JPH11201806A - Method for measuring molten pig level in ladle - Google Patents

Method for measuring molten pig level in ladle

Info

Publication number
JPH11201806A
JPH11201806A JP1797998A JP1797998A JPH11201806A JP H11201806 A JPH11201806 A JP H11201806A JP 1797998 A JP1797998 A JP 1797998A JP 1797998 A JP1797998 A JP 1797998A JP H11201806 A JPH11201806 A JP H11201806A
Authority
JP
Japan
Prior art keywords
level
hot metal
pig
time
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1797998A
Other languages
Japanese (ja)
Inventor
Yuunosuke Maki
勇之輔 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1797998A priority Critical patent/JPH11201806A/en
Publication of JPH11201806A publication Critical patent/JPH11201806A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To estimate molten pig level substantially accurately by predicting the level based on the variation rate of weight thereof when foaming takes place in the ladle and correcting the predicted level. SOLUTION: A microwave level gauge measures the pig level in the form of a continuous analog quantity which is then sampled at a constant time interval (t sec) and converted into a discrete time series data. It is smoothed through moving average processing in order to remove noise and a current pig level Lm(t) is determined at a time (t) after smoothing. Measurement of the weight of a received pig is also processed and a current weight Wm(t) is determined after the pig is smoothed at the time (t). The predicted value Lp(t+1) of pig level at a time (t+1) following to the time(t) is then determined based on the weight variation rate of Wm(5). It the current level Lm(t+1) of pig level measured by the microwave level gauge deviates significantly therefrom, a decision is made that foaming is generated and the Lp(t+1) is employed as the pig level in place of the Lm(t+1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高炉出銑時に溶銑を
受銑容器に受銑する際の受銑容器内の溶銑レベルを測定
する方法に係り、特にマイクロ波レベル計を用いて溶銑
レベルを常に正確に測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the level of hot metal in a receiving vessel when hot metal is received in a receiving vessel during tapping of a blast furnace, and more particularly to a method for measuring hot metal level using a microwave level meter. Regarding how to always measure accurately.

【0002】[0002]

【従来の技術】高炉出銑時における受銑容器内の溶銑レ
ベルを測定する方式としては、重量計測方式のほかレー
ザーによる距離測定方式、マイクロ波による距離測定方
式、接触式(サウンジング方式)によるワイヤ長さ測定
方式などが知られているが、非接触でしかもダストや粉
塵の多い雰囲気でも測定できるマイクロ波による距離測
定方式が主流となっている。
2. Description of the Related Art In addition to a weight measurement method, a laser distance measurement method, a microwave distance measurement method, and a contact (sounding) wire method are used to measure the hot metal level in a receiving vessel during tapping of a blast furnace. Although a length measuring method and the like are known, a distance measuring method using a microwave, which is non-contact and can measure even in an atmosphere with much dust and dust, is mainly used.

【0003】しかしながら、図1に示すように、高炉炉
前に設置された鋳床脱珪設備で溶銑の脱珪を行う場合に
は、溶銑4と脱珪剤投入口6から投入された脱珪剤との
反応が傾注樋5から受銑容器3へ溶銑4が注入された後
にも進行し、受銑容器3内においてフォーミングが発生
することがある。
[0003] However, as shown in FIG. 1, when de-siliconization of hot metal is performed in a cast-bed de-siliconization facility installed in front of a blast furnace, the de-siliconization introduced from the hot metal 4 and the desiliconizer inlet 6 is performed. The reaction with the agent proceeds even after the hot metal 4 is injected from the inclined pouring trough 5 into the pig iron receiving vessel 3, and forming may occur in the pig iron receiving vessel 3.

