reflection part on the surface of the inspection object also appears as a dark part on the image, but this appears commonly in all images. The inspection means calculates a difference between the luminance distributions of the images. The difference in the calculated luminance distribution is large only in the portion corresponding to the uneven portion, and is substantially zero in the smooth portion and the low reflection portion. Therefore, by inspecting the unevenness of the surface of the inspection object based on the difference in the luminance distribution,
It is possible to accurately detect only the irregularities on the surface of the inspection object without being affected by low reflection portions such as spots on the surface of the inspection object.

【0006】[0006]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係る表面検査装置A1の概略構成を示す模式図,
図2は上記表面検査装置A1における光源移動時の光路
の変化を示す模式図,図3は上記表面検査装置A1にお
いて,好適な光源位置La,Lbを設定した場合のそれ
ぞれの反射項の反射状態とCCDカメラ像の一例を示す
模式図,図4は検査対象物(ワーク)の表面状態の一例
を示す模式図,図5は図4に示す検査対象物(ワーク)
を用いた場合の,(a)光源位置Laに対応する画像,
(b)光源位置Lbに対応する画像,(c)上記a,b
のさの絶対値画像,(d)上記cの所定の閾値による2
値化画像,を示す図,図6は本発明の実施例に係る表面
検査装置A2の概略構成を示す模式図,図7は本発明の
実施例に係る表面検査装置A3の概略構成,及びピンホ
ール移動時の光路の変化を示す模式図,図8は本発明の
実施例に係る表面検査装置A4の概略構成を示す模式図
である。本実施の形態に係る表面検査装置A1は,図1
に示すように,電動ステージ13により移動可能に設置
された光源2と,上記光源2からの光を平行光にするレ
ンズ3と,上記レンズ3からの平行光を検査対象物表面
1方向に反射させるハーフミラー4と,上記検査対象物
表面1からの反射光を1カ所(集光点a)で集光させ,
CCDカメラ8の受光面に到達させるレンズ5,7と,
上記集光点aの位置に設置され,所定の反射光のみを通
過させるピンホール6と,上記CCDカメラ8からの画
像をA/D変換するA/D変換機9と,上記A/D変換
機9でデジタル信号に変換された画像を記憶するフレー
ムメモリ10a,10bと,上記フレームメモリ10
a,10bに記憶された画像をフレームメモリ10cを
用いて処理する画像処理装置11と,上記電動ステージ
13,A/D変換機9,及び画像処理装置11を制御す
るパーソナルコンピュータ12とで構成されている。こ
こで,光源2を移動させる上記電動ステージ13と,所
定の反射光のみを通過させる上記ピンホール6とで反射
光選択手段が構成され,A/D変換機9,フレームメモ
リ10a,10b,10c,画像処理装置11により検
出手段が構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A1 according to an embodiment of the present invention,
FIG. 2 is a schematic diagram showing a change in an optical path when the light source moves in the surface inspection device A1, and FIG. 3 is a reflection state of each reflection term when a suitable light source position La, Lb is set in the surface inspection device A1. And FIG. 4 is a schematic diagram showing an example of a CCD camera image. FIG. 4 is a schematic diagram showing an example of the surface state of the inspection object (work). FIG. 5 is an inspection object (work) shown in FIG.
(A) an image corresponding to the light source position La when
(B) an image corresponding to the light source position Lb, (c) a, b above
(D) 2 based on the predetermined threshold value of c above
FIG. 6 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A2 according to an embodiment of the present invention. FIG. 7 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A3 according to the embodiment of the present invention. FIG. 8 is a schematic diagram showing a change in an optical path when the hole moves, and FIG. 8 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A4 according to the embodiment of the present invention. The surface inspection apparatus A1 according to the present embodiment has a structure shown in FIG.
As shown in (1), the light source 2 movably installed by the electric stage 13, the lens 3 for converting the light from the light source 2 into parallel light, and the parallel light from the lens 3 are reflected toward the surface 1 of the inspection object. The reflected light from the half mirror 4 to be inspected and the surface 1 of the inspection object is condensed at one point (condensing point a).
Lenses 5, 7 for reaching the light receiving surface of the CCD camera 8,
A pinhole 6 installed at the position of the condensing point a for passing only predetermined reflected light, an A / D converter 9 for A / D converting an image from the CCD camera 8, and an A / D converter Frame memories 10a and 10b for storing images converted into digital signals by the device 9;
a, an image processing device 11 for processing images stored in the frame memories 10c using the frame memory 10c; and a personal computer 12 for controlling the electric stage 13, the A / D converter 9, and the image processing device 11. ing. Here, the electric stage 13 for moving the light source 2 and the pinhole 6 for passing only predetermined reflected light constitute reflected light selecting means, and include an A / D converter 9, frame memories 10a, 10b and 10c. , The image processing device 11 constitute a detecting means.

