JPH11201680A - Internally grooved tube - Google Patents

Internally grooved tube

Info

Publication number
JPH11201680A
JPH11201680A JP428098A JP428098A JPH11201680A JP H11201680 A JPH11201680 A JP H11201680A JP 428098 A JP428098 A JP 428098A JP 428098 A JP428098 A JP 428098A JP H11201680 A JPH11201680 A JP H11201680A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
pipe
fin
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP428098A
Other languages
Japanese (ja)
Other versions
JP3417825B2 (en
Inventor
Kiyonori Koseki
清憲 小関
Chikara Saeki
主税 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11580136&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11201680(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP00428098A priority Critical patent/JP3417825B2/en
Publication of JPH11201680A publication Critical patent/JPH11201680A/en
Application granted granted Critical
Publication of JP3417825B2 publication Critical patent/JP3417825B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a single weight without deteriorating the performance of heat transfer. SOLUTION: When Di indicates the maximum internal diameter of an internally grooved tube, with Hf indicating the height of a fin that is formed between grooves, Wf indicating the width of the base of this fin, θ indicating the angle of torsion, which is formed by the direction in that the grooves are formed and the direction of the tube axis, and P indicating the pitch of the grooves in the direction of the tube periphery, Hf/Di ranges from 0.01 to 0.02, θ/Di ranges from 2.0 to 4.5, Hf/Wf is less than 1.6, and P ranges from 0.35 to 0.45 (mm).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はルームエアコン等の
熱交換器に好適な、例えば、銅又は銅合金製の内面溝付
管に関し、特に、軽量化を図った内面溝付管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved tube made of, for example, copper or a copper alloy, which is suitable for a heat exchanger of a room air conditioner or the like, and more particularly to an inner grooved tube having a reduced weight.

【0002】[0002]

【従来の技術】近時、ルームエアコンとして冷暖房兼用
型のヒートポンプ式エアコンが主流となっている。そし
て、このヒートポンプ式エアコン等に使用される銅又は
銅合金製伝熱管には蒸発性能及び凝縮性能が優れている
ことが要求される。伝熱管の蒸発性能を高めるために
は、冷媒液を伝熱面である管内面全体に広めて管内面全
体で冷媒の蒸発が生じるような構造が必要とされる。一
方、伝熱管の凝縮性能を高めるためには、管内面が凝縮
した冷媒液で覆われることを防止するために、冷媒液が
管内面全体に広がることを防止するような構造が必要と
される。従って、蒸発性能及び凝縮性能が優れている伝
熱管を得るためには、前述の相反する特性を満たす構造
が必要とされる。
2. Description of the Related Art In recent years, a heat pump type air conditioner which is used for both cooling and heating has become mainstream as a room air conditioner. The heat transfer tube made of copper or copper alloy used in the heat pump type air conditioner or the like is required to have excellent evaporation performance and condensation performance. In order to enhance the evaporation performance of the heat transfer tube, a structure is required in which the refrigerant liquid is spread over the entire inner surface of the tube, which is a heat transfer surface, so that the refrigerant evaporates over the entire inner surface of the tube. On the other hand, in order to increase the condensation performance of the heat transfer tube, a structure that prevents the refrigerant liquid from spreading over the entire tube inner surface is required to prevent the inner surface of the tube from being covered with the condensed refrigerant liquid. . Therefore, in order to obtain a heat transfer tube having excellent evaporation performance and condensation performance, a structure that satisfies the aforementioned contradictory characteristics is required.

【0003】そこで、かかる伝熱管には、管内面に螺旋
状の複数の平行溝を形成して熱伝達効率を向上させた内
面溝付管が使用されている。そして、この内面溝付管の
管軸方向の単位長さあたりの重量(以下、単重量とい
う)を軽減して熱交換器のコストを低下させることが進
められている。例えば、軽量化を図った内面溝付管が特
開平5−1891号公報及び特開平5−79783号公
報に提案されている。特開平5−1891号公報に記載
された内面溝付管においては、管内径に対する溝深さの
比、溝の管軸に対するねじれ角、溝深さに対する溝断面
積及びフィンの山頂角を規定することにより、内面溝付
管の高性能化及び軽量化を図っている。
[0003] Therefore, as such a heat transfer tube, a tube with an inner surface groove having improved heat transfer efficiency by forming a plurality of spiral parallel grooves on the inner surface of the tube is used. And, the weight per unit length (hereinafter, referred to as single weight) of the inner grooved pipe in the pipe axis direction is reduced to reduce the cost of the heat exchanger. For example, Japanese Patent Application Laid-Open Nos. 5-18991 and 5-79783 have proposed a grooved tube having an inner surface with a reduced weight. In the inner grooved pipe described in JP-A-5-1891, the ratio of the groove depth to the pipe inner diameter, the torsion angle of the groove with respect to the pipe axis, the groove cross-sectional area with respect to the groove depth, and the peak angle of the fin are defined. By doing so, the performance and weight of the inner grooved pipe are improved.

【0004】一方、特開平5−79783号公報に記載
された内面溝付管においては、管外径、溝の管軸に対す
るねじれ角、管内径に対する溝深さの比、管の肉厚、溝
深さに対する溝底部の幅及びフィンの山頂角を規定する
ことにより、内面溝付管の高性能化及び軽量化を図って
いる。
On the other hand, in the case of an inner grooved pipe described in Japanese Patent Application Laid-Open No. 5-79783, the outer diameter of the pipe, the twist angle of the groove with respect to the pipe axis, the ratio of the groove depth to the pipe inner diameter, the wall thickness of the pipe, the groove By defining the width of the groove bottom with respect to the depth and the peak angle of the fin, the performance and weight of the inner grooved tube are improved.