【0004】この現象を詳細に説明すると、以下のとお
りである。すなわち、溶銑の脱珪は酸化鉄などの酸化物
を溶銑と混合することにより行なわれるため、受銑容器
内溶銑の上方に脱珪剤が滓化したスラグ層を形成してい
る。溶銑中の珪素は酸化鉄中の酸素で酸化されるため、
脱珪反応と同時に脱炭反応が生ずることは不可避であ
り、一酸化炭素等のガスがスラグ内で発生する。したが
って、このようなスラグ内には微細な気泡が多数発生し
ている。この気泡はスラグ中を上昇してスラグ表面から
大気中へ排出されるが、スラグの温度、粘度、表面張力
などの影響により、気泡の排出が遅れ、スラグ中で大き
な気泡として泡立つことがある。このような場合、スラ
グ全体が上下方向に見かけの厚みを増すことになる。フ
ォーミングとは、このような受銑容器内に注入された溶
銑の上で脱珪剤等の酸化物を主成分とするスラグが大き
な気泡により泡立っている状態のことをいう。
[0004] This phenomenon will be described in detail as follows. That is, since the desiliconization of the hot metal is performed by mixing an oxide such as iron oxide with the hot metal, a slag layer in which the desiliconizing agent is turned into a slag is formed above the hot metal in the pig iron receiving vessel. Since the silicon in the hot metal is oxidized by the oxygen in the iron oxide,
It is inevitable that a decarburization reaction occurs simultaneously with the desiliconization reaction, and a gas such as carbon monoxide is generated in the slag. Therefore, many fine bubbles are generated in such a slag. These bubbles rise in the slag and are discharged from the slag surface to the atmosphere. However, due to the influence of the temperature, viscosity, surface tension, and the like of the slag, the discharge of the bubbles is delayed, and large bubbles may be formed in the slag. In such a case, the entire slag increases its apparent thickness in the vertical direction. Forming refers to a state in which slag mainly composed of an oxide such as a desiliconizing agent is foamed by large bubbles on the hot metal poured into such an iron receiving container.

【0005】かかるフォーミングが発生している場合
に、マイクロ波レベル計1によって溶銑レベルを測定し
ようとするとマイクロ波がフォーミング層の表面(上
面)で反射するので、真の溶銑レベルであるフォーミン
グ層の下面を測定できず、図4に示すように、フォーミ
ング層の上面8を溶銑レベルとして測定をしてしまう結
果となり、受銑容器の満量を誤ることになる。
If the level of hot metal is to be measured by the microwave level meter 1 while such forming is occurring, the microwave is reflected on the surface (upper surface) of the forming layer. The lower surface cannot be measured, and as shown in FIG. 4, the upper surface 8 of the forming layer is measured as the hot metal level, resulting in an erroneous filling of the pig iron receiving container.

【0006】このような問題を解決するための手段とし
て、特開平5−125413号公報にはレベル計とロー
ドセルを併用して満量検知を行うとともに傾注樋の切替
を行うシステムが提案されている。また、出銑重量速度
や受銑容器満量時の受銑量を求めるために図1に示すよ
うに受銑設備にマイクロ波レベル計1のほかに重量計2
が並設されている場合が多い。かかる重量計2の測定値
はフォーミングの影響を受けないので、重量計2の付設
により出銑速度を正確に測定することはできるが、受銑
容器3は容器自体の内面形状が耐火物損耗や地金付着に
よって変化するため重量計1によって満量検知を行うこ
とはできない。そのため、従来方式では受銑容器3に満
量レベルまで溶銑4を受銑して輸送することができず、
溶銑輸送効率の低下のほか、溶銑予備処理などの次工程
の処理効率が低下するとともに、溶銑温度低下が大きく
なるなどの問題が生じていた。
As a means for solving such a problem, Japanese Patent Application Laid-Open No. 5-125413 proposes a system for detecting a full amount by using a level meter and a load cell in combination and switching a slope gutter. . In addition, in addition to the microwave level meter 1 as shown in FIG.
Are often juxtaposed. Since the measured value of the weighing scale 2 is not affected by the forming, the tapping speed can be accurately measured by the attachment of the weighing scale 2. Since the weight varies depending on the adhesion of the metal, the weighing scale 1 cannot detect the full amount. Therefore, in the conventional method, the hot metal 4 cannot be received and transported to the full capacity in the receiving vessel 3,
In addition to the reduction in the hot metal transport efficiency, the processing efficiency of the next process such as the hot metal pre-treatment is lowered, and there are problems such as a large drop in the hot metal temperature.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような従
来技術の有する問題点を克服し、フォーミングが生じて
も受銑容器内の溶銑レベルをほぼ正確に推定することが
できる手段を提供し、常に満量レベルまで溶銑を受銑し
て次工程に輸送することを可能にすることを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned problems of the prior art and provides a means capable of almost accurately estimating the hot metal level in a pig iron receiving vessel even when forming occurs. It is an object of the present invention to enable hot metal to be always received to a full level and transported to the next process.