【0007】まず,上記表面検査装置A1による処理手
順の概略を説明する。上記光源2から発せられた白色光
は,レンズ3により平行光にされた後,ハーフミラー4
により反射され,検査対象物表面1に照射される。上記
検査対象物表面1で反射された光は上記ハーフミラー4
を透過した成分がレンズ5により集光点aに集光され,
ピンホール6で所定の反射光のみに絞られた後,レンズ
7を経てCCDカメラ8の受光面で受光され,撮像され
る。以上の処理が,上記電動ステージ13により上記光
源2を所定位置La,及びLbに位置づけた上でそれぞ
れ1回ずつ行われる。上記光源2をLa,Lbに位置づ
けた状態でのCCDカメラ8による撮像画像Ga,Gb
は,A/D変換機9によりA/D変換され,それぞれフ
レームメモリ10a,10bに格納される。画像処理装
置11では,上記フレームメモリ10a,10bに格納
された画像Ga,Gbに対して,画素毎に輝度の差の絶
対値を計算し,差の絶対値画像Gcとしてフレームメモ
リ10cに格納する。更に,上記画像処理装置11で
は,上記フレームメモリ10cに格納された上記差の絶
対値画像Gcを画素毎に適当なしきい値で2値化し,2
値化画像Gc′を得る。
First, an outline of a processing procedure by the surface inspection apparatus A1 will be described. The white light emitted from the light source 2 is collimated by a lens 3 and then converted into a half mirror 4.
And irradiates the surface 1 of the inspection object. The light reflected by the inspection object surface 1 is reflected by the half mirror 4
Is transmitted to the focal point a by the lens 5,
After being converged to only a predetermined reflected light by the pinhole 6, the light is received by the light receiving surface of the CCD camera 8 via the lens 7 and imaged. The above process is performed once each after the light source 2 is positioned at the predetermined positions La and Lb by the electric stage 13. Images Ga and Gb captured by the CCD camera 8 with the light source 2 positioned at La and Lb
Are A / D converted by the A / D converter 9 and stored in the frame memories 10a and 10b, respectively. The image processing device 11 calculates the absolute value of the luminance difference for each pixel for the images Ga and Gb stored in the frame memories 10a and 10b and stores the calculated absolute value image Gc in the frame memory 10c. . Further, in the image processing device 11, the absolute value image Gc of the difference stored in the frame memory 10c is binarized with an appropriate threshold value for each pixel, and
A value image Gc 'is obtained.