【0005】また、管内面に相互に交差する複数の平行
溝が形成された内面溝付管が提案されている(実開昭6
3−148078号公報)。この公報に記載された内面
溝付管においては、管内面に相互に交差する溝が形成さ
れているので、管内面には四角錘状の複数個の凸部が形
成されている。このような形状とすることにより、それ
までの内面溝付管よりも伝熱性能を向上させている。
[0005] Further, there has been proposed an inner grooved pipe in which a plurality of parallel grooves which cross each other are formed on the inner surface of the pipe (Japanese Utility Model Application Laid-Open No. H06-163).
3-148078). In the tube with an inner surface groove described in this publication, since grooves intersecting each other are formed on the inner surface of the tube, a plurality of quadrangular pyramid-shaped protrusions are formed on the inner surface of the tube. By adopting such a shape, the heat transfer performance is improved as compared with the existing inner grooved tube.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述の
従来の内面溝付管よる単重量の軽減及び伝熱性能の維持
は十分なものではないという問題点がある。
However, there is a problem that the reduction of the single weight and the maintenance of the heat transfer performance by the above-mentioned conventional inner grooved tube are not sufficient.

【0007】特開平5−1891号公報に記載された内
面溝付管においては、管内径に対する溝深さの比を0.
02乃至0.03と規定しており、フィンが高く単重量
の軽減が十分ではない。
[0007] In the case of a tube with an inner surface groove described in Japanese Patent Application Laid-Open No. Hei 5-1891, the ratio of the groove depth to the inner diameter of the tube is set to 0.1.
The fin is so high that the reduction of the unit weight is not sufficient.

【0008】また、特開平5−79783号公報に記載
された内面溝付管においては、管内径に対する溝深さの
比を0.023乃至0.025と規定しており、フィン
が高く単重量の軽減が十分ではない。
Further, in the tube with an inner surface groove described in Japanese Patent Application Laid-Open No. Hei 5-79783, the ratio of the groove depth to the inner diameter of the tube is specified to be 0.023 to 0.025. Is not enough.

【0009】一方、単に管内径に対する溝深さの比を小
さく設定したのでは、フィンが低くなって伝熱性能が低
下してしまう。
On the other hand, if the ratio of the groove depth to the inner diameter of the tube is simply set to be small, the fins become low and the heat transfer performance deteriorates.

【0010】また、実開昭63−148078号公報に
記載された内面溝付管においても、単重量の軽減は十分
ではない。
Further, even in the tube with an inner surface groove described in Japanese Utility Model Application Laid-Open No. 63-148078, the reduction of the single weight is not sufficient.

【0011】本発明はかかる問題点に鑑みてなされたも
のであって、伝熱性能を低下させることなく単重量を軽
減することができる内面溝付管を提供することを目的と
する。
The present invention has been made in view of such a problem, and an object of the present invention is to provide an inner grooved tube capable of reducing a single weight without deteriorating heat transfer performance.

【0012】[0012]

【課題を解決するための手段】本発明に係る内面溝付管
は、管内面に管軸方向に傾斜する方向に延びる螺旋状の
複数の平行溝を形成した内面溝付管において、最大内径
をDi、前記溝間に形成されたフィンの高さをHf、こ
のフィンの基部の幅をWf、前記溝が形成された方向と
管軸方向とがなすねじれ角をθ、前記溝の管周方向にお
ける溝ピッチをPとしたとき、Hf/Diは0.01乃
至0.02、θ/Diは2.0乃至4.5、Hf/Wf
は1.6未満、Pは0.35乃至0.45(mm)であ
ることを特徴とする。
An inner grooved pipe according to the present invention has a maximum inner diameter in an inner grooved pipe in which a plurality of spiral parallel grooves extending in a direction inclined in the pipe axis direction are formed on the inner surface of the pipe. Di, the height of the fins formed between the grooves is Hf, the width of the base of the fins is Wf, the torsion angle between the direction in which the grooves are formed and the tube axis direction is θ, the circumferential direction of the grooves. Where Hf / Di is 0.01 to 0.02, θ / Di is 2.0 to 4.5, and Hf / Wf
Is less than 1.6, and P is 0.35 to 0.45 (mm).

【0013】本発明においては、管内面に形成される溝
の形状を適切なものに規定しているので、従来品と比し
て、蒸発性能及び凝縮性能を低下させることなく単重量
を低減することができる。
In the present invention, since the shape of the groove formed on the inner surface of the tube is specified appropriately, the single weight can be reduced without lowering the evaporation performance and the condensation performance as compared with the conventional product. be able to.

【0014】[0014]

【発明の実施の形態】本願発明者等が前記課題を解決す
るために鋭意実験研究を重ねた結果、管の最大内径Di
に対するフィンの高さHfの比Hf/Di、最大内径D
iに対する螺旋溝の管軸に対するねじれ角θの比θ/D
i、フィンの基部の幅Wfに対するフィンの高さの比H
f/Wf及び溝ピッチPを適切な値に規定することによ
り、伝熱性能を低下させることなく銅又は銅合金製の内
面溝付管の単重量を軽減することができることを見い出
した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive experiments and research conducted by the present inventors to solve the above problems, the maximum inner diameter Di
Ratio Hf / Di of fin height Hf to maximum diameter D
ratio of the helix angle θ of the spiral groove to the pipe axis with respect to i / θ / D
i, the ratio H of the height of the fin to the width Wf of the base of the fin, H
By defining f / Wf and the groove pitch P to appropriate values, it has been found that the single weight of the inner grooved pipe made of copper or copper alloy can be reduced without lowering the heat transfer performance.