【0008】[0008]

【課題を解決するための手段】本発明者はマイクロ波レ
ベル計の有する上記問題点を解決するために、高炉出銑
設備に付設されている重量計を利用すればフォーミング
の生じている期間の溶銑レベルを予測し、マイクロ波レ
ベル計による測定値を修正することができることを知見
し、その具体的手段を完成したものであり、フォーミン
グによってマイクロ波レベル計による測定ができなくな
った場合には重量計による重量変化率をもとに予測した
溶銑レベルを求め、その値を受銑容器内の溶銑レベルの
修正値として用いるようにしたものである。
In order to solve the above-mentioned problems of the microwave level meter, the present inventor uses a weighing scale attached to the blast furnace tapping facility to reduce the time period during which forming occurs. Knowing that it is possible to predict the level of hot metal and correct the measured value by the microwave level meter, the concrete means has been completed, and if forming cannot be measured by the microwave level meter, The hot metal level predicted based on the weight change rate by the meter is obtained, and the value is used as a correction value of the hot metal level in the receiving vessel.

【0009】具体的には、受銑容器内溶銑レベルの測定
方法として、受銑容器内の溶銑レベルをマイクロ波レベ
ル計を用いて測定するに当たり、受銑容器内においてフ
ォーミングが発生している場合には受銑容器内の溶銑の
重量変化率をもとに溶銑レベルの予測値を求め、該予測
値を受銑容器内の溶銑レベルの修正値として用いること
とするものである。また、その際に、受銑容器内におけ
るフォーミングの発生を、マイクロ波レベル計による溶
銑レベルの実測値と受銑容器内の溶銑の重量変化率に基
づく予測値との差が一定値を超えていることにより判断
することとするものである。
More specifically, as a method for measuring the hot metal level in a pig iron receiving vessel, when the hot metal level in the pig iron receiving vessel is measured using a microwave level meter, when the forming occurs in the pig iron receiving vessel, In this method, a predicted value of the hot metal level is obtained based on the weight change rate of the hot metal in the pig iron receiving vessel, and the predicted value is used as a correction value of the hot metal level in the pig iron receiving vessel. At that time, the difference between the measured value of the hot metal level measured by the microwave level meter and the predicted value based on the rate of change in the weight of the hot metal in the hot metal container exceeds a certain value. Is to be determined by

【0010】[0010]

【発明の実施の形態】以下、本発明を実施例に基づき詳
細に説明する。まず、連続したアナログ量として測定さ
れたマイクロ波レベル計による溶銑レベルの測定結果を
一定の短い時間的間隔(Tsec)おきにサンプリング
し、時系列離散データに変換する。その際、データには
ノイズが含まれているため、移動平均処理により平滑化
しノイズを除去する操作を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. First, the measurement result of the hot metal level measured by the microwave level meter measured as a continuous analog quantity is sampled at fixed short time intervals (Tsec) and converted into time-series discrete data. At this time, since the data contains noise, an operation for smoothing and removing noise by moving average processing is performed.

【0011】上記により平滑化した後の時刻tにおける
溶銑レベル、すなわち平滑化後溶銑レベル現在値(以下
単に「溶銑レベルの現在値」という)、Lm(t)、は Lm(t)={L(t)+L(t−1)+・・・+L(t−n+1)}/n n:自然数 ・・・・(1) と定義される。
The hot metal level at time t after smoothing as described above, that is, the current value of the hot metal level after smoothing (hereinafter simply referred to as the “current value of hot metal level”), Lm (t), is Lm (t) = {L (T) + L (t−1) +... + L (t−n + 1)} / nn: natural number (1)

【0012】重量計による受銑重量の測定結果について
も、上記と同様に処理し、時刻tにおける平滑化後受銑
重量現在値、Wm(t)、を以下のように定義する。 Wm(t)={W(t)+W(t−1)+・・・+W(t−m+1)}/m m:自然数 ・・・・(2) 受銑速度Ws(t)はWm(t)の重量変化率として
(2)式を微分することによって求められる。すなわ
ち、 Ws(t)={W(t)−W(t−k)}/k×T ・・・・(3) T:サンプリング間隔、k:自然数
The measurement result of the pig iron weight by the weighing scale is processed in the same manner as described above, and the current value of the smoothed pig iron weight at time t, Wm (t), is defined as follows. Wm (t) = {W (t) + W (t-1) +... + W (tm + 1)} / mm m: natural number (2) The receiving speed Ws (t) is Wm (t) ) Is obtained by differentiating equation (2). That is, Ws (t) = {W (t) −W (tk)} / k × T (3) T: sampling interval, k: natural number