【0008】続いて,上記光源2の配置位置La,L
b,及び上記ピンホール6に関する設定条件,上記画像
処理装置11による処理等について,更に具体的に説明
する。まず,上記光源2の位置La,Lbの設定方法に
ついて説明する。表面に円形の典型的な凹凸部を有する
サンプルを表面検査装置A1にセットし,ハーフミラー
4からの反射光が上記サンプル表面に対して垂直に入射
するように上記光源2の位置を調節する。次に,光源2
を電動ステージ13により任意の方向に移動させ,サン
プル表面への平行光の入射角を変更する。その時,光源
2の移動方向によって,表面検査装置A1内の光路は例
えば図2(a),(b)に示すように変化する。即ち,
図2(a)に示す位置に光源2を移動すると,上記サン
プルの平滑面からの反射光は実線で示すような光路を進
んでCCDカメラ8に到達し,画像上に明部として現れ
る。しかしながら,凹凸部からの反射光については,凹
凸部の下部(領域C)からの反射光はピンホール6を通
過してCCDカメラ8に到達し,画像上に明部(領域B
3)として現れるが,凹凸部の上部(領域B)からの反
射光はピンホール6を通過できないため,画像上に暗部
(領域C3)として現れる。一方,図2(b)に示す位
置に光源2を移動すると,上記サンプルの平滑面からの
反射光は実線で示すような光路を進んでCCDカメラ8
に到達し,上記図2(a)と同様,画像上に明部として
現れる。しかしながら,凹凸部からの反射光については
上記図2(a)の場合と異なり,凹凸部の上部(領域
B)からの反射光はピンホール6を通過してCCDカメ
ラ8に到達し,画像上に明部(領域C3)として現れる
が,凹凸部の下部(領域C)からの反射光はピンホール
6を通過できないため,画像上に暗部(領域B3)とし
て現れる。このように,光源2の位置を変化させれば,
凹凸部の一部分のみを画像上に暗部として映し出し,更
にその暗部となる部分を同一凹凸部内で変化させること
ができる。もちろん,これにはピンホール6の大きさが
影響するため,ピンホール6を適当な大きさに設定して
おくことが前提となる。以上の点をふまえて,次の2つ
の条件を満たすような位置La,Lbを決定する。 2つの位置La,Lbに対するそれぞれの画像の平滑
面(健全部)での輝度がほぼ同じ。 2つの位置La,Lbに対するそれぞれの画像上に暗
部として現れる部分が同じ凹凸部内で異なる。 上記,の条件を満たす好適な位置La,Lbにそれ
ぞれ対応するCCDカメラ8の画像の一例を図3に示
す。図3(a),(b)は,光源2の位置を上記,
を満たすLa,Lbとしたときの検査対象物表面1での
光の反射状態,及びCCDカメラ8の画像である。この
例では,光源2をLa,Lbに位置づけると,それぞれ
凹凸部の下半分,上半分が画像上に暗部として現れるよ
うに設定されている。また,それぞれの画像上の明部の
輝度はほぼ同じになるように設定されている。このよう
に,2つの位置La,Lbに対するそれぞれの画像上
で,暗部として現れる部分が同一凹凸部において全く逆
になるように上記位置La,Lbを設定することが望ま
しい。
Subsequently, the arrangement positions La and L of the light source 2 are described.
b, setting conditions relating to the pinhole 6, processing by the image processing apparatus 11, and the like will be described more specifically. First, a method of setting the positions La and Lb of the light source 2 will be described. A sample having a typical circular concave and convex portion on the surface is set in the surface inspection apparatus A1, and the position of the light source 2 is adjusted so that the reflected light from the half mirror 4 is perpendicularly incident on the sample surface. Next, light source 2
Is moved by the electric stage 13 in an arbitrary direction to change the incident angle of the parallel light on the sample surface. At this time, the optical path in the surface inspection apparatus A1 changes as shown in FIGS. 2A and 2B, for example, depending on the moving direction of the light source 2. That is,
When the light source 2 is moved to the position shown in FIG. 2A, the reflected light from the smooth surface of the sample travels along the optical path shown by the solid line, reaches the CCD camera 8, and appears as a bright portion on the image. However, with respect to the reflected light from the uneven part, the reflected light from the lower part (area C) of the uneven part reaches the CCD camera 8 through the pinhole 6 and becomes bright on the image (area B).
3), but the reflected light from the upper part (area B) of the uneven part cannot pass through the pinhole 6, and thus appears as a dark part (area C3) on the image. On the other hand, when the light source 2 is moved to the position shown in FIG. 2B, the reflected light from the smooth surface of the sample travels along the optical path shown by the solid line and the CCD camera 8
, And appears as a bright portion on the image, as in FIG. However, unlike the case of FIG. 2A, the reflected light from the concave and convex portions is reflected from the upper portion (region B) of the concave and convex portions, reaches the CCD camera 8 through the pinhole 6, and is displayed on the image. The reflected light from the lower portion (region C) of the uneven portion cannot pass through the pinhole 6, and appears as a dark portion (region B3) on the image. Thus, if the position of the light source 2 is changed,
It is possible to project only a portion of the uneven portion as a dark portion on the image, and further change the dark portion within the same uneven portion. Of course, the size of the pinhole 6 affects this, so it is premised that the pinhole 6 is set to an appropriate size. Based on the above points, the positions La and Lb satisfying the following two conditions are determined. The luminance on the smooth surface (healthy part) of each image for the two positions La and Lb is almost the same. The portions appearing as dark portions on the respective images for the two positions La and Lb are different within the same uneven portion. FIG. 3 shows an example of an image of the CCD camera 8 corresponding to each of the suitable positions La and Lb satisfying the above conditions. 3A and 3B show the positions of the light source 2 as described above.
FIG. 6 shows the state of light reflection on the surface 1 of the inspection object when La and Lb satisfy the condition, and an image of the CCD camera 8. In this example, when the light source 2 is positioned at La and Lb, the lower half and the upper half of the uneven portion are set so as to appear as dark portions on the image. Further, the brightness of the bright part on each image is set to be substantially the same. As described above, it is desirable to set the positions La and Lb such that a portion appearing as a dark portion is completely reversed in the same uneven portion on each image for the two positions La and Lb.