【0015】以下、本発明に係る内面溝付管に関する数
値限定理由について説明する。図1は内面溝付管の最大
内径Di、フィンの高さHf、フィンの基部の幅Wf及
び溝ピッチPに該当する位置を説明する模式的断面図で
ある。内面溝付管1の内面には、管軸方向に対して傾斜
する方向に延びる螺旋状の溝2が一定の間隔で形成され
ている。これにより、隣り合う溝2間には、山形状のフ
ィン3が形成されている。ここで、最大内径Diとは、
溝2の底部4から管軸(図示せず)までの距離を2倍し
たものである。また、フィンの高さHfとは、フィン3
の頂部5から管軸を中心とし(Di/2)を半径とする
円柱面までの距離である。フィンの基部の幅とは、フィ
ン3の基部における両側面6の間隔である。そして、溝
ピッチPとは、前記円柱面における隣り合うフィン3間
の間隔であり、管周方向の溝数をmとしたとき、(π×
Di/m)で表わされる。
The reason for limiting the numerical value of the inner grooved pipe according to the present invention will be described below. FIG. 1 is a schematic sectional view illustrating a position corresponding to the maximum inner diameter Di of the inner grooved pipe, the height Hf of the fin, the width Wf of the base of the fin, and the groove pitch P. On the inner surface of the inner grooved tube 1, spiral grooves 2 extending in a direction inclined with respect to the tube axis direction are formed at regular intervals. As a result, between the adjacent grooves 2, fins 3 having a mountain shape are formed. Here, the maximum inner diameter Di is
The distance from the bottom 4 of the groove 2 to the tube axis (not shown) is doubled. The fin height Hf is defined as fin 3
From the top 5 to the cylindrical surface having a radius of (Di / 2) about the tube axis. The width of the base of the fin is the distance between the side surfaces 6 at the base of the fin 3. The groove pitch P is the interval between the adjacent fins 3 on the cylindrical surface, and when the number of grooves in the pipe circumferential direction is m, (π ×
Di / m).

【0016】図2(a)は内面溝付管のねじれ角θに該
当する位置を説明する模式的斜視図であり、(b)は同
じく模式的断面図である。螺旋溝の管軸に対するねじれ
角θとは、内面溝付管1を管軸に平行な切開部7に沿っ
て切開き展開したとき、管軸方向と溝2が延びる方向と
がなす角度である。
FIG. 2A is a schematic perspective view for explaining the position corresponding to the torsion angle θ of the inner grooved pipe, and FIG. 2B is a schematic sectional view of the same. The torsion angle θ of the spiral groove with respect to the tube axis is the angle between the tube axis direction and the direction in which the groove 2 extends when the inner grooved tube 1 is cut open along the cut portion 7 parallel to the tube axis. .

【0017】最大内径Diに対するフィンの高さHfの
比Hf/Di:0.01乃至0.02 本願発明者等は、最大内径Diに対するフィンの高さH
fの比Hf/Diと蒸発熱伝達率との関係を調査した。
この結果を図3に示す。図3は横軸に比Hf/Diをと
り、縦軸に蒸発時の管内熱伝達率をとって両者の関係を
示すグラフ図である。なお、管内熱伝達率の測定では、
外径が7mm又は9.52mmの2種類の内面溝付管を
使用し、冷媒にはR22を使用した。R22とは、米国
暖房冷凍空調学会(ASHRAE)における呼称であっ
て、化学式CHF2Clで示されるフロン系冷媒であ
る。内面溝付管の長さは、外径が7mmのもので3m、
外径が9.52mmのもので4mである。また、外径が
7mmの内面溝付管を使用したときの冷媒流量は30k
g/hであり、外径が9.52mmの内面溝付管を使用
したときの冷媒流量は冷媒流量は40kg/hである。
更に、蒸発温度は7.5℃、膨張弁前温度は40℃、出
口過熱度は5℃である。図3において、実線は外径が7
mmの内面溝付管の結果を示し、破線は外径が9.52
mmの内面溝付管の結果を示している。
The height Hf of the fin with respect to the maximum inner diameter Di
Ratio Hf / Di: 0.01 to 0.02 The inventors of the present invention have determined that the height H of the fin with respect to the maximum inner diameter Di.
The relationship between the ratio ff / Di of f and the heat transfer coefficient of evaporation was investigated.
The result is shown in FIG. FIG. 3 is a graph showing the relationship between the ratio Hf / Di on the horizontal axis and the heat transfer coefficient in the pipe during evaporation on the vertical axis. In the measurement of the heat transfer coefficient in the pipe,
Two types of inner grooved tubes having an outer diameter of 7 mm or 9.52 mm were used, and R22 was used as a refrigerant. R22 is a name in the American Society for Heating, Refrigeration and Air Conditioning (ASHHRAE) and is a CFC-based refrigerant represented by the chemical formula CHF 2 Cl. The length of the inner grooved tube is 3m with an outer diameter of 7mm,
It is 4 m with an outer diameter of 9.52 mm. The refrigerant flow rate when using an inner grooved pipe having an outer diameter of 7 mm is 30 k.
g / h, and the refrigerant flow rate when using an inner grooved tube having an outer diameter of 9.52 mm is 40 kg / h.
Further, the evaporation temperature is 7.5 ° C., the temperature before the expansion valve is 40 ° C., and the superheat degree at the outlet is 5 ° C. In FIG. 3, the solid line indicates that the outer diameter is 7
The results are shown for an internally grooved tube with an outer diameter of 9.52 mm.
4 shows the results for an internally grooved tube of mm.