【0013】上記(3)式を用いると時刻tに続くTs
ec後の時刻(t+1)における溶銑レベルの予測値L
pは次のようにして求められる。 Lp(t+1)=Lm(t)+Ws(t)×T×α ・・・・(4) ここでαは、図2に示す受銑容器内における受銑重量W
(t)と実際の受銑レベルL(t)の関係に基づく係数
であり、その次元はm/kgである。このαを定めるた
めに予めL(t)とW(t)の関係を演算装置に記憶さ
せておくのがよい。ただし、上記関係は受銑容器の内部
形状(地金付着量、耐火物消耗量等)によって変化する
ので、受銑レベル測定対象となる受銑容器について直近
に受銑したときの実績を基に常に更新しておく。
Using the above equation (3), Ts following time t
predicted value L of hot metal level at time (t + 1) after ec
p is obtained as follows. Lp (t + 1) = Lm (t) + Ws (t) × T × α (4) where α is the weight W of the pig iron in the pig iron container shown in FIG.
It is a coefficient based on the relationship between (t) and the actual receiving level L (t), and its dimension is m / kg. In order to determine α, the relationship between L (t) and W (t) is preferably stored in advance in an arithmetic unit. However, the above relationship changes depending on the internal shape of the pig iron container (the amount of metal ingot, the amount of refractory consumed, etc.). Keep it updated.

【0014】本発明においては、上記受銑重量速度によ
って予測される溶銑レベルLp(t+1)とマイクロ波
レベル計によって測定された溶銑レベル現在値Lm(t
+1)を比較し、両者がほぼ一致すればフォーミングは
発生していないものと判断し、両者が大きく乖離してい
ればフォーミングが発生しているものと判断するのであ
る。そして、フォーミングが発生していると判断された
場合には、マイクロ波レベル計によって測定された溶銑
レベル現在値、Lm(t+1)、の代わりに、重量変化
率を用いて予測される溶銑レベル、すなわち式(4)に
よって与えられる予測値Lp(t+1)を使用して溶銑
レベルとするのである。
In the present invention, the hot metal level Lp (t + 1) predicted by the above-mentioned hot metal weight rate and the current hot metal level Lm (t) measured by the microwave level meter are used.
+1), it is determined that the forming has not occurred if the two substantially match, and it is determined that the forming has occurred if the both are largely separated. When it is determined that the forming has occurred, the hot metal level predicted using the weight change rate, instead of the current hot metal level value Lm (t + 1) measured by the microwave level meter, That is, the hot metal level is determined using the predicted value Lp (t + 1) given by the equation (4).

【0015】すなわち、 Lp(t+1)<Lm(t+1)−β ・・・・(5) β:定数のとき、フォーミング発生と判定し、Lm(t
+1)でなく、Lp(t+1)を溶銑レベルとして採用
するのである。つまり、溶銑レベルの現在値を捨てて予
測値を採用するのである。なお、定数βはフォーミング
発生のとき生ずる溶銑レベルの盛り上がり寸法であっ
て、経験的に定められる。通常は、βとして、100〜
500mm程度を設定する。
That is, Lp (t + 1) <Lm (t + 1) -β (5) β: When β is a constant, it is determined that forming has occurred, and Lm (t
Instead of using +1), Lp (t + 1) is adopted as the hot metal level. In other words, the current value of the hot metal level is discarded and the predicted value is adopted. Here, the constant β is a swelling dimension of the hot metal level generated when the forming occurs, and is determined empirically. Usually, as β, 100 to
Set about 500 mm.

【0016】時刻tから2Tsec経過後の時刻t+2
においては、(4)式は、 Lp(t+2)=Lp(t+1)+Ws(t+1)×T×α ・・(6) となり、これがマイクロ波レベル計による現在値(Lm
(t+2))と比較され、上記と同様の操作がおこなわ
れる。以降、測定時刻ごとに、上記と同様の判定及び操
作を繰り返し、フォーミングが消滅したときには再びマ
イクロ波レベル計により測定されたレベルを採用するこ
とに戻るのである。
Time t + 2 after a lapse of 2 Tsec from time t
In equation (4), Lp (t + 2) = Lp (t + 1) + Ws (t + 1) × T × α (6), which is the current value (Lm
(T + 2)), and the same operation as above is performed. Thereafter, the same determination and operation as described above are repeated at each measurement time, and when the forming has disappeared, the process returns to adopting the level measured by the microwave level meter again.