【0009】続いて,図4及び図5を用いて,上記画像
処理装置11による処理とその結果について具体的に説
明する。図4は,表面に凹部(欠陥)と低反射部とを有
する検査対象物の一例である。図4に示す検査対象物を
表面検査装置A1にセットし,図3に示すような好適な
位置La,Lbに光源2を位置づけて得られたCCDカ
メラ8の画像は,図5(a),(b)に示すようにな
る。このように,図5(a),(b)では,それぞれ凹
部の下半分,上半分が画像上に暗部として現れ,更に,
低反射部については両方の画像上に暗部として現れる。
これら2つの画像はA/D変換機9によりデジタル化さ
れ,それぞれフレームメモリ10a,10bに格納され
ている。画像処理装置11は,上記フレームメモリ10
a,10bに格納された上記2つの画像を用いて,画素
毎に輝度の差の絶対値を計算し,得られた差の絶対値画
像をフレームメモリ10cに格納する。図5(a),
(b)に示す画像を用いて得られた差の絶対値画像を図
5(c)に示す。図5(a),(b)の画像は明部の輝
度がほぼ同じであり,低反射部により現れた暗部につい
ても両画像で輝度がほぼ同じになるため,図5(c)に
示すように,差の絶対値画像は凹部以外の部分について
は全て暗部(差の絶対値がほぼ0)となる。画像処理装
置11は,フレームメモリ10cに格納された差の絶対
値画像を適当な閾値により2値化し,2値化画像を得
る。図5(c)に示す差の絶対値画像を2値化して得ら
れた2値化画像を図5(d)に示す。このように,差の
絶対値画像を2値化することにより凹部のみが明部とし
てはっきりと画像上に現れる。以上説明したように,本
実施の形態に係る表面検査装置A1は,光源2を異なる
2か所の位置La,Lbに位置づけてそれぞれ検査対象
物表面からの反射光画像を撮像し,それら2つの画像を
用いて画素毎に輝度の差の絶対値を計算し,得られた差
の絶対値画像を所定の閾値で2値化した画像上に明部と
して現れた部分を凹凸部(欠陥)として検出するため,
検査対象物表面のシミなどの低反射部に影響されること
なく,検査対象物表面の凹凸状態のみを正確に検出する
ことが可能である。
Next, the processing by the image processing apparatus 11 and the result thereof will be specifically described with reference to FIGS. FIG. 4 shows an example of an inspection object having a concave portion (defect) and a low reflection portion on the surface. The image of the CCD camera 8 obtained by setting the inspection object shown in FIG. 4 on the surface inspection apparatus A1 and positioning the light source 2 at the suitable positions La and Lb as shown in FIG. 3 is shown in FIG. The result is as shown in FIG. As described above, in FIGS. 5A and 5B, the lower half and the upper half of the concave portion respectively appear as dark portions on the image.
The low-reflection areas appear as dark areas on both images.
These two images are digitized by the A / D converter 9 and stored in the frame memories 10a and 10b, respectively. The image processing device 11 includes the frame memory 10
The absolute value of the luminance difference is calculated for each pixel using the above two images stored in a and 10b, and the obtained absolute value image of the difference is stored in the frame memory 10c. FIG. 5 (a),
FIG. 5C shows an absolute value image of the difference obtained by using the image shown in FIG. In the images of FIGS. 5A and 5B, the brightness of the bright portion is almost the same, and the brightness of the dark portion which appears due to the low reflection portion is almost the same in both images. Therefore, as shown in FIG. Meanwhile, the absolute value image of the difference is a dark portion (the absolute value of the difference is almost 0) for all portions other than the concave portion. The image processing device 11 binarizes the absolute value image of the difference stored in the frame memory 10c with an appropriate threshold value to obtain a binarized image. FIG. 5D shows a binarized image obtained by binarizing the absolute value image of the difference shown in FIG. 5C. As described above, by binarizing the absolute value image of the difference, only the concave portion clearly appears as a bright portion on the image. As described above, the surface inspection apparatus A1 according to the present embodiment positions the light source 2 at two different positions La and Lb, captures reflected light images from the surface of the inspection object, and captures the two images. The absolute value of the difference in luminance is calculated for each pixel using the image, and the portion that appears as a bright portion on the image obtained by binarizing the obtained absolute value image of the difference with a predetermined threshold value is regarded as an uneven portion (defect). To detect
It is possible to accurately detect only the irregularities on the surface of the inspection object without being affected by low reflection parts such as spots on the surface of the inspection object.