【0018】最大内径Diに対するフィンの高さHfの
比Hf/Diが0.01未満であると、図3に示すよう
に、蒸発熱伝達率が極めて低い。これは、フィンの高さ
が著しく低い場合、毛細管現象が起こらず冷媒液の拡散
効果がほとんどなくなって、冷媒液が管の上部にまでは
濡れ広がらなくなるためである。一方、比Hf/Diが
0.02を超えると、従来品と比して、単重量を軽減す
ることができない。従って、最大内径Diに対するフィ
ンの高さHfの比Hf/Diは0.01乃至0.02と
する。
If the ratio Hf / Di of the fin height Hf to the maximum inner diameter Di is less than 0.01, the heat transfer coefficient of evaporation is extremely low as shown in FIG. This is because when the height of the fins is extremely low, the capillary effect does not occur, the diffusion effect of the refrigerant liquid is almost eliminated, and the refrigerant liquid does not spread to the upper part of the tube. On the other hand, when the ratio Hf / Di exceeds 0.02, the single weight cannot be reduced as compared with the conventional product. Therefore, the ratio Hf / Di of the fin height Hf to the maximum inner diameter Di is set to 0.01 to 0.02.

【0019】最大内径Diに対する螺旋溝の管軸に対す
るねじれ角θの比θ/Di:2.0乃至4.5 本願発明者等は、最大内径Diに対する螺旋溝の管軸に
対するねじれ角θの比θ/Diと蒸発熱伝達率、凝縮熱
伝達率及び圧力損失との関係を調査した。この結果を図
4(a)及び(b)並びに図5に示す。図4(a)及び
(b)は横軸に比θ/Diをとり、縦軸に管内熱伝達率
をとった図であって、(a)は比θ/Diと蒸発時の管
内熱伝達率との関係を示すグラフ図、(b)は比θ/D
iと凝縮時の管内熱伝達率との関係を示すグラフ図であ
る。蒸発時の管内熱伝達率の測定条件は前述のものと同
様である。また、凝縮時の管内熱伝達率の測定では、前
述と同様の内面溝付管及び冷媒を使用し、凝縮温度を4
5℃、入口温度を70℃、出口過冷却度を5℃とした。
なお、図4(a)及び(b)において、実線は外径が7
mmの内面溝付管の結果を示し、破線は9.52mmの
内面溝付管の結果を示している。
With respect to the tube axis of the spiral groove with respect to the maximum inner diameter Di
Ratio of the torsion angle θ / Di: 2.0 to 4.5 The present inventors have determined the ratio of the torsion angle θ to the tube axis of the spiral groove with respect to the maximum inner diameter Di, θ / Di, the evaporation heat transfer rate, and the condensation heat transfer. The relationship between rate and pressure drop was investigated. The results are shown in FIGS. 4A and 4B and FIG. 4A and 4B are diagrams in which the horizontal axis indicates the ratio θ / Di and the vertical axis indicates the in-tube heat transfer coefficient. FIG. 4A shows the ratio θ / Di and the in-tube heat transfer during evaporation. FIG. 4B is a graph showing the relationship with the ratio, and FIG.
It is a graph which shows the relationship between i and the heat transfer coefficient in a pipe at the time of condensation. The measurement conditions for the heat transfer coefficient in the tube during evaporation are the same as those described above. In the measurement of the heat transfer coefficient in the pipe during condensation, the same inner grooved pipe and refrigerant as described above were used, and the condensing temperature was set at 4%.
5 ° C., the inlet temperature was 70 ° C., and the outlet subcooling degree was 5 ° C.
4 (a) and 4 (b), the solid line indicates that the outer diameter is 7 mm.
mm shows the result for an internally grooved tube, and the dashed line shows the result for a 9.52 mm internally grooved tube.

【0020】図4(a)に示すように、比θ/Diが約
2.0であるときに蒸発熱伝達率は最大となっている。
冷媒を管内面全体に容易に濡れ広がらせるために、溝は
管軸方向に対して傾斜する方向に延びて螺旋状に形成さ
れている。しかし、ねじれ角θが過度に大きくなると、
冷媒に作用する力のうち重力成分が大きくなり、冷媒は
管の上部には濡れ広がりにくくなって、却って蒸発熱伝
達率が低下する。
As shown in FIG. 4 (a), when the ratio θ / Di is about 2.0, the heat transfer coefficient of evaporation becomes maximum.
The groove is formed in a spiral shape so as to extend in a direction inclined with respect to the tube axis direction in order to easily spread the refrigerant on the entire inner surface of the tube. However, if the twist angle θ becomes excessively large,
The gravitational component of the force acting on the refrigerant increases, so that the refrigerant hardly spreads on the upper part of the pipe, and on the contrary, the heat transfer coefficient of evaporation decreases.

【0021】また、図4(b)に示すように、比θ/D
iの増加に伴って凝縮熱伝達率は向上するが、比θ/D
iが4.5近傍に達したところでほとんど飽和する。凝
縮熱伝達率を向上させるためには、蒸発熱伝達率の場合
とは逆に、冷媒の濡れ広がり性を低下させる必要があ
る。内面溝付管内に流入した気体冷媒は管の内壁に熱を
奪われ凝縮されて液体となるものであるが、濡れ広がり
性が高い場合、液化した冷媒が管内面を覆う。そして、
冷媒そのものが熱抵抗として作用し凝縮熱伝達率が低下
してしまう。このため、管の上部は常に乾いた状態であ
って気体の冷媒を凝縮させ、液化した冷媒は管底部を流
れる状態であることが望ましい。
As shown in FIG. 4B, the ratio θ / D
Although the condensed heat transfer coefficient increases with increasing i, the ratio θ / D
Almost saturated when i reaches around 4.5. In order to improve the heat transfer coefficient of condensation, it is necessary to reduce the wetting and spreading property of the refrigerant, contrary to the case of the heat transfer coefficient of evaporation. The gaseous refrigerant flowing into the inner grooved tube is deprived of heat by the inner wall of the tube and is condensed to become a liquid. However, when the wet refrigerant has high spreading property, the liquefied refrigerant covers the inner surface of the tube. And
The refrigerant itself acts as thermal resistance, and condensed heat transfer coefficient is reduced. For this reason, it is desirable that the upper part of the tube is always in a dry state, condensing the gaseous refrigerant, and the liquefied refrigerant is flowing in the lower part of the tube.