【0017】上記ステップを図3に基づいて説明する。
時刻tにおいてはフォーミングは発生しておらず、従っ
て溶銑レベルとして溶銑レベル現在値Lm(t)を使用
する。しかし、Tsec経過後の時刻(t+1)におい
ては、 Lm(t+1)≫Lp(t+1) となった。従ってフォーミング開始と判定する。更に2
Tsec経過後の時刻(t+2)においても Lp(t+2)≪Lm(t+2) となったのでフォーミング中と判定する。しかし、3T
sec経過後の時刻(t+3)においては Lp(t+3)≒Lm(t+3) となったのでフォーミング終了と判定する。
The above steps will be described with reference to FIG.
At time t, forming has not occurred, and therefore the current hot metal level value Lm (t) is used as the hot metal level. However, at time (t + 1) after the lapse of Tsec, Lm (t + 1) ≫Lp (t + 1). Therefore, it is determined that the forming has started. 2 more
Since Lp (t + 2) 後 Lm (t + 2) at time (t + 2) after the lapse of Tsec, it is determined that the forming is being performed. However, 3T
At time (t + 3) after the lapse of sec, Lp (t + 3) ≒ Lm (t + 3), so that it is determined that the forming is completed.

【0018】上記フォーミングの開始、持続、終了の判
定に基づき、溶銑レベルを、 時刻t :Lm(t)、 ・・・マイクロ波レベ
ル計による現在値 時刻(t+1):Lp(t+1)・・・受銑重量による
修正値 時刻(t+2):Lp(t+2)・・・受銑重量による
修正値 時刻(t+3):Lm(t+3)・・・マイクロ波レベ
ル計による現在値とする。
Based on the determination of the start, the duration and the end of the forming, the hot metal level is set as follows: time t: Lm (t),... The present value by the microwave level meter Time (t + 1): Lp (t + 1). Corrected value based on received pig weight Time (t + 2): Lp (t + 2) ... Corrected value based on received pig weight Time (t + 3): Lm (t + 3) ... The current value obtained by the microwave level meter.

【0019】[0019]

【発明の効果】本発明によれば、高炉から受銑中の溶銑
レベルをマイクロ波レベル計で測定中にフォーミングが
発生した場合でも、重量計で求めた重量変化率をベース
に予測した推定レベル値を刻々と求め、フォーミング発
生の有無を検知するとともに、フォーミングが発生して
いる場合には受銑重量変化率を基に予測された値を用い
て溶銑レベルを修正するので、フォーミングが発生して
も、常に満量レベルまで溶銑を受銑することが可能にな
る。これにより、溶銑輸送効率が向上するのに加えて、
溶銑予備処理など次工程での処理効率が向上し、さらに
溶銑温度低下の防止など省エネの効果も期待できる。
According to the present invention, even when forming occurs while measuring the level of hot metal during iron receiving from a blast furnace with a microwave level meter, the estimated level estimated based on the weight change rate obtained by the weigh scale is used. The value is calculated every moment to detect the occurrence of forming, and if forming is occurring, the hot metal level is corrected using the value predicted based on the rate of change in the weight of the received iron, so that forming occurs. However, it is possible to always receive hot metal to the full level. As a result, in addition to improving hot metal transport efficiency,
The treatment efficiency in the next process such as hot metal pretreatment is improved, and energy saving effects such as prevention of hot metal temperature drop can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する受銑設備の設備配列状況を示
す概念図である。
FIG. 1 is a conceptual diagram showing an arrangement state of an iron receiving facility for implementing the present invention.

【図2】受銑容器内における溶銑レベルL(t)と受銑
重量W(t)の関係図である。
FIG. 2 is a diagram showing a relationship between a hot metal level L (t) and a hot metal weight W (t) in an iron receiving container.

【図3】本発明を適用した場合の受銑中経過時間と溶銑
レベルとの関係図である。
FIG. 3 is a graph showing the relationship between the elapsed time during hot metal receiving and the hot metal level when the present invention is applied.

【図4】フォーミングが発生した場合におけるマイクロ
波レベル計の作動状況を示す説明図である。
FIG. 4 is an explanatory diagram showing an operation state of a microwave level meter when forming has occurred.

【符号の説明】[Explanation of symbols]

1:マイクロ波レベル計 2:重量計 3:受銑容器 4:溶銑 5:傾注樋 6:脱珪剤投入口 7:鋳床レベル 8:フォーミング層表面 1: microwave level meter 2: weighing scale 3: pig iron container 4: hot metal 5: inclined gutter 6: desiliconizer inlet 7: cast floor level 8: forming layer surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受銑容器内の溶銑レベルをマイクロ波レ
ベル計を用いて測定するに当たり、受銑容器内において
フォーミングが発生している場合には受銑容器内の溶銑
の重量変化率をもとに溶銑レベルの予測値を求め、該予
測値を受銑容器内の溶銑レベルの修正値として用いるこ
とを特徴とする受銑容器内溶銑レベルの測定方法。
When measuring the hot metal level in a pig iron receiving vessel using a microwave level meter, when the forming occurs in the pig iron receiving vessel, the weight change rate of the hot metal in the pig iron receiving vessel is also measured. A method for measuring a hot metal level in a pig iron receiving vessel, wherein a predicted value of the hot metal level is obtained and the predicted value is used as a correction value of the hot metal level in the pig iron receiving vessel.
【請求項2】 受銑容器内におけるフォーミングの発生
は、マイクロ波レベル計による溶銑レベルの実測値と受
銑容器内の溶銑の重量変化率に基づく予測値との差が一
定値を超えていることにより判断されることを特徴とす
る請求項1記載の受銑容器内溶銑レベルの測定方法。
2. The occurrence of forming in the pig iron receiving vessel is such that the difference between the actually measured value of the hot metal level measured by the microwave level meter and the predicted value based on the weight change rate of the hot metal in the pig receiving vessel exceeds a certain value. 2. The method for measuring the level of hot metal in an iron receiving container according to claim 1, wherein the determination is made by the following.
JP1797998A 1998-01-14 1998-01-14 Method for measuring molten pig level in ladle Pending JPH11201806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1797998A JPH11201806A (en) 1998-01-14 1998-01-14 Method for measuring molten pig level in ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1797998A JPH11201806A (en) 1998-01-14 1998-01-14 Method for measuring molten pig level in ladle

Publications (1)

Publication Number Publication Date
JPH11201806A true JPH11201806A (en) 1999-07-30

Family

ID=11958853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1797998A Pending JPH11201806A (en) 1998-01-14 1998-01-14 Method for measuring molten pig level in ladle

Country Status (1)

Country Link
JP (1) JPH11201806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1105748A4 (en) * 1998-08-18 2004-04-28 Uec Technologies Llc Measuring the thickness of materials
JP2021043042A (en) * 2019-09-10 2021-03-18 ムサシノ機器株式会社 Range-finding device, range-finding method and liquid-level meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1105748A4 (en) * 1998-08-18 2004-04-28 Uec Technologies Llc Measuring the thickness of materials
JP2021043042A (en) * 2019-09-10 2021-03-18 ムサシノ機器株式会社 Range-finding device, range-finding method and liquid-level meter

Similar Documents

Publication Publication Date Title
JP2003344142A (en) Method and apparatus for measuring level of molten metal and thickness of slag layer by means of microwave level gauge
JPH11201806A (en) Method for measuring molten pig level in ladle
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP3232922B2 (en) Hot metal desiliconization method
JP3549318B2 (en) Unsteady bulging detection method in continuous casting
JP3622422B2 (en) Tundish for continuous casting of steel
JP5884182B2 (en) Method for controlling inclusion composition of Ca-containing aluminum killed steel
JP2000178628A (en) Device and method for switching tilting runner of blast furnace
JP3643037B2 (en) Hot metal level measurement method in hot metal ladle
JPS619966A (en) Estimating method of amount of molten steel remaining in ladle
KR100797312B1 (en) Apparatus for gauging solubility in electric furnace
JPH01242711A (en) Method for controlling converter blowing
KR100579374B1 (en) Vacuum Oxygen decarburization apparatus of chromium comprising melting steel and vacuum decarburization method using the apparatus
JP5052439B2 (en) How to use hot repeat tundish
JP2000273519A (en) Method for removing slag from torpedo car
JPH11209814A (en) Method for controlling charging quantity of desiliconizing agent in blast furnace
SU1740435A1 (en) Method of controlling smelting of low-carbon rimming steel
JPH0219416A (en) Converter blow-refining method
JP2824015B2 (en) Cast floor desiliconization method in blast furnace
JP5151262B2 (en) Method for adding desiliconizing agent to hot metal discharged from blast furnace and method for producing hot metal using the same
JPH05125414A (en) Method for deciding completing time of molten iron tapping in blast furnace
JPS61226156A (en) Detection of slag outflow
JP2003253326A (en) Plumb bob of measuring device for molten metal surface level
JPH11279625A (en) Manufacture of super-low carbon steel
JP2002302709A (en) Method for operating blast furnace