【0010】[0010]

【実施例】上記実施の形態では,電動ステージ13によ
り光源2の位置を変更することで検査対象物表面1への
平行光の入射角度を変更しているが,図6に示す表面検
査装置A2のように,レンズ3とハーフミラー4との間
に角度変更可能なミラー14を配置し,該ミラー14の
角度の変更により検査対象物表面1への平行光の入射角
度を変更するように構成することもできる。このような
構成でも,上記光源2の位置をLa,Lbに移動させる
場合と同様の効果を得ることができる。尚,レンズ5の
視野を外れる反射光はCCDカメラ8への入射が阻止さ
れるため,以上の例においては,検査対象物表面の凹凸
部の角度によっては上記ピンホール6を省略することも
可能である。また,以上の例のように検査対象物表面1
への平行光の入射角度を変更する代わりに,ピンホール
6の位置を変更することにより同様の効果を得ることが
できる(図7の表面検査装置A3参照)。図7(a),
(b)に示すように,ピンホールの位置を6′若しくは
6″に切り換えて凹凸部からの異なる方向への反射光を
選択的に通過させることにより,上記検査対象物表面1
への平行光の入射角度を変更する場合と同様の効果を得
ることができる。また,図8に示す表面検査装置A4の
ように,レンズ5と集光点aとの間にハーフミラー15
を配置してレンズ5からの光を透過光と反射光とに分光
し,それら透過光,反射光に対して,それぞれピンホー
ル6,レンズ7,及びCCDカメラ8を設置し,更にそ
れぞれのピンホール6a,6bを,それぞれ異なる方向
への反射光を通過させるような適当な位置に設置するこ
とにより,図7(a),(b)に示した2つの状態にお
けるCCD画像を同時に得ることが可能となり,検査時
間が短縮できる。尚,上記の例では,検査対象物表面の
凹凸部からの方向の異なる2種類の反射光による画像を
用いて処理を行っているが,3種類以上の画像を用いて
同様の処理を行っても良いことは言うまでもない。ま
た,上記ピンホール6はナイフエッジに置き換えること
もできる。また,上記の例では欠陥部の形状として全て
凹部を用いたが,欠陥部が凸部であっても全く変わると
ころはない。
In the above embodiment, the angle of incidence of parallel light on the inspection object surface 1 is changed by changing the position of the light source 2 by the motorized stage 13, but the surface inspection apparatus A2 shown in FIG. A mirror 14 whose angle can be changed is disposed between the lens 3 and the half mirror 4 as described above, and the angle of the mirror 14 is changed to change the incident angle of the parallel light to the inspection object surface 1. You can also. Even with such a configuration, the same effect as when the position of the light source 2 is moved to La and Lb can be obtained. In addition, since the reflected light out of the field of view of the lens 5 is prevented from entering the CCD camera 8, the pinhole 6 can be omitted in the above example depending on the angle of the uneven portion on the surface of the inspection object. It is. In addition, as shown in the above example, the inspection object surface 1
The same effect can be obtained by changing the position of the pinhole 6 instead of changing the incident angle of the parallel light to the surface (see the surface inspection device A3 in FIG. 7). FIG. 7 (a),
As shown in (b), the position of the pinhole is switched to 6 'or 6 "to selectively allow the reflected light from the uneven portion in different directions to pass, so that the inspection object surface 1
The same effect as in the case where the incident angle of the parallel light to the light source is changed can be obtained. Further, as in the surface inspection apparatus A4 shown in FIG.
Are arranged to separate the light from the lens 5 into transmitted light and reflected light, and a pinhole 6, a lens 7, and a CCD camera 8 are provided for the transmitted light and the reflected light, respectively. By arranging the holes 6a and 6b at appropriate positions to allow the reflected lights in different directions to pass, CCD images in the two states shown in FIGS. 7A and 7B can be obtained simultaneously. Inspection time can be shortened. In the above example, the processing is performed using images of two types of reflected light in different directions from the irregularities on the surface of the inspection object, but the same processing is performed using three or more types of images. Needless to say, it is good. Further, the pinhole 6 can be replaced with a knife edge. Further, in the above example, all the concave portions are used as the shape of the defective portion, but there is no change even if the defective portion is a convex portion.

【0011】[0011]

【発明の効果】以上説明したように,本発明に係る表面
検査装置は,検査対象物の表面に平行光を投光する投光
光学系と,上記投光光学系から投光され上記検査対象物
の表面で反射された反射光の光軸方向に配置され,上記
反射光を受光する受光面とを具備し,上記受光面で受光
した反射光の輝度分布に基づいて上記検査対象物の表面
の凹凸状態を検査する表面検査装置において,上記検査
対象物の表面からの反射方向の異なる複数の反射光をそ
れぞれ個別に上記受光面に入射させる反射光選択手段
と,上記反射光選択手段によって上記受光面で個別に受
光された上記複数の反射光の輝度分布の差に基づいて,
上記表面の凹凸状態を検出する検出手段とを具備してな
ることを特徴とする表面検査装置として構成されている
ため,検査対象物表面のシミなどの低反射部に影響され
ることなく,検査対象物表面の凹凸状態のみを正確に検
出することが可能となる。また,上記反射光選択手段か
らの反射方向の異なる複数の反射光を,複数の受光面で
同時に受光するように構成すれば,検査時間が短縮でき
る。
As described above, the surface inspection apparatus according to the present invention comprises: a light projecting optical system for projecting parallel light onto the surface of an object to be inspected; A light-receiving surface for receiving the reflected light, the light-receiving surface being arranged in an optical axis direction of the reflected light reflected on the surface of the object; and a surface of the inspection object based on a luminance distribution of the reflected light received on the light-receiving surface. In the surface inspection apparatus for inspecting the uneven state of the object, a plurality of reflected lights having different reflection directions from the surface of the inspection object are individually incident on the light receiving surface; Based on the difference in the luminance distribution of the plurality of reflected lights individually received on the light receiving surface,
It is configured as a surface inspection apparatus characterized by comprising a detecting means for detecting the above-mentioned surface irregularity state, so that the inspection can be performed without being affected by low reflection parts such as spots on the surface of the inspection object. It is possible to accurately detect only the unevenness state of the object surface. In addition, the inspection time can be shortened if a plurality of reflected lights having different reflection directions from the reflected light selecting means are simultaneously received by a plurality of light receiving surfaces.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る表面検査装置A1
の概略構成を示す模式図。
FIG. 1 shows a surface inspection apparatus A1 according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of FIG.

【図2】 上記表面検査装置A1における光源移動時の
光路の変化を示す模式図。
FIG. 2 is a schematic diagram showing a change in an optical path when the light source moves in the surface inspection apparatus A1.

【図3】 上記表面検査装置A1において,好適な光源
位置La,Lbを設定した場合のそれぞれの反射項の反
射状態とCCDカメラ像の一例を示す模式図。
FIG. 3 is a schematic diagram showing an example of a reflection state of each reflection item and a CCD camera image when suitable light source positions La and Lb are set in the surface inspection apparatus A1.

【図4】 検査対象物(ワーク)の表面状態の一例を示
す模式図。
FIG. 4 is a schematic diagram showing an example of a surface state of an inspection object (work).

【図5】 図4に示す検査対象物(ワーク)を用いた場
合の,(a)光源位置Laに対応する画像,(b)光源
位置Lbに対応する画像,(c)上記a,bのさの絶対
値画像,(d)上記cの所定の閾値による2値化画像,
を示す図。
5 (a) is an image corresponding to a light source position La, (b) is an image corresponding to a light source position Lb, and (c) is a graph in the case of using the inspection object (work) shown in FIG. (D) a binarized image based on the predetermined threshold value of c,
FIG.

【図6】 本発明の実施例に係る表面検査装置A2の概
略構成を示す模式図。
FIG. 6 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A2 according to an embodiment of the present invention.

【図7】 本発明の実施例に係る表面検査装置A3の概
略構成,及びピンホール移動時の光路の変化を示す模式
図。
FIG. 7 is a schematic diagram illustrating a schematic configuration of a surface inspection apparatus A3 according to an embodiment of the present invention and a change in an optical path when a pinhole moves.

【図8】 本発明の実施例に係る表面検査装置A4の概
略構成を示す模式図。
FIG. 8 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A4 according to the embodiment of the present invention.

【図9】 従来の表面検査装置A0の概略構成を示す模
式図。
FIG. 9 is a schematic diagram showing a schematic configuration of a conventional surface inspection apparatus A0.

【図10】 検査対象物表面1からの光の反射特性を示
す説明図。
FIG. 10 is an explanatory diagram showing a reflection characteristic of light from the inspection object surface 1;

【図11】 上記表面検査装置A0の動作原理を示す説
明図。
FIG. 11 is an explanatory diagram showing the operation principle of the surface inspection apparatus A0.

【符号の説明】[Explanation of symbols]

1…検査対象物表面 2…光源 3,5,7…レンズ 4,15…ハーフミラー 6…ピンホール 8…CCDカメラ 9…A/D変換機 10a,10b,10c…フレームメモリ 11…画像処理装置 12…パーソナルコンピュータ 13…電動ステージ 14…ミラー DESCRIPTION OF SYMBOLS 1 ... Inspection object surface 2 ... Light source 3, 5, 7 ... Lens 4, 15 ... Half mirror 6 ... Pinhole 8 ... CCD camera 9 ... A / D converter 10a, 10b, 10c ... Frame memory 11 ... Image processing apparatus 12 personal computer 13 electric stage 14 mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高岡 克也 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 高橋 英二 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuya Takaoka 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Co., Ltd. (72) Eiji Takahashi Takatsuka, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物の表面に平行光を投光する投
光光学系と,上記投光光学系から投光され上記検査対象
物の表面で反射された反射光の光軸方向に配置され,上
記反射光を受光する受光面とを具備し,上記受光面で受
光した反射光の輝度分布に基づいて上記検査対象物の表
面の凹凸状態を検査する表面検査装置において,上記検
査対象物の表面からの反射方向の異なる複数の反射光を
それぞれ個別に上記受光面に入射させる反射光選択手段
と,上記反射光選択手段によって上記受光面で個別に受
光された上記複数の反射光の輝度分布の差に基づいて,
上記表面の凹凸状態を検出する検出手段とを具備してな
ることを特徴とする表面検査装置。
A light projecting optical system for projecting parallel light onto a surface of the inspection object; and a light projecting from the light projecting optical system and arranged in an optical axis direction of reflected light reflected by the surface of the inspection object. And a light receiving surface for receiving the reflected light, wherein the surface inspection device inspects the unevenness of the surface of the inspection object based on a luminance distribution of the reflected light received on the light receiving surface. Reflected light selecting means for individually causing a plurality of reflected lights having different directions of reflection from the surface to be incident on the light receiving surface; and luminance of the plurality of reflected lights individually received on the light receiving surface by the reflected light selecting means. Based on the difference in distribution,
A surface inspection apparatus, comprising: a detection unit configured to detect the surface unevenness state.
【請求項2】 上記反射光選択手段が,上記投光光学系
から上記検査対象物の表面への入射角を複数段階に変更
する入射角変更手段を具備する請求項1記載の表面検査
装置。
2. The surface inspection apparatus according to claim 1, wherein the reflected light selection means includes an incident angle changing means for changing an incident angle from the light projecting optical system to the surface of the inspection object in a plurality of steps.
【請求項3】 上記入射角変更手段が,上記投光光学系
を構成する光源の位置を移動させることにより上記検査
対象物の表面への入射角を変更する請求項2記載の表面
検査装置。
3. The surface inspection apparatus according to claim 2, wherein the incident angle changing means changes an incident angle on a surface of the inspection object by moving a position of a light source constituting the light projecting optical system.
【請求項4】 上記入射角変更手段が,上記投光光学系
を構成するミラーの位置を移動させることにより上記検
査対象物の表面への入射角を変更する請求項2記載の表
面検査装置。
4. The surface inspection apparatus according to claim 2, wherein the incident angle changing means changes an incident angle on a surface of the inspection object by moving a position of a mirror constituting the light projecting optical system.
【請求項5】 上記検査対象物の表面からの反射光のう
ち,所定の反射光のみを選択して上記受光面に入射させ
る遮蔽手段を具備し,上記反射光選択手段が,上記遮蔽
手段による反射光の選択範囲を変化させる請求項1記載
の表面検査装置。
5. A shielding means for selecting only a predetermined reflected light from the reflected light from the surface of the inspection object and making the reflected light incident on the light receiving surface, wherein the reflected light selecting means is provided by the shielding means. 2. The surface inspection apparatus according to claim 1, wherein a selection range of the reflected light is changed.
【請求項6】 上記遮蔽手段が,ピンホールにより構成
される請求項5記載の表面検査装置。
6. The surface inspection apparatus according to claim 5, wherein said shielding means is constituted by a pinhole.
【請求項7】 上記遮蔽手段が,ナイフエッジにより構
成される請求項5記載の表面検査装置。
7. The surface inspection apparatus according to claim 5, wherein said shielding means is constituted by a knife edge.
【請求項8】 上記反射光選択手段からの反射方向の異
なる複数の反射光を,複数の受光面で同時に受光する請
求項1〜7のいずれかに記載の表面検査装置。
8. The surface inspection apparatus according to claim 1, wherein a plurality of reflected lights having different reflection directions from the reflected light selecting means are simultaneously received by a plurality of light receiving surfaces.
JP393498A 1998-01-12 1998-01-12 Surface inspecting device Pending JPH11201905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP393498A JPH11201905A (en) 1998-01-12 1998-01-12 Surface inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP393498A JPH11201905A (en) 1998-01-12 1998-01-12 Surface inspecting device

Publications (1)

Publication Number Publication Date
JPH11201905A true JPH11201905A (en) 1999-07-30

Family

ID=11570976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP393498A Pending JPH11201905A (en) 1998-01-12 1998-01-12 Surface inspecting device

Country Status (1)

Country Link
JP (1) JPH11201905A (en)

Similar Documents

Publication Publication Date Title
US7382457B2 (en) Illumination system for material inspection
US6175645B1 (en) Optical inspection method and apparatus
KR100190312B1 (en) Foreign substance inspection apparatus
US5125741A (en) Method and apparatus for inspecting surface conditions
US6366352B1 (en) Optical inspection method and apparatus utilizing a variable angle design
US6075591A (en) Optical method and apparatus for detecting low frequency defects
JPS6182147A (en) Method and device for inspecting surface
JP2000018932A (en) Method and device for inspecting defects of specimen
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
JPH06294749A (en) Flaw inspection method for plat glass
US7692781B2 (en) Glazing inspection
JP2008157788A (en) Surface inspection method and device
JP4761245B2 (en) Defect inspection system
JPH11316195A (en) Surface defect detecting device of transparent plate
FI80959C (en) FOERFARANDE OCH ANORDNING FOER INSPEKTION AV SPEGELREFLEXIONSYTOR.
JPH11201905A (en) Surface inspecting device
JP2821460B2 (en) Inspection device for transparent substrate
JPH08178855A (en) Method for inspecting light-transmissive object or specular object
JPH0311403B2 (en)
JPH07306150A (en) Surface inspecting device using reversely reflecting screen
JP3428772B2 (en) Surface inspection equipment
JPH0412255A (en) Mirror inspecting device
JP3984367B2 (en) Surface defect inspection method and inspection apparatus
JP2009080033A (en) Surface inspection method and device
JP2001050720A (en) Surface inspection method and device thereof