【0022】前述のように、ねじれ角θが大きくなる
と、冷媒は管の上部に濡れ広がりにくくなるため、管上
部に乾いた領域を形成することが可能となる。しかし、
ねじれ角θを大きくしても、管軸に直行する断面におけ
る冷媒が流れ得る領域の面積が大きくなるわけではない
ので、乾いた領域の面積には上限が存在する。このた
め、図4(b)に示すように、比θ/Diの向上が飽和
するねじれ角θが存在する。
As described above, when the torsion angle θ increases, the refrigerant hardly spreads over the upper part of the pipe, so that a dry region can be formed on the upper part of the pipe. But,
Even if the torsion angle θ is increased, the area of the region through which the refrigerant can flow in the cross section perpendicular to the tube axis does not increase, and therefore, the area of the dry region has an upper limit. Therefore, as shown in FIG. 4B, there is a twist angle θ at which the improvement of the ratio θ / Di is saturated.

【0023】図5は横軸に比θ/Diをとり、縦軸に蒸
発時の圧力損失をとって両者の関係を示すグラフ図であ
る。なお、測定条件は前述のものと同様である。図5に
おいて、実線は外径が7mmの内面溝付管の結果を示
し、破線は9.52mmの内面溝付管の結果を示してい
る。内面溝付管において、ねじれ角θを大きくすると、
図5に示すように、それに連れて圧力損失が増加する。
圧力損失が増加すると、蒸発時に熱交換器入口温度が上
昇して空気と冷媒との温度差が小さくなる。このため、
蒸発熱伝達率が低下する。
FIG. 5 is a graph showing the relationship between the ratio θ / Di on the horizontal axis and the pressure loss during evaporation on the vertical axis. The measurement conditions are the same as those described above. In FIG. 5, the solid line shows the result for an inner grooved tube with an outer diameter of 7 mm, and the broken line shows the result for a 9.52 mm inner grooved tube. When the torsion angle θ is increased in the inner grooved pipe,
As shown in FIG. 5, the pressure loss increases accordingly.
When the pressure loss increases, the heat exchanger inlet temperature increases during evaporation, and the temperature difference between the air and the refrigerant decreases. For this reason,
The heat transfer coefficient of evaporation decreases.

【0024】以上より、蒸発性能を重視する場合には、
比θ/Diを約2.0に、凝縮性能を重視する場合に
は、比θ/Diを約4.5に設定すると、夫々の最適な
性能を得ることができる。しかし、最近のルームエアコ
ンにおいては、冷暖房兼用型が主流であるので、内面溝
付管には高い蒸発性能及び高い凝縮性能が要望される。
従って、最大内径Diに対する螺旋溝の管軸に対するね
じれ角θの比θ/Diは2.0乃至4.5とする。
From the above, when the evaporation performance is important,
When the ratio θ / Di is set to about 2.0 and the condensation performance is emphasized, the optimum performance can be obtained by setting the ratio θ / Di to about 4.5. However, in the recent room air conditioners, the cooling / heating type is mainly used, so that the inner grooved pipe is required to have high evaporation performance and high condensation performance.
Therefore, the ratio θ / Di of the torsion angle θ of the spiral groove to the tube axis with respect to the maximum inner diameter Di is set to 2.0 to 4.5.

【0025】フィンの基部の幅Wfに対するフィンの高
さHfの比Hf/Wf:1.6未満 本願発明者等は、フィンの基部の幅Wfに対するフィン
の高さHfの比Hf/Wfと拡管後のフィンの傾斜角と
の関係を調査した。この結果を図8に示す。図8は横軸
に比Hf/Wfをとり、縦軸に拡管後のフィンの傾斜角
をとって両者の関係を示すグラフ図である。また、図9
はフィンの傾斜角ξを説明する模式的断面図である。な
お、拡管後のフィンの傾斜角の測定では、先ず、マンド
レルの先端に取付けられた拡管ブリットを内面溝付管内
に挿入し、内面溝付管を押し拡げて内面溝付管をフィン
材に密着させた。次に、図9に示すように、拡管により
傾斜したフィンが突出する方向8と半径方向9とがなす
角度を傾斜角ξとして測定した。
Fin height relative to fin base width Wf
The ratio Hf / Wf of the height Hf is less than 1.6 The present inventors investigated the relationship between the ratio Hf / Wf of the height Hf of the fin to the width Wf of the base of the fin and the inclination angle of the fin after expansion. The result is shown in FIG. FIG. 8 is a graph showing the relationship between the ratio Hf / Wf on the horizontal axis and the inclination angle of the fin after expansion on the vertical axis. FIG.
FIG. 4 is a schematic cross-sectional view illustrating a fin inclination angle の. In the measurement of the fin inclination angle after the expansion, first, the expansion blit attached to the tip of the mandrel is inserted into the inner grooved tube, and the inner grooved tube is expanded by pushing the inner grooved tube into close contact with the fin material. I let it. Next, as shown in FIG. 9, the angle between the direction 8 in which the fins inclined by the expansion and the radial direction 9 formed was measured as the inclination angle ξ.

【0026】フィンの基部の幅Wfに対するフィンの高
さHfの比Hf/Wfが1.6以上であると、図8に示
すように、傾斜角ξが著しく高くなる。また、拡管によ
りフィンが潰れやすくなる。このように、傾斜角ξが高
くなったりフィンが潰れると、内面溝付管の伝熱性能が
発揮されないことがある。従って、フィンの基部の幅W
fに対するフィンの高さHfの比Hf/Wfは1.6未
満とする。
When the ratio Hf / Wf of the height Hf of the fin to the width Wf of the base of the fin is 1.6 or more, the inclination angle ξ becomes extremely high as shown in FIG. Further, the fins are easily collapsed by the expansion. As described above, when the inclination angle 高 く is increased or the fins are crushed, the heat transfer performance of the inner grooved tube may not be exhibited. Therefore, the width W of the base of the fin
The ratio Hf / Wf of the fin height Hf to f is less than 1.6.

