JPH07306150A - Surface inspecting device using reversely reflecting screen - Google Patents

Surface inspecting device using reversely reflecting screen

Info

Publication number
JPH07306150A
JPH07306150A JP9616394A JP9616394A JPH07306150A JP H07306150 A JPH07306150 A JP H07306150A JP 9616394 A JP9616394 A JP 9616394A JP 9616394 A JP9616394 A JP 9616394A JP H07306150 A JPH07306150 A JP H07306150A
Authority
JP
Japan
Prior art keywords
light
camera
light source
reflected
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9616394A
Other languages
Japanese (ja)
Inventor
Yoshiichi Mori
芳一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9616394A priority Critical patent/JPH07306150A/en
Publication of JPH07306150A publication Critical patent/JPH07306150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To provide a surface inspecting device using a reversely reflecting screen which is constituted in such a way that a light source and camera are arranged substantially closely to each other so that the occurrence of an un- inspectable area can be suppressed. CONSTITUTION:The light from a light source 4 provided out of the visual field of a camera 3 constituting a surface inspecting device using a reversely reflecting screen 2 is reflected toward an object 5 to be inspected by means of a half mirror 6 by positioning the mirror 6 in the visual field of the camera 3 and the re-reflected light of the reflected light from the object 5 after the reflected light is reflected by the screen 2 is caught by means of the camera 3 through the mirror 6. Therefore, the occurrence of an un-inspectable area, namely, dead zone which is generated by the conventional constitution where the light source 4 and camera 3 are separated front each other can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,自動車外板,プラスチ
ック面などの表面検査装置に係り,詳しくは,逆反射ス
クリーンを用いて検査対象物表面の欠陥部分を明暗画像
として強調することで,欠陥部分を検出しやすくする逆
反射スクリーンによる表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting a surface of an automobile, a plastic surface or the like, and more specifically, a retroreflective screen is used to emphasize a defective portion on the surface of an inspection object as a light and dark image. The present invention relates to a surface inspection device using a retroreflective screen that makes it easy to detect a defective portion.

【0002】[0002]

【従来の技術】上記逆反射スクリーンを用いた表面検査
装置の基本的な構成は,図10に示すように逆反射スク
リーン30,カメラ31,光源32の基本要素により構
成される。同図に示すように,検査対象物33を逆反射
スクリーン30と光源32の間に配置し,光源32の光
が検査対象物33の表面に当たり,反射して逆反射スク
リーン30に向かうような光路を形成する。上記配置に
より,光源32からの光は検査対象物33で反射し,逆
反射スクリーン30に入って入射光軸とほぼ同じ方向に
反射するので,再び検査対象物33の表面で反射して光
源32のやや上方に配置されたカメラ31に捕らえられ
る。この構成によって検査対象物33の表面の凹凸変化
が光学的に強調された画像をカメラ31で捕らえること
ができ,平滑であるべき表面の欠陥場所を容易に発見す
ることができる。上記逆反射スクリーンによる表面欠陥
の検出原理を,図11及び図12を用いて説明する。図
11は検査対象物33の表面に欠陥のない場合を示し,
図12は欠陥がある場合を示している。逆反射スクリー
ン30は,その表面にビーズ状の反射球34が密設され
ており,各反射球34は入射光に対し図示するような指
向性の反射パターンを有している。
2. Description of the Related Art The basic structure of a surface inspection apparatus using a retroreflective screen is composed of the basic elements of a retroreflective screen 30, a camera 31, and a light source 32, as shown in FIG. As shown in the figure, the inspection object 33 is arranged between the retro-reflective screen 30 and the light source 32, and the light from the light source 32 strikes the surface of the inspection object 33 and is reflected and directed toward the retro-reflective screen 30. To form. With the above arrangement, the light from the light source 32 is reflected by the inspection object 33, enters the retro-reflective screen 30, and is reflected in almost the same direction as the incident optical axis. It is caught by the camera 31 arranged slightly above. With this configuration, the camera 31 can capture an image in which the unevenness of the surface of the inspection object 33 is optically emphasized, and the defect location on the surface that should be smooth can be easily found. The principle of detecting the surface defect by the retroreflective screen will be described with reference to FIGS. 11 and 12. FIG. 11 shows a case where there is no defect on the surface of the inspection object 33,
FIG. 12 shows the case where there is a defect. The retro-reflective screen 30 has bead-shaped reflecting spheres 34 densely arranged on the surface thereof, and each reflecting sphere 34 has a directional reflection pattern for incident light as shown in the drawing.

【0003】図11,図12に示すように光源方向から
きた光は,検査対象物33の表面で逆反射スクリーン3
0の方向に反射する。一方,光源近傍の光源よりやや上
方に配置されたカメラ31は,図中のカメラビューイン
グ方向から検査対象物33表面に向いており,逆反射ス
クリーン30からの反射光が検査対象物33で再反射す
る光を捕らえている。検査対象物33表面のA,B,C
の各点をカメラから見るとき,図11に示すように欠陥
のない平面では逆反射スクリーン30の各反射球34の
角度αで反射される同じ強さの光を見ていることにな
り,カメラは濃淡変化のない中間的な明るさをもった面
として捕らえる。一方,図12に示すように検査対象物
33の表面に欠陥がある場合,欠陥のないA点では前記
と同様に,逆反射スクリーン30の反射球34の角度α
の反射光を捕らえるが,B点(カメラ側から見て下り
坂)では反射角γの強い光を捕らえ,C点(カメラ側か
ら見て上り坂)では角度βの弱い反射光を捕らえること
になる。従って,B点のような下り坂は明るく,C点の
ような上り坂は暗く見えることになる。逆反射スクリー
ン30の反射球34の反射パターンの指向性の幅は約±
1度と鋭いため,欠陥の微妙な傾きでも明暗の変化量が
激しく,欠陥の凹凸が強調されて観測されることにな
る。
As shown in FIGS. 11 and 12, the light coming from the light source direction is reflected by the retro-reflection screen 3 on the surface of the inspection object 33.
It reflects in the direction of 0. On the other hand, the camera 31, which is arranged in the vicinity of the light source and slightly above the light source, faces the surface of the inspection object 33 from the camera viewing direction in the figure, and the reflected light from the retro-reflective screen 30 is reflected by the inspection object 33 again. It captures the reflected light. A, B, C on the surface of the inspection object 33
When each point of is viewed from the camera, as shown in FIG. 11, in a plane having no defect, the light of the same intensity reflected by the angle α of each reflecting sphere 34 of the retroreflective screen 30 is seen. Can be seen as a surface with an intermediate brightness with no change in shade. On the other hand, when there is a defect on the surface of the inspection object 33 as shown in FIG. 12, at the point A where there is no defect, the angle α of the reflecting sphere 34 of the retroreflective screen 30 is similar to the above.
The reflected light is captured at point B (downhill when viewed from the camera side), but the light with a strong reflection angle γ is captured at point C (uphill when viewed from the camera side), and the weak reflected light at angle β is captured. Become. Therefore, the downhill like point B looks bright and the uphill like point C looks dark. The directivity width of the reflection pattern of the reflection sphere 34 of the retro-reflection screen 30 is about ±
Since it is as sharp as once, even if the defect has a slight inclination, the amount of change in brightness is large, and the unevenness of the defect is emphasized and observed.

【0004】上記構成において,光源32からの光が直
接,欠陥部分に当たる光路を考えると,欠陥部分が凹部
である場合には,その凹部からの反射光が逆反射スクリ
ーン30から反射されて検査対象物33に戻り,再反射
した光をカメラ31が捕らえるとき,凹部が凹面鏡的な
役割りをする結果,図13(a)に示すように欠陥によ
る明暗像の先に,欠陥凹部による明るい疑似像が生じ
る。又,欠陥部分が凸部であるときは,凸部が凸面鏡的
な役割りをするため,図13(b)に示すように同じ位
置に暗い疑似像が生じる。これらの疑似像は,欠陥のな
い場所にあたかもそこに欠陥があるがごときに現れるの
で,欠陥検査において疑似像が生じた位置にも欠陥があ
るように誤認することになる。又,図11及び図12に
おいて,仮にS点を検査対象物33の端辺とすると,カ
メラ31から見てS点からA点までの間は,S点より左
(図示上の)は検査対象物33以外からの反射光も入っ
てくることになり,従ってS点からA点までの間は,検
査できない領域,即ち不感帯となる。例えば,図14に
示すような自動車ドアパネル36の表面検査をすると
き,図中手前(下)をカメラ31及び光源32の側と
し,奥(上)を逆反射スクリーン30の側とすると,図
示するように手前の端辺37と開口部38,39から奥
方向の検査対象物33の表面以外の反射が混入する部分
は検査できないことになる。そこで,上記疑似像による
影響を少なくすると共に,不感帯が生じる領域を少なく
するために,図15に示すようにカメラ31の上下に光
源32a,32bを配した構成,あるいは,図16に示
すように光源32の上下にカメラ31a,31bを配し
た構成を,本願発明者は先に提案した。このような構成
によって,同一の検査対象物33に対して光源32又は
カメラ31の位置が異なる2つの検査画像を得ることが
でき,画像処理によって欠陥像と疑似像との識別が可能
となり,又,不感帯の発生位置が互いに反対位置になる
ことから,不感帯をなくすことができる。
Considering the optical path in which the light from the light source 32 directly impinges on the defective portion in the above structure, when the defective portion is a concave portion, the reflected light from the concave portion is reflected from the retroreflective screen 30 to be inspected. When the camera 31 catches the re-reflected light after returning to the object 33, the concave portion functions as a concave mirror. As a result, as shown in FIG. 13A, a bright pseudo image due to the defective concave portion precedes the bright and dark image due to the defective portion. Occurs. Further, when the defective portion is a convex portion, the convex portion functions as a convex mirror, so that a dark pseudo image is generated at the same position as shown in FIG. 13B. Since these pseudo images appear as if there were defects in a place where there is no defect, it is erroneously recognized that there is a defect in the position where the pseudo image is generated in the defect inspection. Further, in FIGS. 11 and 12, if the S point is assumed to be the end side of the inspection object 33, the area from the S point to the A point when viewed from the camera 31 is the inspection object on the left of the S point (on the drawing). Reflected light from other than the object 33 also comes in, and therefore, an area that cannot be inspected, that is, a dead zone, exists between the points S and A. For example, when inspecting the surface of an automobile door panel 36 as shown in FIG. 14, the front side (bottom) in the figure is the side of the camera 31 and the light source 32, and the back side (top) is the side of the retroreflective screen 30. As described above, it is impossible to inspect a portion other than the surface of the inspection object 33 in the depth direction from the front edge 37 and the openings 38 and 39, in which reflection is mixed. Therefore, in order to reduce the influence of the pseudo image and to reduce the area where the dead zone is generated, the light sources 32a and 32b are arranged above and below the camera 31 as shown in FIG. 15, or as shown in FIG. The present inventor has previously proposed a configuration in which cameras 31a and 31b are arranged above and below the light source 32. With such a configuration, it is possible to obtain two inspection images with different positions of the light source 32 or the camera 31 with respect to the same inspection object 33, and it is possible to distinguish between a defect image and a pseudo image by image processing. The dead zones can be eliminated because the dead zone positions are opposite to each other.

【0005】[0005]

【発明が解決しようとする課題】しかしながら,2つの
検査画像のマッチング,あるいは画像特性の差など,2
つの画像を一致させるための補正処理が難しく,カメラ
や画像処理等のためのハードコストが高くなる問題点が
あった。又,光源の投光軸とカメラの撮像軸との間隔差
が大きいため,検査対象物の逆スクリーン側に穴が形成
されているような場合に,その付近に生じる不感帯に対
応させることができない問題点があった。そこで,本発
明の目的とするところは,光源からの投光軸とカメラの
撮像軸との差を小さくした構成により,上記不感帯の発
生を抑えた逆反射スクリーンによる表面検査装置を提供
することにある。
However, if two inspection images are matched or the image characteristics are different,
The correction process for matching two images is difficult, and the hardware cost for the camera and image processing is high. Further, since the gap between the projection axis of the light source and the imaging axis of the camera is large, when a hole is formed on the reverse screen side of the inspection object, it is not possible to deal with the dead zone that occurs in the vicinity of the hole. There was a problem. Therefore, an object of the present invention is to provide a surface inspection apparatus using a retroreflective screen that suppresses the occurrence of the dead zone by a configuration in which the difference between the projection axis from the light source and the imaging axis of the camera is reduced. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,逆反射スクリーンと,光源
と,検査対象物とを,上記光源からの光が上記検査対象
物で反射して上記逆反射スクリーンに向かうような相対
的位置に配置し,検査対象物の表面を上記光源で照射し
たときの反射光を逆反射スクリーンで検査対象物に戻
し,該検査対象物の表面で再反射した光をカメラで捕ら
えることにより,検査対象物表面の欠陥部分の凹凸変化
を明暗変化に強調された画像として検出する逆反射スク
リーンによる表面検査装置において,上記検査対象物か
ら上記カメラへ向かう再反射光を透過させ,上記光源か
らの光を検査対象物へ反射させる半透過鏡を,少なくと
もその一部が上記カメラの視野にかかる位置に設置した
ことを特徴とする逆反射スクリーンによる表面検査装置
として構成されている。上記構成において,上記半透過
鏡により形成された光源の虚像が上記カメラの撮像軸か
らずれた位置に形成されるように,上記半透過鏡をカメ
ラの撮像軸からずれた位置に設けて構成される。又,上
記構成において,上記半透過鏡のカメラ撮像軸からのず
れ量が調整可能として構成することができる。更に,上
記半透過鏡のカメラ光学軸からのずれ量を欠陥の形状に
応じて調整することができ,凹形状欠陥を検出する場合
には,上記ずれ量を±15mm以内とし,凸形状欠陥を検
出する場合には,上記ずれ量を±3mm以内とすることが
できる。更に,上記半透過鏡から漏れる光を吸収する光
吸収手段を具備して構成することができる。
In order to achieve the above object, the means adopted by the present invention is a retroreflective screen, a light source, and an inspection object, and the light from the light source is reflected by the inspection object. Then, it is placed at a relative position so as to face the retro-reflective screen, and the reflected light when the surface of the inspection object is illuminated by the light source is returned to the inspection object by the retro-reflective screen. In a surface inspection device using a retroreflective screen that detects re-reflected light with a camera as an image in which the unevenness of a defective portion on the surface of the inspection object is emphasized by the change in brightness, goes from the inspection object to the camera. A semi-transmissive mirror that transmits re-reflected light and reflects light from the light source to an inspection object is installed at a position where at least a part of the semi-transmissive mirror covers the field of view of the camera. It is configured as a surface inspection apparatus according morphism screen. In the above configuration, the semi-transmissive mirror is provided at a position displaced from the imaging axis of the camera so that the virtual image of the light source formed by the semi-transmissive mirror is formed at a position displaced from the imaging axis of the camera. It Further, in the above configuration, the amount of deviation of the semi-transmissive mirror from the camera imaging axis can be adjusted. Further, the amount of deviation of the semi-transmissive mirror from the camera optical axis can be adjusted according to the shape of the defect, and when detecting a concave shape defect, the amount of deviation is within ± 15 mm and the convex shape defect is When detecting, the amount of deviation can be within ± 3 mm. Further, it can be configured by including a light absorbing means for absorbing light leaking from the semi-transmissive mirror.

【0007】[0007]

【作用】本発明によれば,逆反射スクリーンによる表面
検査装置を構成するカメラの視野内に半透過鏡を配置し
て,カメラ視野外に配置した光源からの光を上記半透過
鏡で検査対象物方向に反射させて投光し,検査対象物で
反射した光が逆反射スクリーンで反射して再び検査対象
物で反射された再反射光を半透過鏡を透過させてカメラ
で捕らえることができる。従って,カメラと光源とを至
近位置に配置したと同等の状態が得られるので,カメラ
と光源との位置が離れていることにより発生する検査不
能の領域,即ち不感帯の発生を小さくすることができ
る。請求項1がこれに該当する。又,カメラの撮像軸に
対して,光源からの光を半透過鏡で反射させた投光軸を
僅かにずらせた位置に設定する,即ち,光源の虚像がカ
メラの撮像軸中心からずれた位置に設定することによ
り,撮像軸と投光軸とが完全同軸とならず,撮像軸と投
光軸との関係角度が一定になる状態に設定することがで
き,カメラ視野の手前側から奥側まで欠陥検出の能力に
変化を与えない。請求項2がこれに該当する。更に,こ
の撮像軸と投光軸とのずれ量を調整可能にすることによ
り,凹形状の欠陥と凸形状の欠陥とで異なる最適ずれ量
を調整して,それぞれの検出能力を最適条件に設定する
ことができる。請求項3〜6がこれに該当する。更に,
光吸収手段を設けて,光源からの光の一部が上記半透過
鏡を透過して,再び半透過鏡に戻ってくることによる撮
像画像のSN比を低下を防ぐことができる。請求項7が
これに該当する。
According to the present invention, a semi-transmissive mirror is arranged in the field of view of a camera which constitutes a surface inspection device using a retro-reflective screen, and light from a light source arranged outside the field of view of the camera is inspected by the semi-transmissive mirror. The light reflected by the object and projected, the light reflected by the inspection object is reflected by the retro-reflection screen, and the re-reflected light reflected by the inspection object again can be transmitted through the semi-transparent mirror and captured by the camera. . Therefore, a state equivalent to the case where the camera and the light source are arranged at the close positions can be obtained, so that it is possible to reduce the non-inspectable area, that is, the dead zone, which is generated due to the distance between the camera and the light source. . Claim 1 corresponds to this. In addition, the projection axis of the light from the light source reflected by the semitransparent mirror is set to a position slightly displaced from the imaging axis of the camera, that is, the virtual image of the light source is displaced from the center of the imaging axis of the camera. By setting to, the imaging axis and the projection axis are not perfectly coaxial, and the relationship angle between the imaging axis and the projection axis can be set to be constant. Does not change the defect detection ability. Claim 2 corresponds to this. Furthermore, by making it possible to adjust the amount of deviation between the imaging axis and the projection axis, the optimum amount of deviation that differs between the concave defect and the convex defect can be adjusted, and the respective detection capabilities can be set to the optimum conditions. can do. Claims 3 to 6 correspond to this. Furthermore,
By providing the light absorbing means, it is possible to prevent a decrease in the SN ratio of the captured image due to a part of the light from the light source passing through the semi-transmissive mirror and returning to the semi-transmissive mirror. Claim 7 corresponds to this.

【0008】[0008]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の実施例に係る表面検査装置の構成を示す模式
図,図2は実施例構成における光路の最適配置構成を示
す模式図,図3は不適当な光路となる配置構成を示す模
式図,図4は上記最適配置での欠陥検出画像(a)と不
適当な配置での欠陥検出画像(b)を示す模式図,図5
は不適当な配置による検出性能の低下を示すグラフ,図
6はカメラと光源とを最適位置に設定するための装置構
成を示す構成図,図7,図8,図9は実施例に係る光ト
ラップ装置の構成を示す模式図である。図1において,
表面検査装置1は,検査装置を構成する基本要素である
逆反射スクリーン2,カメラ3,光源4を検査対象物5
の載置位置を中心として,図示するような位置関係に配
設して構成されている。カメラ3の撮像視野内にはハー
フミラー(半透過鏡)6が配設されており,光源4から
の光を検査対象物5方向に反射すると共に,検査対象物
5からの再反射光をカメラ3方向に透過させる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram showing a configuration of a surface inspection apparatus according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing an optimal arrangement configuration of optical paths in the configuration of the embodiment, and FIG. 3 is an arrangement having an inappropriate optical path. 5 is a schematic diagram showing the configuration, FIG. 4 is a schematic diagram showing a defect detection image (a) in the optimal arrangement and a defect detection image (b) in an inappropriate arrangement, FIG.
Is a graph showing deterioration of detection performance due to improper arrangement, FIG. 6 is a configuration diagram showing a device configuration for setting a camera and a light source at optimum positions, and FIGS. 7, 8 and 9 are optical diagrams according to the embodiment. It is a schematic diagram which shows the structure of a trap device. In Figure 1,
The surface inspection apparatus 1 includes a retroreflective screen 2, a camera 3, a light source 4, which are basic elements constituting the inspection apparatus, and an inspection target 5
The mounting position is centered, and they are arranged in the positional relationship shown in the figure. A half mirror (semi-transmissive mirror) 6 is arranged in the imaging field of view of the camera 3, and reflects light from the light source 4 in the direction of the inspection object 5 and re-reflects light from the inspection object 5 to the camera. Transmit in three directions.

【0009】上記構成により,光源4からの光はハーフ
ミラー6によって反射され検査対象物5の表面を照射
し,その反射光は逆反射スクリーン2に向かう。逆反射
スクリーン2は,その表面に設けられた反射球の鋭い指
向性で入射光を反射し,検査対象物5に戻す。検査対象
物5の表面で再反射した光はハーフミラー6を透過して
カメラ3に捕らえられる。上記検査対象物5からの再反
射光をカメラ3で撮像することにより,検査対象物5表
面の凹凸欠陥は明暗変化が強調された画像として検出す
ることができる。欠陥部分の明暗強調による欠陥検出の
原理は,先に従来構成で示したと同様であるので,その
説明は省略する。尚,本発明では,欠陥に伴って発生す
る疑似像を利用して欠陥の存在を検出できる能力の拡大
を図っている。即ち,微小な欠陥の検出には,疑似像の
方が検出感度として優れており,疑似像検出によって微
小欠陥の存在が検知でき,欠陥検出性能の向上を図るこ
とができる。上記構成におけるカメラ3,光源4,ハー
フミラー6の位置関係は,図2に示すように配置され
る。
With the above structure, the light from the light source 4 is reflected by the half mirror 6 and illuminates the surface of the inspection object 5, and the reflected light is directed to the retro-reflection screen 2. The retro-reflective screen 2 reflects incident light with a sharp directivity of a reflecting sphere provided on the surface thereof and returns it to the inspection object 5. The light re-reflected on the surface of the inspection object 5 passes through the half mirror 6 and is captured by the camera 3. By capturing the re-reflected light from the inspection object 5 with the camera 3, the uneven defect on the surface of the inspection object 5 can be detected as an image in which the change in brightness is emphasized. The principle of defect detection by emphasizing the dark and light of the defect portion is the same as that of the conventional configuration described above, and therefore the description thereof is omitted. In the present invention, the ability to detect the presence of a defect is enhanced by utilizing a pseudo image generated with the defect. That is, the pseudo image is superior in detection sensitivity to the detection of the minute defect, and the presence of the minute defect can be detected by the detection of the pseudo image, so that the defect detection performance can be improved. The positional relationship among the camera 3, the light source 4, and the half mirror 6 in the above configuration is arranged as shown in FIG.

【0010】図2において,光源4の投光点位置〔B〕
と,カメラ3の撮像点位置〔A〕とは,ハーフミラー6
を反射面とする虚像関係位置にあり,この関係位置から
光源4を位置〔B〕から僅かに移動させた位置〔B′〕
を光源4の投光点位置として設定している。即ち,実質
的には,位置〔B′〕の虚像位置〔A′〕から投光し,
撮像点〔A〕で投光された光の検査対象物5での再反射
光を撮像することになる。従って,カメラ3と光源4と
は,僅かなずれを設けてほぼ同一位置に配設されたと同
等の状態が得られることになる。図2に示す状態では,
位置〔B′〕から投光された光はハーフミラー6によっ
て反射され,検査対象物5の表面のE1 〜E3 点を照射
し(点線で図示),E1〜E3 点で反射して逆反射スク
リーン2により戻された光は,E1 〜E3 点で再反射
し,ハーフミラー6を透過してカメラ3の撮像位置
〔A〕で撮像される(実線で図示)。このときの投光軸
と撮像軸との角度aは,E1 ,E2 ,E3 点において同
じであるので,検査対象物5の表面全体が同じ強さの反
射光で撮像できる。上記構成によって理解されるよう
に,従来構成ではカメラ3及び光源4のそれぞれの外径
サイズ以内の間隔にカメラ3と光源4とを近接させるこ
とができないことから,不感帯(検査不能領域)が生じ
てしまう問題点があったが,本構成では,実質的にカメ
ラ3と光源4とを至近位置に配設することが可能とな
り,不感帯の発生が極小に抑えられる。
In FIG. 2, the light emitting point position of the light source 4 [B]
And the imaging point position [A] of the camera 3 are the half mirror 6
At a position related to the virtual image with the reflecting surface as a reflection surface, and a position [B '] where the light source 4 is slightly moved from the position [B] from this related position.
Is set as the projection point position of the light source 4. That is, in effect, light is projected from the virtual image position [A '] at the position [B'],
The re-reflected light on the inspection object 5 of the light projected at the imaging point [A] will be imaged. Therefore, the state in which the camera 3 and the light source 4 are disposed at substantially the same position with a slight deviation can be obtained. In the state shown in FIG.
Light projected from the position [B '] is reflected by the half mirror 6, irradiation with E 1 to E 3 points on the surface of the inspection object 5 (shown in dotted lines), reflected by the E 1 to E 3 point The light returned by the retro-reflection screen 2 is re-reflected at points E 1 to E 3, passes through the half mirror 6, and is imaged at the imaging position [A] of the camera 3 (shown by a solid line). Since the angle a between the projection axis and the imaging axis at this time is the same at points E 1 , E 2 , and E 3 , the entire surface of the inspection object 5 can be imaged with reflected light of the same intensity. As can be understood from the above configuration, in the conventional configuration, since the camera 3 and the light source 4 cannot be brought close to each other within the outer diameter size of the camera 3 and the light source 4, a dead zone (uninspectable region) occurs. However, in this configuration, the camera 3 and the light source 4 can be practically arranged in the close vicinity, and the occurrence of the dead zone can be suppressed to a minimum.

【0011】上記カメラ3の撮像軸と,光源4の投光軸
(ハーフミラー6で反射した投光軸)との間に僅かなず
れを設けるには,光源4とカメラ3との配設位置関係の
調整,あるいはハーフミラー6の角度調整によってなさ
れる。図2に示したようなカメラ3と光源4とを所定位
置に設定するための構成は,図6に示すように構成する
ことができる。図6に示す構成では,光源4が配設され
た基台7上に上下移動ステージ9及び左右移動ステージ
10上に支持されてカメラ3及びハーフミラー6を備え
た投光・撮像装置8が設置されている。上記上下移動ス
テージ9及び左右移動ステージ10を移動させることに
より,表面検査に最適な位置にカメラ3と光源4とを設
定することができ。上記カメラ3の撮像軸と,光源4の
投光軸との間に僅かなずれを設ける,即ち,撮像軸と投
光軸とが重なる完全同軸の状態とならないように,カメ
ラ3と光源4との位置設定を行う理由を図3を参照して
以下に説明する。図3に示すように,投光点位置を完全
同軸とならない位置(B′)に設定しても,カメラ3に
対する光源4の上下位置を変化させると,ハーフミラー
6での反射角度が撮像軸とは大きく異なって反射し,投
光軸が分散して検査対象物5に対する照明の効果が低下
する。即ち,図2に示す状態に比較して光源位置をハー
フミラー6側にずらすと,光源4から出た光はハーフミ
ラー6でF1 〜F4 の方向に反射し,検査対象物5のE
1 〜E4 を照射する。このときE1 〜E4 を撮像するカ
メラ3では,E1 では角度b,E2 では角度c,E3
は角度−d,E4 では角度0で撮像することになる。従
って,E1 〜E4 で輝度が一定でなく,特にE4 では完
全同軸の状態となり,その位置にある欠陥画像は,図4
(b)のようになる。この結果,検査対象物画像上に平
均した輝度が得られず,カメラ3が得る画像の手前側か
ら奥側まで一定した欠陥検出能力が得られないことにな
る。この状態を実験的に検証した結果を図5に示す。
In order to provide a slight deviation between the image pickup axis of the camera 3 and the light projection axis of the light source 4 (light projection axis reflected by the half mirror 6), the positions where the light source 4 and the camera 3 are arranged. This is done by adjusting the relationship or adjusting the angle of the half mirror 6. A configuration for setting the camera 3 and the light source 4 at predetermined positions as shown in FIG. 2 can be configured as shown in FIG. In the configuration shown in FIG. 6, a light projecting / imaging device 8 provided with a camera 3 and a half mirror 6 supported by a vertically moving stage 9 and a horizontally moving stage 10 is installed on a base 7 on which a light source 4 is arranged. Has been done. By moving the vertical moving stage 9 and the horizontal moving stage 10, the camera 3 and the light source 4 can be set at the optimum positions for surface inspection. A slight shift is provided between the image pickup axis of the camera 3 and the light projection axis of the light source 4, that is, the camera 3 and the light source 4 are arranged so that the image pickup axis and the light projection axis do not overlap each other so that they are completely coaxial. The reason for setting the position will be described below with reference to FIG. As shown in FIG. 3, even if the projection point position is set to the position (B ′) where the light projection point is not completely coaxial, if the vertical position of the light source 4 with respect to the camera 3 is changed, the reflection angle at the half mirror 6 is changed to the imaging axis. And the projection axis is dispersed and the effect of illumination on the inspection object 5 is reduced. That is, when the light source position is shifted to the half mirror 6 side as compared with the state shown in FIG. 2, the light emitted from the light source 4 is reflected by the half mirror 6 in the directions F 1 to F 4 , and E of the inspection object 5 is reflected.
Irradiate 1 to E 4 . In the camera 3 to the time imaging of E 1 to E 4, so that the imaging E 1 in the angle b, E 2 in the angle c, E 3 the angle -d, in E 4 in the angle 0. Therefore, the brightness is not constant at E 1 to E 4 , and especially at E 4 , the state is completely coaxial, and the defect image at that position is as shown in FIG.
It becomes like (b). As a result, the averaged luminance cannot be obtained on the image of the inspection object, and the constant defect detection capability obtained from the front side to the back side of the image obtained by the camera 3 cannot be obtained. The result of experimentally verifying this state is shown in FIG.

【0012】図5は検査対象物5をカメラ3と逆反射ス
クリーン2との間で,同一の欠陥の位置を−200mmか
ら500mmまで移動させたときの輝度変化を測定したも
ので,欠陥画像の縦断面の最大輝度の変化を示してい
る。同図において,移動距離200mm辺りで最大輝度が
極端に変化していることがわかる。一方,図2に示すよ
うに,投光軸と撮像軸とのずれを僅かに設け,完全同軸
となる部分がなく,ハーフミラー6による反射角度が適
切になる位置に設定すると,検査対象物5の表面のE1
点からE3 点までの欠陥検出を平均して行うことがで
き,欠陥が凸状欠陥である場合,図4(a)に示すよう
な欠陥部分による明暗像(欠陥像D)と,それに付随し
て生じた疑似像(Q)とが検出される。欠陥が微小な場
合,欠陥像Dは検出し難いが,疑似像Qは検出されるた
め,疑似像Qを検出することによって微小欠陥の存在を
検出することができる。本実施例構成では,欠陥形状が
凹か凸かによって光源4の位置により検出性能が異なる
ことが検証されている。即ち,図6に示す光源軸13の
位置変化によって検出性能がよくなる位置が欠陥の凹か
凸かによって異なる。そこで,光源4は基台7上の位置
調整可能に構成されているので,図示するように光源軸
13の位置を,凹形状の欠陥検出の際には撮像軸11に
対して±15mm以内の間に設定し,凸形状の欠陥検出の
際には同様に±3mm以上のカメラ視野範囲内での位置に
設定する。
FIG. 5 shows a change in brightness when the same defect position is moved from -200 mm to 500 mm between the camera 3 and the retroreflective screen 2 of the inspection object 5. The change in the maximum luminance of the vertical section is shown. In the figure, it can be seen that the maximum brightness changes extremely around the moving distance of 200 mm. On the other hand, as shown in FIG. 2, when a slight deviation between the projection axis and the imaging axis is provided and there is no portion that is completely coaxial and the reflection angle by the half mirror 6 is set to an appropriate position, the inspection object 5 Surface of E 1
Defects from the point E 3 to the point E 3 can be averaged, and when the defect is a convex defect, a bright and dark image (defect image D) due to the defect portion as shown in FIG. Then, the pseudo image (Q) generated is detected. When the defect is minute, the defect image D is difficult to detect, but the pseudo image Q is detected. Therefore, by detecting the pseudo image Q, the presence of the micro defect can be detected. In the configuration of this embodiment, it is verified that the detection performance differs depending on the position of the light source 4 depending on whether the defect shape is concave or convex. That is, the position where the detection performance is improved due to the position change of the light source shaft 13 shown in FIG. 6 differs depending on whether the defect is concave or convex. Therefore, since the light source 4 is configured to be adjustable in position on the base 7, the position of the light source axis 13 is set within ± 15 mm with respect to the imaging axis 11 when detecting a concave defect as shown in the figure. In the same way, when detecting a convex defect, set it to a position within the camera field of view of ± 3 mm or more.

【0013】実際の調整操作は,上下移動ステージ9及
び左右移動ステージ10の調整操作により,投光・撮像
装置8と光源4との位置関係を完全同軸の状態(図6に
示す撮像軸11の中心軸と,光源軸13の中心軸とを一
致させた状態)にしてカメラ3と光源4との上下位置を
決定し,検出したい欠陥形状(凹か凸か)に応じて光源
4を基台7上で上記範囲に移動させることにより,完全
同軸からずれた撮像軸と投光軸との位置関係の設定がな
される共に,検出したい欠陥形状に対応する光源位置の
設定がなされる。上記投光軸をカメラ3の視野内に設定
するための半透過鏡として,上記構成になるハーフミラ
ー6の他,ビームスプリッター等を用いることができ
る。この半透過鏡では光源4の投光方向に一部の光が透
過するが,この透過光が再度ハーフミラー6に戻ると,
撮像光に混入して欠陥検出のSN比を低下させる。そこ
で,この透過光がカメラ3に入ることを防止するため
に,図6に示す投光・撮像装置8には光トラップ装置1
4が設けられている。上記光トラップ装置14は,図
7,図8,図9に示すように構成することができる。図
7に示す構成では,透過光をステンレス鋼板,色ガラス
等による遮光ガラス15で反射させ,その反射光を光吸
収体16に吸収させる。光吸収体16として起毛紙,黒
色紙,ベッチン,ビロード等を使用することができる。
図8に示す構成では,透過光を直接に光吸収体16に吸
収させている。又,図9に示す構成では,遮光ガラス1
5a,15bを所定角度に配置して,その間の多重反射
により透過光を吸収消滅させるよう構成されている。
In the actual adjustment operation, the positional relationship between the light projecting / imaging device 8 and the light source 4 is completely coaxial by adjusting the up / down moving stage 9 and the left / right moving stage 10 (of the imaging axis 11 shown in FIG. 6). With the central axis and the central axis of the light source axis 13 aligned, the vertical positions of the camera 3 and the light source 4 are determined, and the light source 4 is mounted on the base according to the defect shape (concave or convex) to be detected. By moving to the above range on the display 7, the positional relationship between the imaging axis and the projection axis deviated from perfect coaxial is set, and the light source position corresponding to the defect shape to be detected is set. As a semi-transmissive mirror for setting the projection axis within the field of view of the camera 3, a beam splitter or the like can be used in addition to the half mirror 6 having the above-described configuration. In this semi-transmissive mirror, a part of light is transmitted in the direction of projection of the light source 4, but when this transmitted light returns to the half mirror 6,
It mixes with the imaging light to reduce the SN ratio of defect detection. Therefore, in order to prevent this transmitted light from entering the camera 3, the light trapping device 1 shown in FIG.
4 are provided. The optical trap device 14 can be configured as shown in FIGS. 7, 8 and 9. In the configuration shown in FIG. 7, the transmitted light is reflected by the light-shielding glass 15 such as a stainless steel plate or colored glass, and the reflected light is absorbed by the light absorber 16. Brushed paper, black paper, betting, velvet, or the like can be used as the light absorber 16.
In the configuration shown in FIG. 8, the transmitted light is directly absorbed by the light absorber 16. Moreover, in the configuration shown in FIG.
5a and 15b are arranged at a predetermined angle, and transmitted light is absorbed and extinguished by multiple reflection between them.

【0014】[0014]

【発明の効果】以上の説明の通り本発明によれば,逆反
射スクリーンによる表面検査装置を構成するカメラ視野
内に半透過鏡を配置して,カメラ視野外に配置した光源
からの光を上記半透過鏡で検査対象物方向に反射させ,
検査対象物で反射した光が逆反射スクリーンで反射して
再び検査対象物で反射された再反射光を半透過鏡を透過
させてカメラで捕らえることができるので,カメラと光
源との位置が離れていることにより発生する検査不能の
領域,即ち不感帯の発生を小さくすることができる。
(請求項1) 又,カメラの撮像軸に対して光源の投光軸を僅かにずら
せた位置,即ち,光源の虚像がカメラの撮像軸中心から
ずれた位置に設定することにより,撮像軸と投光軸との
関係角度が一定になり,カメラ視野の手前側から奥側ま
で欠陥検出の能力に変化を与えない効果を奏する。(請
求項2) 更に,この撮像軸と投光軸とのずれ量を調整可能にする
ことにより,凹形状の欠陥と凸形状の欠陥とで異なる最
適ずれ量を調整して,それぞれの検出能力を最適条件に
設定することができる。(請求項3〜6) 更に,光吸収手段を設けて,上記半透過鏡を光源からの
光の一部が透過し再び戻ってくることによる撮像画像の
SN比を低下を防ぐことができる。(請求項7)
As described above, according to the present invention, the semi-transmissive mirror is arranged in the camera field of view which constitutes the surface inspection apparatus using the retro-reflective screen, and the light from the light source arranged outside the camera field is described above. A semi-transparent mirror is used to reflect in the direction of the inspection object,
The light reflected by the inspection object is reflected by the retro-reflective screen, and the re-reflected light reflected by the inspection object again can be transmitted through the semi-transmissive mirror and captured by the camera. It is possible to reduce the non-inspectable area, that is, the dead zone.
(Claim 1) Further, by setting the position where the projection axis of the light source is slightly displaced with respect to the image pickup axis of the camera, that is, the position where the virtual image of the light source is displaced from the center of the image pickup axis of the camera, The relational angle with the projection axis becomes constant, and there is an effect that the defect detection ability is not changed from the front side to the back side of the camera field of view. (Claim 2) Furthermore, by making it possible to adjust the amount of deviation between the image pickup axis and the light projection axis, the optimum amount of deviation that differs between the concave defect and the convex defect can be adjusted, and the respective detection capabilities can be adjusted. Can be set to optimum conditions. (Claims 3 to 6) Further, by providing a light absorbing means, it is possible to prevent a decrease in the SN ratio of the captured image due to a part of the light from the light source being transmitted through the semi-transmissive mirror and returning again. (Claim 7)

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る表面検査装置の構成を
示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a surface inspection device according to an embodiment of the present invention.

【図2】 実施例構成における光路の最適配置構成を示
す模式図。
FIG. 2 is a schematic diagram showing an optimal arrangement configuration of optical paths in the example configuration.

【図3】 不適当な光路となる配置構成を示す模式図。FIG. 3 is a schematic diagram showing an arrangement configuration with an inappropriate optical path.

【図4】 上記最適配置での欠陥検出画像(a)と不適
当な配置での欠陥検出画像(b)を示す模式図。
FIG. 4 is a schematic diagram showing a defect detection image (a) in the optimum arrangement and a defect detection image (b) in an improper arrangement.

【図5】 不適当な配置による検出性能の不均一な状態
を示すグラフ。
FIG. 5 is a graph showing a state where the detection performance is non-uniform due to improper arrangement.

【図6】 カメラと光源とを最適位置に設定するための
装置構成を示す構成図。
FIG. 6 is a configuration diagram showing a device configuration for setting a camera and a light source at optimum positions.

【図7】 実施例に係る光トラップ装置の構成を示す模
式図。
FIG. 7 is a schematic diagram showing a configuration of an optical trap device according to an example.

【図8】 実施例に係る光トラップ装置の構成を示す模
式図。
FIG. 8 is a schematic diagram showing a configuration of an optical trap device according to an example.

【図9】 実施例に係る光トラップ装置の構成を示す模
式図。
FIG. 9 is a schematic diagram showing a configuration of an optical trap device according to an example.

【図10】 逆反射スクリーンを用いた表面検査装置の
基本構成を示す模式図。
FIG. 10 is a schematic diagram showing a basic configuration of a surface inspection device using a retroreflective screen.

【図11】 逆反射スクリーンによる表面検査の原理を
示す説明図(表面欠陥が無い場合)。
FIG. 11 is an explanatory diagram showing the principle of surface inspection using a retroreflective screen (when there is no surface defect).

【図12】 逆反射スクリーンによる表面検査の原理を
示す説明図(表面欠陥が有る場合)。
FIG. 12 is an explanatory view showing the principle of surface inspection using a retroreflective screen (when there is a surface defect).

【図13】 欠陥像に伴って発生する疑似像の例を示す
模式図。
FIG. 13 is a schematic diagram showing an example of a pseudo image generated along with a defect image.

【図14】 光源とカメラとの離隔距離の差により不感
帯が生じた例を示す画像図。
FIG. 14 is an image diagram showing an example in which a dead zone is generated due to a difference in separation distance between a light source and a camera.

【図15】 従来例に係る表面検査装置の構成を示す模
式図。
FIG. 15 is a schematic diagram showing the configuration of a surface inspection apparatus according to a conventional example.

【図16】 従来例に係る表面検査装置の構成を示す模
式図。
FIG. 16 is a schematic diagram showing a configuration of a surface inspection apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

1…表面検査装置 2…逆反射スクリ
ーン 3…カメラ 4…光源 5…検査対象物 6…ハーフミラー
(半透過鏡) 8…投光・撮像装置 9…上下移動ステ
ージ 10…左右移動ステージ 11…撮像軸 14…光トラップ装置(光吸収手段)
DESCRIPTION OF SYMBOLS 1 ... Surface inspection device 2 ... Retro-reflective screen 3 ... Camera 4 ... Light source 5 ... Inspection object 6 ... Half mirror (semi-transmissive mirror) 8 ... Projection / imaging device 9 ... Vertical movement stage 10 ... Horizontal movement stage 11 ... Imaging Axis 14 ... Optical trap device (light absorbing means)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 逆反射スクリーンと,光源と,検査対象
物とを,上記光源からの光が上記検査対象物で反射して
上記逆反射スクリーンに向かうような相対的位置に配置
し,検査対象物の表面を上記光源で照射したときの反射
光を逆反射スクリーンで検査対象物に戻し,該検査対象
物の表面で再反射した光をカメラで捕らえることによ
り,検査対象物表面の欠陥部分の凹凸変化を明暗変化に
強調された画像として検出する逆反射スクリーンによる
表面検査装置において,上記検査対象物から上記カメラ
へ向かう再反射光を透過させ,上記光源からの光を検査
対象物へ反射させる半透過鏡を,少なくともその一部が
上記カメラの視野にかかる位置に設置したことを特徴と
する逆反射スクリーンによる表面検査装置。
1. A retroreflective screen, a light source, and an inspection target object are arranged in relative positions such that light from the light source is reflected by the inspection target object toward the retroreflective screen. The reflected light when the surface of the object is illuminated by the light source is returned to the inspection object by the retro-reflective screen, and the light re-reflected by the surface of the inspection object is captured by the camera to detect the defective portion of the surface of the inspection object. In a surface inspection device using a retroreflective screen that detects unevenness changes as an image emphasized by light and dark changes, re-reflected light traveling from the inspection object to the camera is transmitted, and light from the light source is reflected to the inspection object. A surface inspection apparatus using a retroreflective screen, wherein a semi-transmissive mirror is installed at a position where at least a part of the semi-transparent mirror is in the field of view of the camera.
【請求項2】 上記半透過鏡により形成された光源の虚
像が上記カメラの撮像軸からずれた位置に形成されるよ
うに,上記半透過鏡をカメラの撮像軸からずれた位置に
設けてなる請求項1記載の逆反射スクリーンによる表面
検査装置。
2. The semitransparent mirror is provided at a position offset from the image pickup axis of the camera so that a virtual image of a light source formed by the semitransparent mirror is formed at a position offset from the image pickup axis of the camera. A surface inspection apparatus using the retroreflective screen according to claim 1.
【請求項3】 上記半透過鏡のカメラ撮像軸からのずれ
量が調整可能である請求項1記載の逆反射スクリーンに
よる表面検査装置。
3. The surface inspection apparatus according to claim 1, wherein the amount of deviation of the semi-transmissive mirror from the camera imaging axis is adjustable.
【請求項4】 上記半透過鏡のカメラ光学軸からのずれ
量を欠陥の形状に応じて調整する請求項2記載の逆反射
スクリーンによる表面検査装置。
4. A surface inspection apparatus using a retroreflective screen according to claim 2, wherein the amount of deviation of the semi-transmissive mirror from the camera optical axis is adjusted according to the shape of the defect.
【請求項5】 凹形状欠陥を検出する場合には,上記ず
れ量を±15mm以内とする請求項4記載の逆反射スクリ
ーンによる表面検査装置。
5. The surface inspection apparatus according to claim 4, wherein the amount of deviation is within ± 15 mm when detecting a concave defect.
【請求項6】 凸形状欠陥を検出する場合には,上記ず
れ量を±3mm以上とする請求項4記載の逆反射スクリー
ンによる表面検査装置。
6. The surface inspection apparatus according to claim 4, wherein the deviation amount is ± 3 mm or more when detecting a convex defect.
【請求項7】 上記半透過鏡から漏れる光を吸収する光
吸収手段を具備してなる請求項1又は2記載の逆反射ス
クリーンによる表面検査装置。
7. A surface inspection apparatus using a retro-reflective screen according to claim 1, further comprising a light absorbing means for absorbing light leaking from the semi-transmissive mirror.
JP9616394A 1994-05-10 1994-05-10 Surface inspecting device using reversely reflecting screen Pending JPH07306150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9616394A JPH07306150A (en) 1994-05-10 1994-05-10 Surface inspecting device using reversely reflecting screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9616394A JPH07306150A (en) 1994-05-10 1994-05-10 Surface inspecting device using reversely reflecting screen

Publications (1)

Publication Number Publication Date
JPH07306150A true JPH07306150A (en) 1995-11-21

Family

ID=14157678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9616394A Pending JPH07306150A (en) 1994-05-10 1994-05-10 Surface inspecting device using reversely reflecting screen

Country Status (1)

Country Link
JP (1) JPH07306150A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305741A (en) * 2001-04-04 2002-10-18 Nireco Corp Image pickup device for printed mater of high reflectivity
WO2006126596A1 (en) * 2005-05-25 2006-11-30 Olympus Corporation Surface defect inspection device
JP2010537219A (en) * 2008-02-19 2010-12-02 エスエヌユー プレシジョン カンパニー,リミテッド Dark field inspection device
JP2011516844A (en) * 2008-04-04 2011-05-26 ナンダ テヒノロギーズ ゲーエムベーハー Optical inspection system and method
KR101500375B1 (en) * 2013-06-27 2015-03-10 현대자동차 주식회사 Device for inspecting vehicle body paint exterior
JP2016109651A (en) * 2014-12-10 2016-06-20 株式会社リコー Imaging device, color measuring device, and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305741A (en) * 2001-04-04 2002-10-18 Nireco Corp Image pickup device for printed mater of high reflectivity
WO2006126596A1 (en) * 2005-05-25 2006-11-30 Olympus Corporation Surface defect inspection device
JP2010537219A (en) * 2008-02-19 2010-12-02 エスエヌユー プレシジョン カンパニー,リミテッド Dark field inspection device
JP2011516844A (en) * 2008-04-04 2011-05-26 ナンダ テヒノロギーズ ゲーエムベーハー Optical inspection system and method
KR101500375B1 (en) * 2013-06-27 2015-03-10 현대자동차 주식회사 Device for inspecting vehicle body paint exterior
US9546963B2 (en) 2013-06-27 2017-01-17 Hyundai Motor Company Inspection device for painted surface of vehicle
JP2016109651A (en) * 2014-12-10 2016-06-20 株式会社リコー Imaging device, color measuring device, and image forming apparatus

Similar Documents

Publication Publication Date Title
US7382457B2 (en) Illumination system for material inspection
CN106959293B (en) System and method for detecting defects on reflective surface through vision system
KR101326455B1 (en) Apparatus and method for characterizing defects in a transparent substrate
EP0856728B1 (en) Optical method and apparatus for detecting defects
US5963316A (en) Method and apparatus for inspecting a surface state
JPH0727709A (en) Inspecting apparatus surface defect
KR101211438B1 (en) Apparatus for inspecting defects
US6618136B1 (en) Method and apparatus for visually inspecting transparent body and translucent body
JPH07306150A (en) Surface inspecting device using reversely reflecting screen
JPH06241758A (en) Flaw inspection device
JP4761245B2 (en) Defect inspection system
JP3417736B2 (en) Optical member inspection device
JP2002039952A (en) Apparatus and method for inspecting defect
JP2008157788A (en) Surface inspection method and device
KR101447857B1 (en) Particle inspectiing apparatus for lens module
US20160366315A1 (en) Aperture stop
JPH09105724A (en) Surface inspection device
JP3020398B2 (en) Plate surface inspection method and inspection device, and inspection light source
JPS6313446Y2 (en)
JPH04315951A (en) Surface inspection device using reversely reflecting screen
JPH0875665A (en) Method and apparatus for inspecting surface using reverse reflection screen
JPH04340447A (en) Method and device for inspecting surface by retro-reflection screen
JP2002005853A (en) Lens inspecting apparatus
JPH0634349A (en) Surface inspecting method with counter-reflection screen
JPH06147865A (en) Surface inspection equipment employing reverse reflection screen