【0027】溝ピッチP:0.35乃至0.45(m
m) 本願発明者等は、溝ピッチPと蒸発熱伝達率、凝縮熱伝
達率及び単重量との関係を調査した。この結果を図6
(a)及び(b)並びに図7に示す。図6(a)及び
(b)は横軸に溝ピッチPをとり、縦軸に管内熱伝達率
をとった図であって、(a)は溝ピッチPと蒸発時の管
内熱伝達率との関係を示すグラフ図、(b)は溝ピッチ
Pと凝縮時の管内熱伝達率との関係を示すグラフ図であ
る。管内熱伝達率の測定条件は前述のものと同様であ
る。また、図7は横軸に溝ピッチPをとり、縦軸に単重
量をとって両者の関係を示すグラフ図である。なお、図
6(a)及び(b)並びに図7において、実線は外径が
7mmの内面溝付管の結果を示し、破線は9.52mm
の内面溝付管の結果を示している。
Groove pitch P: 0.35 to 0.45 (m
m) The present inventors investigated the relationship between the groove pitch P and the evaporation heat transfer coefficient, the condensation heat transfer coefficient, and the unit weight. The result is shown in FIG.
(A) and (b) and FIG. 6A and 6B are diagrams in which the horizontal axis indicates the groove pitch P and the vertical axis indicates the heat transfer coefficient in the pipe. FIG. 6A shows the groove pitch P and the heat transfer coefficient in the pipe at the time of evaporation. (B) is a graph showing the relationship between the groove pitch P and the heat transfer coefficient in the pipe during condensation. The measurement conditions for the heat transfer coefficient in the tube are the same as those described above. FIG. 7 is a graph showing the relationship between the groove pitch P on the horizontal axis and the unit weight on the vertical axis. 6 (a) and 6 (b) and FIG. 7, the solid line shows the results for an inner grooved tube having an outer diameter of 7 mm, and the broken line shows 9.52 mm.
3 shows the result of the inner grooved tube.

【0028】溝ピッチPが0.35mm未満であると、
溝部の幅が極めて狭くなるので、図6(a)に示すよう
に、蒸発熱伝達率が極めて低い。また、図7に示すよう
に、単重量が増加する。一方、溝ピッチが0.45mm
を超えると、管内面の表面積が減少するため、図6
(b)に示すように、凝縮熱伝達率が極めて低くなる。
従って、溝ピッチPは0.35乃至0.45(mm)と
する。
When the groove pitch P is less than 0.35 mm,
Since the width of the groove is extremely narrow, the heat transfer coefficient of evaporation is extremely low as shown in FIG. Further, as shown in FIG. 7, the single weight increases. On the other hand, the groove pitch is 0.45 mm
When the pressure exceeds the surface area, the surface area of the inner surface of the pipe is reduced.
As shown in (b), the condensation heat transfer coefficient becomes extremely low.
Therefore, the groove pitch P is set to 0.35 to 0.45 (mm).

【0029】なお、内面溝付管の素材は銅又は銅合金に
限定されるものではない。例えば、アルミニウム又はア
ルミニウム合金製内面溝付管としてもよい。
The material of the inner grooved pipe is not limited to copper or copper alloy. For example, an inner grooved tube made of aluminum or an aluminum alloy may be used.

【0030】[0030]

【実施例】以下、本発明の実施例について、その比較例
と比較して具体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0031】先ず、下記表1及び2に示す形状の溝を有
する内面溝付管を作製した。なお、各内面溝付管の溝部
における肉厚は0.28mm、外径は9.52mm、長
さは4mである。
First, an inner grooved tube having grooves having the shapes shown in Tables 1 and 2 below was prepared. In addition, the wall thickness of the groove portion of each inner surface grooved tube is 0.28 mm, the outer diameter is 9.52 mm, and the length is 4 m.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】次に、各実施例及び比較例について、冷媒
としてR22を使用し、この冷媒の流量を40kg/h
として蒸発熱伝達率及び凝縮熱伝達率を測定した。ま
た、単重量及び拡管後のフィンの傾斜角ξも測定した。
なお、測定用の供試材は、拡管率105%の拡管を施さ
れたものである。なお、拡管率は、(拡管後の外径)/
(拡管前の外径)×100で算出されるものである。こ
れらの結果を下記表3に示す。
Next, in each of Examples and Comparative Examples, R22 was used as a refrigerant, and the flow rate of the refrigerant was 40 kg / h.
The heat transfer coefficient of evaporation and the heat transfer coefficient of condensation were measured. In addition, the single weight and the inclination angle の of the fin after expansion were measured.
The test material for measurement was expanded at a pipe expansion ratio of 105%. The expansion ratio is (outer diameter after expansion) /
(Outer diameter before expansion) × 100. The results are shown in Table 3 below.

【0035】蒸発熱伝達率を測定する際には、蒸発温度
を7.5℃、膨張弁前温度を40℃、出口過熱度を5℃
とした。
When measuring the heat transfer coefficient of evaporation, the evaporation temperature was 7.5 ° C., the temperature before the expansion valve was 40 ° C., and the superheat degree at the outlet was 5 ° C.
And

【0036】一方、凝縮熱伝達率を測定する際には、凝
縮温度を45℃、入口温度を70℃、出口過冷却度を5
℃とした。これらの結果を下記表3に示す。なお、表3
において、蒸発熱伝達率及び凝縮熱伝達率は従来品であ
る比較例3の値を基準値1.00として、換算した値で
ある。
On the other hand, when measuring the condensation heat transfer coefficient, the condensation temperature was set at 45.degree. C., the inlet temperature was set at 70.degree.
° C. The results are shown in Table 3 below. Table 3
, The heat transfer coefficient of evaporation and the heat transfer coefficient of condensation are values obtained by converting the value of Comparative Example 3, which is a conventional product, to a reference value of 1.00.

【0037】[0037]

【表3】 [Table 3]

【0038】上記表3に示すように、実施例1において
は、内面溝付管の溝形状が適切なものであるので、従来
品と同等の性能を維持しながら単重量を著しく低減する
ことができた。また、実施例2においては、内面溝付管
の溝形状が適切なものであるので、単重量を軽減するこ
とができると共に、蒸発熱伝達率及び凝縮熱伝達率を著
しく向上させることができた。
As shown in Table 3 above, in Example 1, since the groove shape of the inner grooved pipe is appropriate, it is possible to significantly reduce the unit weight while maintaining the same performance as the conventional product. did it. Further, in Example 2, since the groove shape of the inner grooved tube was appropriate, the single weight could be reduced, and the evaporation heat transfer coefficient and the condensation heat transfer coefficient could be significantly improved. .

【0039】一方、比較例4においては、溝ピッチPが
本発明範囲の下限未満であるので、蒸発熱伝達率が低か
った。
On the other hand, in Comparative Example 4, since the groove pitch P was less than the lower limit of the range of the present invention, the heat transfer coefficient of evaporation was low.

【0040】比較例5においては、溝ピッチPが本発明
範囲の上限を超えているので、熱伝達率、特に凝縮熱伝
達率が低かった。
In Comparative Example 5, since the groove pitch P exceeded the upper limit of the range of the present invention, the heat transfer coefficient, particularly the condensation heat transfer coefficient, was low.

【0041】比較例6においては、比Hf/Diが本発
明範囲の下限未満であるので、単重量は低減されている
ものの、蒸発熱伝達率及び凝縮熱伝達率が著しく低かっ
た。
In Comparative Example 6, since the ratio Hf / Di was less than the lower limit of the range of the present invention, although the unit weight was reduced, the heat transfer coefficient of evaporation and the heat transfer of condensation were remarkably low.

【0042】比較例7においては、比θ/Diが本発明
範囲の下限未満であるので、凝縮熱伝達率が低かった。
In Comparative Example 7, since the ratio θ / Di was less than the lower limit of the range of the present invention, the condensed heat transfer coefficient was low.

【0043】比較例8においては、比Hf/Wfが本発
明範囲の上限を超えているので、拡管後のフィンの傾斜
角ξが著しく大きくなった。このため、熱伝達率、特に
蒸発熱伝達率が低かった。
In Comparative Example 8, since the ratio Hf / Wf exceeded the upper limit of the range of the present invention, the fin inclination angle ξ after the expansion was significantly increased. For this reason, the heat transfer coefficient, especially the evaporation heat transfer coefficient, was low.

【0044】[0044]

【発明の効果】以上詳述したように、本発明によれば、
管内面に形成される溝の形状を適切なものに規定してい
るので、従来品と比して、伝熱性能を低下させることな
く単重量を低減することができる。これにより、熱交換
器のコストを削減することができる。
As described in detail above, according to the present invention,
Since the shape of the groove formed on the inner surface of the tube is specified to be appropriate, it is possible to reduce the unit weight without lowering the heat transfer performance as compared with the conventional product. Thereby, the cost of the heat exchanger can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内面溝付管の最大内径Di、フィンの高さH
f、フィンの山頂角α及び溝ピッチPに該当する位置を
説明する模式的断面図である。
FIG. 1 shows the maximum inner diameter Di of the inner grooved pipe and the height H of the fin.
FIG. 4 is a schematic cross-sectional view illustrating a position corresponding to f, a peak angle α of a fin, and a groove pitch P.

【図2】(a)は内面溝付管のねじれ角θに該当する位
置を説明する模式的斜視図であり、(b)は同じく模式
的断面図である。
FIG. 2A is a schematic perspective view illustrating a position corresponding to a twist angle θ of an inner grooved pipe, and FIG. 2B is a schematic cross-sectional view of the same.

【図3】横軸に比Hf/Diをとり、縦軸に蒸発時の管
内熱伝達率をとって両者の関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the ratio Hf / Di on the horizontal axis and the heat transfer coefficient in the pipe during evaporation on the vertical axis.

【図4】(a)は比θ/Diと蒸発時の管内熱伝達率と
の関係を示すグラフ図、(b)は比θ/Diと凝縮時の
管内熱伝達率との関係を示すグラフ図である。
FIG. 4 (a) is a graph showing the relationship between the ratio θ / Di and the heat transfer coefficient in the pipe during evaporation, and FIG. 4 (b) is a graph showing the relation between the ratio θ / Di and the heat transfer coefficient in the pipe during condensation. FIG.

【図5】比θ/Diと蒸発時の圧力損失との関係を示す
グラフ図である。
FIG. 5 is a graph showing a relationship between a ratio θ / Di and a pressure loss during evaporation.

【図6】(a)は溝ピッチPと蒸発時の管内熱伝達率と
の関係を示すグラフ図、(b)は溝ピッチPと凝縮時の
管内熱伝達率との関係を示すグラフ図である。
6A is a graph showing a relationship between a groove pitch P and a heat transfer coefficient in a pipe during evaporation, and FIG. 6B is a graph showing a relation between the groove pitch P and a heat transfer coefficient in a pipe during condensation. is there.

【図7】横軸に溝ピッチPをとり、縦軸に単重量をとっ
て両者の関係を示すグラフ図である。
FIG. 7 is a graph showing the relationship between the groove pitch P on the horizontal axis and the simple weight on the vertical axis.

【図8】比Hf/Wfと拡管後のフィンの傾斜角ξとの
関係を示すグラフ図である。
FIG. 8 is a graph showing the relationship between the ratio Hf / Wf and the inclination angle の of the fin after expansion.

【図9】フィンの傾斜角ξを説明する模式的断面図であ
る。
FIG. 9 is a schematic cross-sectional view illustrating a fin inclination angle フ ィ ン.

【符号の説明】[Explanation of symbols]

1;内面溝付管 2;溝 3;フィン 4;底部 5;頂部 6;側面 7;切開部 1; inner surface grooved pipe 2; groove 3; fin 4; bottom 5; top 6; side 7;

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管内面に管軸方向に傾斜する方向に延び
る螺旋状の複数の平行溝を形成した内面溝付管におい
て、最大内径をDi、前記溝間に形成されたフィンの高
さをHf、このフィンの基部の幅をWf、前記溝が形成
された方向と管軸方向とがなすねじれ角をθ、前記溝の
管周方向における溝ピッチをPとしたとき、Hf/Di
は0.01乃至0.02、θ/Diは2.0乃至4.
5、Hf/Wfは1.6未満、Pは0.35乃至0.4
5(mm)であることを特徴とする内面溝付管。
An inner grooved pipe having a plurality of spiral parallel grooves extending in a direction inclined in the pipe axis direction on an inner surface of the pipe, wherein a maximum inner diameter is Di, and a height of a fin formed between the grooves is Di. Hf / Di, when the width of the base of the fin is Wf, the torsion angle between the direction in which the groove is formed and the tube axis direction is θ, and the groove pitch of the groove in the circumferential direction of the groove is P, Hf / Di
Is 0.01 to 0.02, and θ / Di is 2.0 to 4.
5, Hf / Wf is less than 1.6, P is 0.35 to 0.4
An inner grooved pipe having a diameter of 5 (mm).
JP00428098A 1998-01-12 1998-01-12 Inner grooved pipe Ceased JP3417825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00428098A JP3417825B2 (en) 1998-01-12 1998-01-12 Inner grooved pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00428098A JP3417825B2 (en) 1998-01-12 1998-01-12 Inner grooved pipe

Publications (2)

Publication Number Publication Date
JPH11201680A true JPH11201680A (en) 1999-07-30
JP3417825B2 JP3417825B2 (en) 2003-06-16

Family

ID=11580136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00428098A Ceased JP3417825B2 (en) 1998-01-12 1998-01-12 Inner grooved pipe

Country Status (1)

Country Link
JP (1) JP3417825B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004574A1 (en) * 2006-07-05 2008-01-10 Sumitomo Metal Industries, Ltd. Metal tube for thermal cracking reaction
CN102183167A (en) * 2011-03-24 2011-09-14 中色奥博特铜铝业有限公司 Inner threaded copper tube with diameter phi of 3
CN110763068A (en) * 2019-11-30 2020-02-07 广东美的制冷设备有限公司 Heat exchanger and air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004574A1 (en) * 2006-07-05 2008-01-10 Sumitomo Metal Industries, Ltd. Metal tube for thermal cracking reaction
EP2037202A1 (en) * 2006-07-05 2009-03-18 Sumitomo Metal Industries Limited Metal tube for thermal cracking reaction
JPWO2008004574A1 (en) * 2006-07-05 2009-12-03 住友金属工業株式会社 Metal tube for pyrolysis reaction
US8114355B2 (en) 2006-07-05 2012-02-14 Sumitomo Metal Industries, Ltd. Metal tube for pyrolysis reaction
JP2012107751A (en) * 2006-07-05 2012-06-07 Sumitomo Metal Ind Ltd Metal tube for thermal decomposition reaction
JP5155163B2 (en) * 2006-07-05 2013-02-27 新日鐵住金株式会社 Metal tube for pyrolysis reaction
EP2037202A4 (en) * 2006-07-05 2013-11-06 Nippon Steel & Sumitomo Metal Corp Metal tube for thermal cracking reaction
CN102183167A (en) * 2011-03-24 2011-09-14 中色奥博特铜铝业有限公司 Inner threaded copper tube with diameter phi of 3
CN110763068A (en) * 2019-11-30 2020-02-07 广东美的制冷设备有限公司 Heat exchanger and air conditioner

Also Published As

Publication number Publication date
JP3417825B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP4665713B2 (en) Internal grooved heat transfer tube
US7178361B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
KR100300640B1 (en) Refrigeration cycle for using a heat transfer tube for a zeotropic refrigerant mixture
US7254964B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
KR100236879B1 (en) Heat exchanger
JPH06185885A (en) Flat multi-holed condensing and heat transfer pipe
JPH1183368A (en) Heating tube having grooved inner surface
JP4119836B2 (en) Internal grooved heat transfer tube
JP2012002453A (en) Heat transfer tube with inner face groove, and heat exchanger
JP3829648B2 (en) Internal grooved heat transfer tube
JPH11201680A (en) Internally grooved tube
JPH04260793A (en) Heat transfer tube with inner surface groove
JP3292043B2 (en) Heat exchanger
JPH0579783A (en) Heat transfer tube with inner surface groove
JP2003240485A (en) Heat transfer tube with internal groove
JPS5883189A (en) Heat-transmitting pipe
JP3494625B2 (en) Internal grooved heat transfer tube
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JPH08105699A (en) Heat transfer tube with inside grooves
JP4119765B2 (en) Internal grooved heat transfer tube
JPS6225959B2 (en)
JPH0849992A (en) Heat transfer tube with internal groove
JPH11108579A (en) Pipe with grooved inner face
JPH08145585A (en) Heat transfer tube for non-azeotropic mixture refrigerant and heat exchanger employing this heat transfer tube
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition