JPH11200084A - Dissolved oxygen control method of electrolytic solution - Google Patents

Dissolved oxygen control method of electrolytic solution

Info

Publication number
JPH11200084A
JPH11200084A JP10008425A JP842598A JPH11200084A JP H11200084 A JPH11200084 A JP H11200084A JP 10008425 A JP10008425 A JP 10008425A JP 842598 A JP842598 A JP 842598A JP H11200084 A JPH11200084 A JP H11200084A
Authority
JP
Japan
Prior art keywords
electrolytic
dissolved oxygen
electrolytic solution
impurities
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10008425A
Other languages
Japanese (ja)
Other versions
JP3552512B2 (en
Inventor
Koji Ando
孝治 安藤
Hiroshi Furumi
廣志 古味
Kazuto Kukiyama
和人 久木山
Yukihisa Moriya
幸久 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP00842598A priority Critical patent/JP3552512B2/en
Publication of JPH11200084A publication Critical patent/JPH11200084A/en
Application granted granted Critical
Publication of JP3552512B2 publication Critical patent/JP3552512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To perform a stable operation by optionally controlling the eluted quantity of impurities from an anode in the electrolytic refining of copper. SOLUTION: In the electrolytic refining method of copper, the eluted quantity of the impurities from the anode is controlled by controlling the concentration of dissolved oxygen in the electrolytic solution. To control the dissolved oxygen in the electrolytic solution to be supplied, the generation efficiency of the dissolved oxygen is controlled by intermittently applying current to the electrolytic solution with a insoluble anode before supplying. And in an electrolytic extracting method of the impurities from the electrolytic solution, the generation efficiency of the dissolved oxygen in the electrolytic solution is controlled by intermittent energizing method, that is, by intermittently applying current. The energizing time in the intermittent energizing method is preferably 30-50% of the total time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅の電解精製方法
および電解採取方法に関し、特に、不純物の製品への混
入を防止し、製品品質を維持する銅の電解精製方法およ
び銅電解液における脱不純物のための電解採取方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolytically refining copper and a method for electrowinning copper. The present invention relates to an electrowinning method for impurities.

【0002】[0002]

【従来の技術】銅などの金属の電解精製においては、ア
ノードにAs、Sb、Bi等の不純物を含むことが多
い。これらの不純物元素は、電解に伴い電解液に溶出す
るか、スライムとして電解槽の槽底に沈積する。電解液
に溶出した場合、かみ込みあるいは電析して、電気銅を
汚染( Contamination)し、製品品質を著しく低下させ
る。このため、電解液に溶出する不純物を、一定の許容
濃度以下に維持することが求められていた。
2. Description of the Related Art In the electrolytic refining of metals such as copper, the anode often contains impurities such as As, Sb and Bi. These impurity elements are eluted in the electrolytic solution with electrolysis or deposited as slime on the bottom of the electrolytic cell. When eluted into the electrolyte, it bites or deposits, contaminating the electrolytic copper and significantly lowering the product quality. For this reason, it has been demanded that impurities eluted in the electrolytic solution be maintained at a certain allowable concentration or less.

【0003】電解液に溶出した不純物を除去(脱不純
物)するのに、電解採取方法による浄液処理が行われて
いる(特願平8−219999号)。該電解採取方法で
は、鉛などの不溶性アノードを使用して、表面から酸素
を発生させ、酸素の気泡あるいは電解液に溶け込んだ酸
素と接触させることで、不純物を酸化、沈殿させて除去
する。
[0003] In order to remove impurities (de-impurities) eluted in the electrolytic solution, a liquid purifying treatment by an electrolytic sampling method is performed (Japanese Patent Application No. 8-219999). In this electrowinning method, oxygen is generated from the surface using an insoluble anode such as lead, and is brought into contact with oxygen bubbles or oxygen dissolved in an electrolytic solution to oxidize and precipitate impurities to remove them.

【0004】しかし該電解採取方法は、電流効率が低い
ために電力コストが高く、除去効率も低く、また、アル
シン等の有毒性ガスや、爆発性ガスが発生する。さら
に、ガスの発生に起因し作業環境を害するミストの拡散
を完全に防止することは、電解採取槽を密閉することが
むしろ危険であり、困難であった。また、除去した不純
物には多量の銅を含んでいるため溶錬工程を繰り返さな
くてはならず、不純物の対応力への制約となっていた。
However, the electrowinning method has a low power efficiency due to low current efficiency, a low removal efficiency, and generates toxic gases such as arsine and explosive gases. Furthermore, it was rather dangerous and difficult to completely prevent the diffusion of mist that harms the working environment due to the generation of gas. Further, since the removed impurities contain a large amount of copper, the smelting process has to be repeated, which is a constraint on the ability of the impurities to cope.

【0005】その他に、電解液から不純物を効率的に除
去する方法として、例えばキレート樹脂を使用する方法
がある。この方法では、不純物を高純度に分離できるメ
リットがあるが、一般に建設コストおよび操業コストが
高く、除去した不純物の処理を検討する必要があるなど
の問題があり、従来の工程の中で、容易に行える方法と
は言い難い。
[0005] As another method for efficiently removing impurities from the electrolytic solution, there is a method using, for example, a chelate resin. This method has the advantage that impurities can be separated with high purity, but generally has high construction costs and operating costs, and it is necessary to consider the treatment of the removed impurities. This is hard to say.

【0006】一方、電解精製において、電解液に溶出せ
ず、電解精製槽の槽底に沈積する不純物(スライム)
は、スライム処理工程で処理され、多くは製品として回
収し供される。この工程による不純物の回収は、効率が
高く、電力コストも低い。
On the other hand, in the electrolytic refining, impurities (slime) which do not elute in the electrolytic solution and deposit on the bottom of the electrolytic refining tank.
Is treated in a slime treatment step, and is often recovered and provided as a product. The recovery of impurities by this step is high in efficiency and low in power cost.

【0007】従って、銅の電解精製におけるアノードの
不純物はスライムとして分離することが、電気銅の品質
面のみならずコスト面からも有利である。しかし、一般
的に、スライム処理工程においても、不純物の処理能力
には制限があるので、不純物の全量をスライムとして沈
積させるのが常に有利とは限らない。
[0007] Therefore, it is advantageous not only in terms of the quality of electrolytic copper but also in terms of cost to separate the impurities of the anode as slime in the electrolytic refining of copper. However, generally, even in the slime treatment step, there is a limitation in the ability to treat impurities, and it is not always advantageous to deposit the entire amount of impurities as slime.

【0008】以上のことから、銅の電解精製において、
不純物の溶出と沈積との割合である溶出率を、一定に制
御することが望まれていた。
[0008] From the above, in the electrolytic refining of copper,
It has been desired to control the elution rate, which is the ratio between the elution and deposition of impurities, to be constant.

【0009】これに関し、従来の銅の電解精製方法にお
いて、アノードから不純物を電解液に溶出させずにスラ
イムとして沈積させるため、すなわち溶出率を下げるた
め、アノード組成の変更が行われてきた。しかし、不純
物の溶出機構に未だ不明確な部分が多いことから、経験
によるアノード組成の決定が一般的であり、希望通りの
正確な溶出率を得ること、すなわち不純物を溶出と沈積
とに正確に分配することは困難であった。
In this connection, in the conventional copper electrolytic refining method, the composition of the anode has been changed in order to deposit impurities as slime from the anode without eluting them into the electrolytic solution, that is, to lower the elution rate. However, since there are still many unclear points in the mechanism of elution of impurities, it is common to determine the anode composition based on experience, and to obtain an accurate elution rate as desired, that is, to accurately dissolve impurities into elution and deposition. It was difficult to distribute.

【0010】[0010]

【発明が解決しようとする課題】本発明は、銅の電解精
製方法において、アノードからの不純物の溶出量を任意
に制御し、安定した操業を実現することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for electrolytically refining copper, in which the elution amount of impurities from the anode is arbitrarily controlled to realize a stable operation.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の銅の電解精製方法では、電解液の溶存酸
素濃度を制御することにより、アノードからの不純物の
溶出量を制御する。
In order to solve the above-mentioned problems, in the method for electrolytically refining copper of the present invention, the amount of dissolved impurities from the anode is controlled by controlling the concentration of dissolved oxygen in the electrolytic solution. .

【0012】供給する電解液の溶存酸素濃度を制御する
ために、供給前に、不溶性アノードを使用して前記電解
液に対し、断続的に通電して溶存酸素の発生効率を制御
する。
In order to control the concentration of dissolved oxygen in the supplied electrolyte, intermittent current is supplied to the electrolyte using an insoluble anode before the supply to control the efficiency of dissolved oxygen generation.

【0013】また、本発明の電解液から不純物を除去す
る電解採取方法は、通電を断続的に行う断続通電法によ
り、電解液中の溶存酸素の発生効率を制御する。
[0013] In the electrolytic extraction method of the present invention for removing impurities from an electrolytic solution, the generation efficiency of dissolved oxygen in the electrolytic solution is controlled by an intermittent energizing method of intermittent energization.

【0014】前記断続通電法における通電時間が、全体
に対して30〜50%であることが好ましい。
It is preferable that the energizing time in the intermittent energizing method is 30 to 50% of the whole.

【0015】[0015]

【発明の実施の形態】銅の電解精製において、アノード
からの不純物の溶出機構については、確かな根拠がない
が、アノードから電解液中に溶出した不純物が、酸化さ
れて酸化物あるいは複塩等の形で沈積すると考えられ
る。このため、電解液に空気などのガスや、過酸化水素
などの酸化剤を投入して、溶出した不純物を効率よく酸
化除去することで、操業を効率的にすることが考えられ
るが、上記ガスの吹き込みは、一般に効率が極めて低
く、酸化剤の投入は、時としてスケールを生じるので、
かえって操業を困難にすることがある。
BEST MODE FOR CARRYING OUT THE INVENTION In the electrolytic refining of copper, there is no definite basis for the mechanism of elution of impurities from the anode. However, impurities eluted from the anode into the electrolytic solution are oxidized to form oxides or double salts. It is thought to be deposited in the form of For this reason, it is conceivable to make the operation more efficient by introducing a gas such as air or an oxidizing agent such as hydrogen peroxide into the electrolytic solution to efficiently oxidize and remove the eluted impurities. Injection is generally very inefficient, and the oxidant charge sometimes creates scale,
On the contrary, it may make the operation difficult.

【0016】本発明者は、電解液中に溶出した不純物
を、効率的に酸化する方法を検討した。その結果、電解
液中の溶存酸素濃度が増加した場合、電解液に溶出する
不純物の量が減少し、スライムとして沈積する不純物の
量が増加する現象、すなわち不純物の溶出率が減少する
現象を利用して、電解液中の溶存酸素濃度を操作するこ
とで、電解精製における不純物の溶出率を制御できるこ
とを見出した。
The present inventors have studied a method for efficiently oxidizing impurities eluted in an electrolytic solution. As a result, when the concentration of dissolved oxygen in the electrolyte increases, the amount of impurities eluted into the electrolyte decreases, and the amount of impurities deposited as slime increases, that is, the phenomenon that the elution rate of impurities decreases. Then, it was found that by controlling the concentration of dissolved oxygen in the electrolytic solution, the elution rate of impurities in electrolytic refining can be controlled.

【0017】また、銅の電解精製に用いる電解液は、電
解採取により浄液処理されて給液されるのが通常であ
る。そこで、電解精製に供給される電解液中の溶存酸素
濃度を高める方法として、電解採取における不溶性アノ
ードによる電解が考えられ、その他に、酸素ガスを吹き
込む方法や、過酸化水素などの、酸素を発生する液体を
混合する方法も考えられる。しかし、電解以外の方法
は、効率、コストの面で、電解よりはるかに不利である
ことが確認されている。
The electrolytic solution used for electrolytic refining of copper is usually subjected to a purification treatment by electrolytic sampling and supplied. Therefore, as a method for increasing the dissolved oxygen concentration in the electrolytic solution supplied to the electrolytic refining, electrolysis using an insoluble anode in electrolytic extraction is conceivable.Other methods include blowing oxygen gas and generating oxygen such as hydrogen peroxide. A method of mixing liquids to be mixed is also considered. However, methods other than electrolysis have been found to be much more disadvantageous in terms of efficiency and cost than electrolysis.

【0018】前記電解採取では、電解液中の不純物が、
アノード表面に発生する酸素ガスにより酸化され、電解
採取槽の槽底に沈積することで、電解液から除去される
ものと考えられるが、一方、該酸素ガスは気泡となって
液面へ上昇し、液面からミストとして拡散してしまう。
従って、酸素ガスを気泡として放出させるのではなく、
溶存酸素として電解液に溶け込ませることが、電解液中
の不純物を酸化することと、溶存酸素を効率よく得るこ
とに効果的であると考えられる。
In the electrowinning, impurities in the electrolytic solution are
It is thought that it is oxidized by oxygen gas generated on the anode surface and is removed from the electrolytic solution by depositing on the bottom of the electrolytic collection tank, but the oxygen gas rises to the liquid level as bubbles. , And diffuses as mist from the liquid surface.
Therefore, instead of releasing oxygen gas as bubbles,
It is considered that dissolving in the electrolyte as dissolved oxygen is effective in oxidizing impurities in the electrolyte and efficiently obtaining dissolved oxygen.

【0019】本発明者は、脱不純物のための電解採取に
おける通電を、短時間で通電、停電を繰り返す断続通電
とすることで、溶存酸素の発生効率が高められることを
見出した。すなわち、従来行われてきた連続通電では、
アノード表面で発生した酸素は気泡として成長するにつ
れて、アノード表面にもはやとどまることのできない限
度の大きさを超えてしまい、アノードから離れて電解液
面に上昇しミストとなる。このため、電解液への酸素の
溶け込みが十分に行えないまま、大気放出してしまうこ
とになる。これに対し断続通電を行うと、アノード表面
での気泡の成長が停止する停電操作中の時間だけ、酸素
の気泡は電解液内に長くとどまり、電解液への酸素の溶
け込みが進行して、溶存酸素濃度が高くできることにな
ると考えられる。
The present inventor has found that the generation efficiency of dissolved oxygen can be increased by setting the energization in electrolytic sampling for de-impurity to be an intermittent energization in which energization and power outage are repeated in a short time. That is, in the conventional continuous energization,
As the oxygen generated on the anode surface grows as bubbles, it exceeds a size that can no longer stay on the anode surface, and rises away from the anode to the electrolyte surface to become mist. For this reason, the oxygen is released to the atmosphere without sufficiently dissolving oxygen into the electrolyte. On the other hand, when intermittent energization is performed, oxygen bubbles remain in the electrolyte for a long time during the power failure operation when the growth of bubbles on the anode surface stops, and the dissolution of oxygen into the electrolyte proceeds, It is considered that the oxygen concentration can be increased.

【0020】本発明の脱不純物の電解採取方法では、電
解採取槽の通電を、全体に対して30〜50%の通電時
間とする断続的通電とすることで、溶存酸素の発生効率
を高く維持した電解液を得る。そして、このように溶存
酸素濃度が制御された電解液を、電解精製槽に供給す
る。電解精製槽の電解液の溶存酸素濃度が制御されるこ
とで、アノードからの不純物の溶出量やスライム量を制
御することができる。
In the method for electrolytically collecting impurities according to the present invention, the efficiency of the generation of dissolved oxygen is maintained at a high level by intermittently energizing the electrowinning tank with an energizing time of 30 to 50% of the whole. The obtained electrolyte is obtained. Then, the electrolytic solution whose dissolved oxygen concentration is controlled as described above is supplied to the electrolytic refining tank. By controlling the concentration of dissolved oxygen in the electrolytic solution in the electrolytic refining tank, the amount of elution of impurities from the anode and the amount of slime can be controlled.

【0021】なお、本発明の電解液中の溶存酸素制御方
法は、不溶性アノードを使用した電解槽によるものであ
って、電解採取槽の名称に限られない。
The method for controlling dissolved oxygen in an electrolytic solution according to the present invention is based on an electrolytic cell using an insoluble anode, and is not limited to the name of the electrolytic collection tank.

【0022】[0022]

【実施例1】幅1260mm、長さ3000mm、深さ
1350mmの電解精製槽を8槽使用し、それぞれ精製
アノード26枚と銅種板カソード27枚を装入した。精
製アノードは横幅1030mm、縦幅1050mm、厚
さ38mm、単重370kgであり、不純物品位はPb
0.11%、As0.08%、Sb0.042%、Bi
0.024%である。銅種板カソードは横幅1070m
m、縦幅1050mm、初期厚さ0.7mmである。
EXAMPLE 1 Eight electrolytic refining tanks having a width of 1,260 mm, a length of 3,000 mm, and a depth of 1,350 mm were used, and 26 refining anodes and 27 copper seed plate cathodes were respectively charged. The purified anode is 1030 mm in width, 1050 mm in length, 38 mm in thickness, and 370 kg in unit weight.
0.11%, As 0.08%, Sb 0.042%, Bi
0.024%. Copper seed plate cathode is 1070m in width
m, vertical width 1050 mm, and initial thickness 0.7 mm.

【0023】次に、別に設けた電解採取槽から平均溶存
酸素濃度(DO)10mg/リットルの排液を得て、8
槽の前記電解精製槽に給液した。ただし、各電解精製槽
では、電解採取槽を通液しない電解液と混合すること
で、各電解精製槽のDOを0.12〜3mg/リットル
に変化させて調整した。
Next, drainage having an average dissolved oxygen concentration (DO) of 10 mg / liter was obtained from a separately provided electrowinning tank.
The solution was supplied to the electrolytic purification tank of the tank. However, in each electrolytic refining tank, DO was adjusted to 0.12 to 3 mg / liter by mixing with an electrolytic solution that does not flow through the electrolytic collecting tank.

【0024】8槽の電解精製槽を、一槽あたり16kA
の電流で430時間通電した。通電後、電解精製槽の槽
底のスライムを回収し、洗浄後、化学分析した。また同
時に、通電前後での精製アノードの重量の変化から、精
製アノードからの不純物の溶出量を測定した。この通電
を同一組成の精製アノードを用いて3回繰り返した。な
お、電解採取槽の排液の浮遊成分を測定したが、2mg
/リットル以下であり、一般の電解精製槽の排液の浮遊
成分の、1〜2mg/リットルとほとんど変わらないこ
とから、電解採取槽で生成したスケールが電解精製槽に
送り込まれていないことを確認した。
[0024] Eight electrolytic refining tanks each having a capacity of 16 kA
For 430 hours. After energization, the slime on the bottom of the electrolytic refining tank was collected, washed, and chemically analyzed. At the same time, the amount of impurities eluted from the purified anode was measured from the change in the weight of the purified anode before and after energization. This energization was repeated three times using a purified anode having the same composition. In addition, the suspended component of the drainage of the electrolytic collection tank was measured, and 2 mg
/ L or less, which is almost the same as 1 to 2 mg / L of the suspended component of the effluent of a general electrolytic refining tank, it was confirmed that the scale generated in the electrolytic collecting tank was not sent to the electrolytic refining tank. did.

【0025】不純物の電解液への溶出率を以下の式(数
1)で定義し、各元素の溶出率と、電解精製槽の溶存酸
素濃度との関係を図1にプロットした。
The elution rate of impurities into the electrolytic solution was defined by the following equation (Equation 1), and the relationship between the elution rate of each element and the dissolved oxygen concentration in the electrolytic purification tank was plotted in FIG.

【0026】[0026]

【数1】溶出率(%)=100−スライムの不純物量/
アノードからの不純物溶減量×100
[Equation 1] Elution rate (%) = 100−amount of impurities in slime /
Impurity loss from anode × 100

【0027】図1に示されるように、溶出率は電解液の
DO濃度が増加するに伴い減少し、DO濃度を一定に維
持することで、任意の不純物溶出率に制御できることが
確認された。
As shown in FIG. 1, it was confirmed that the elution rate was reduced as the DO concentration of the electrolytic solution was increased, and it was possible to control the elution rate of an arbitrary impurity by keeping the DO concentration constant.

【0028】なお、電気銅の中央部を貫通ボーリング
し、化学溶解して分析した結果を表1に示す。溶存酸素
濃度の高い電解液を給液しても、電気銅の品質には全く
悪影響を及ぼさないことが確認された。
Table 1 shows the results of through boring through the center of electrolytic copper, chemical dissolution and analysis. It was confirmed that the supply of the electrolytic solution having a high dissolved oxygen concentration had no adverse effect on the quality of electrolytic copper.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【実施例2】幅1260mm、長さ3000mm、深さ
1350mmの電解採取槽を使用し、鉛アノード12
枚、銅カソード13枚を装入した。鉛アノードは、横幅
1070mm、縦幅1050mm、厚さ40mmで、銅
カソードは、横幅1070mm、縦幅1050mm、初
期厚さ0.7mmで、鉛アノードの間隔は210mmと
した。
Example 2 An electrowinning tank having a width of 1260 mm, a length of 3000 mm and a depth of 1350 mm was used.
And 13 copper cathodes. The lead anode had a width of 1070 mm, a length of 1050 mm, and a thickness of 40 mm, and the copper cathode had a width of 1070 mm, a length of 1050 mm, an initial thickness of 0.7 mm, and the interval between the lead anodes was 210 mm.

【0031】該電解採取槽において、銅濃度50g/リ
ットル、硫酸濃度190g/リットル、液温60℃の電
解液を給液として、毎分30リットルの流量で供給し、
8kAの電流で連続通電した。給液としての電解液の平
均溶存酸素濃度は、溶存酸素濃度計(東亜電波工業製、
型式DO−20A)で測定して、0.12mg/リット
ルと一定だった。
In the electrolytic collecting tank, an electrolytic solution having a copper concentration of 50 g / l, a sulfuric acid concentration of 190 g / l, and a liquid temperature of 60 ° C. is supplied at a flow rate of 30 liters per minute.
It was continuously energized with a current of 8 kA. The average dissolved oxygen concentration of the electrolyte as a feed solution is measured using a dissolved oxygen concentration meter (Toa Denpa Kogyo,
It was constant at 0.12 mg / liter as measured by model DO-20A).

【0032】連続通電して24時間経過後から、通電サ
イクルを、1分間の停電と1分間の通電を繰り返す断続
通電に設定した。この通電サイクルを設定してから24
時間経過した後に、排液と給液の平均溶存酸素濃度を溶
存酸素濃度計(東亜電波工業製、型式DO−20A)で
測定した。
After 24 hours from continuous energization, the energization cycle was set to intermittent energization in which power interruption for one minute and energization for one minute were repeated. 24 after setting this energization cycle
After a lapse of time, the average dissolved oxygen concentration of the drainage liquid and the feed liquid was measured with a dissolved oxygen concentration meter (model DO-20A, manufactured by Toa Denpa Kogyo Kogyo).

【0033】それからは、異なる通電サイクル効率で設
定し直して24時間経過後に、溶存酸素濃度の測定を繰
り返した。
Thereafter, the measurement of the dissolved oxygen concentration was repeated 24 hours after resetting with different current application cycle efficiencies.

【0034】通電電流値と給排液の平均溶存酸素濃度と
から下式(数2)を用いて、溶存酸素の発生効率を算出
し、全体に占める通電時間の割合である通電サイクル効
率(%)との関係を求めた。
Using the following equation (Equation 2), the generation efficiency of dissolved oxygen is calculated from the current value and the average dissolved oxygen concentration of the supply and drainage liquids, and the current supply cycle efficiency (% ) And asked for a relationship.

【0035】[0035]

【数2】発生効率(%)=(排液溶存酸素濃度−給液溶
存酸素濃度)×流量×60/(0.2985×通電電流
値)×100
## EQU2 ## Efficiency (%) = (discharged oxygen concentration−supply liquid dissolved oxygen concentration) × flow rate × 60 / (0.2985 × conduction current value) × 100

【0036】式中、溶存酸素濃度の単位は(g/リット
ル)、流量の単位は(リットル/分)、通電電流値は
(A)であり、定数の0.2985は、通電電流値を1
Aとして1時間で得られる酸素が理論上0.2985g
であることを示す。
In the formula, the unit of the dissolved oxygen concentration is (g / liter), the unit of the flow rate is (liter / min), and the current value is (A). The constant of 0.2985 means that the current value is 1
0.2985 g of oxygen theoretically obtained in 1 hour as A
It is shown that.

【0037】その結果、図2に示すように、通電サイク
ル効率(%)を30〜50%とすることで、高い溶存酸
素の発生効率を得られることがわかった。高い通電サイ
クル効率を適用することが、電解採取槽を効率よく運転
することになるので、通電サイクル効率を50%とする
時が、最も効率よく溶存酸素濃度の高い電解液を得られ
ることになる。
As a result, as shown in FIG. 2, it was found that a high dissolved oxygen generation efficiency can be obtained by setting the energization cycle efficiency (%) to 30 to 50%. Applying a high energization cycle efficiency leads to efficient operation of the electrowinning tank. When the energization cycle efficiency is set to 50%, an electrolytic solution having a high dissolved oxygen concentration can be obtained most efficiently. .

【0038】[0038]

【発明の効果】本発明の銅の電解精製方法、および脱不
純物のための電解採取方法により、従来の電解精製槽お
よび電解採取槽から最小限の設備改造のみで、不純物を
溶出と沈積とに正確に分配する制御が、容易にできるよ
うになり、安定した操業と高い製品品質の維持ができる
ようになった。
According to the method for electrolytically refining copper and the method for extracting impurities for removing impurities according to the present invention, impurities can be eluted and deposited with minimal equipment modification from conventional electrolytic refining tanks and electrolytic sampling tanks. Accurate distribution control has become easier, and stable operation and high product quality can be maintained.

【0039】また、本発明の脱不純物のための電解採取
方法により、従来より高効率で高い溶存酸素濃度の電解
液が得られるようになり、浄液工程における効率の向上
に加えて、ミストの発生が減少できるようになった。
In addition, the electrolytic extraction method for removing impurities according to the present invention makes it possible to obtain an electrolytic solution having a higher dissolved oxygen concentration with higher efficiency than conventional ones. Occurrence can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解精製槽における給液溶存酸素濃度と溶出率
の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a dissolved oxygen concentration of a feed solution and an elution rate in an electrolytic purification tank.

【図2】電解採取槽における溶存酸素の発生効率と通電
サイクル効率の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the generation efficiency of dissolved oxygen and the power supply cycle efficiency in an electrolytic collection tank.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 供給する電解液の溶存酸素濃度を制御す
ることにより、アノードからの不純物の溶出量を制御す
ることを特徴とする電解精製方法。
An electrolytic refining method characterized by controlling the concentration of dissolved oxygen in an electrolytic solution to be supplied to control the amount of impurities eluted from an anode.
【請求項2】 供給する電解液の溶存酸素濃度を制御す
るために、供給前に、不溶性アノードを使用して前記電
解液に対し、断続的に通電して、溶存酸素の発生効率を
制御することを特徴とする請求項1に記載の電解精製方
法。
2. Controlling the concentration of dissolved oxygen in an electrolytic solution to be supplied by intermittently supplying electricity to the electrolytic solution using an insoluble anode before supply to control the dissolved oxygen generation efficiency. The electrolytic refining method according to claim 1, wherein:
【請求項3】 電解液から不純物を除去する電解採取方
法において、通電を断続的に行う断続通電法により、電
解液中の溶存酸素の発生効率を制御することを特徴とす
る電解採取方法。
3. An electrowinning method for removing impurities from an electrolytic solution, wherein the generation efficiency of dissolved oxygen in the electrolytic solution is controlled by an intermittent energizing method in which energization is intermittently performed.
【請求項4】 前記断続通電法における通電時間が、全
体に対して30〜50%であることを特徴とする請求項
3に記載の電解採取方法。
4. The method according to claim 3, wherein the energization time in the intermittent energization method is 30 to 50% of the whole.
JP00842598A 1998-01-20 1998-01-20 Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper Expired - Lifetime JP3552512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00842598A JP3552512B2 (en) 1998-01-20 1998-01-20 Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00842598A JP3552512B2 (en) 1998-01-20 1998-01-20 Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper

Publications (2)

Publication Number Publication Date
JPH11200084A true JPH11200084A (en) 1999-07-27
JP3552512B2 JP3552512B2 (en) 2004-08-11

Family

ID=11692780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00842598A Expired - Lifetime JP3552512B2 (en) 1998-01-20 1998-01-20 Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper

Country Status (1)

Country Link
JP (1) JP3552512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838116B2 (en) * 2002-11-22 2005-01-04 Feng Chia University Oxygen-removing pre-process for copper interconnect grown by electrochemical displacement deposition
JP2008121066A (en) * 2006-11-13 2008-05-29 Sumitomo Metal Mining Co Ltd Method of preventing generation of floated slime in copper electrolytic refining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838116B2 (en) * 2002-11-22 2005-01-04 Feng Chia University Oxygen-removing pre-process for copper interconnect grown by electrochemical displacement deposition
JP2008121066A (en) * 2006-11-13 2008-05-29 Sumitomo Metal Mining Co Ltd Method of preventing generation of floated slime in copper electrolytic refining

Also Published As

Publication number Publication date
JP3552512B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
EP0018848B1 (en) Method and apparatus for the electrolytic regeneration of etchants for metals
JP3089595B2 (en) Recovery of indium by electrowinning
EP3715484B1 (en) Method for treating lithium ion battery waste
JPH0780466A (en) Method and device for regenerating aqueous solution containing metal ion and sulfuric acid
WO2019102765A1 (en) Method for treating lithium ion battery waste
JP2021523298A (en) Improvement of copper electrorefining
JPS61223140A (en) Recovery of copper from arsenic and antimony-containing solution
US5372684A (en) Process for the direct electrochemical refining of copper scrap
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
JP3552512B2 (en) Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper
JP2007254800A (en) Method for manufacturing high purity nickel and high purity nickel obtained by using the method
JP3243929B2 (en) Adjustment method of copper ion concentration of copper removal electrolytic solution
US6309531B1 (en) Process for extracting copper or iron
JP3998951B2 (en) Method and apparatus for recovering valuable metals from scrap
EP0028158A1 (en) Methods and systems of removal of metals from solution and of purification of metals and purified solutions and metals so obtained
JPH06192879A (en) Refining method for cobalt
JP3083079B2 (en) Copper electrorefining method
JP3875548B2 (en) Electrolyte purification method
JP2020055728A (en) Method of producing sulfuric acid solution
CN114517309B (en) Nickel supplementing and decoppering method in nickel electrolysis production system
JPH06322575A (en) Production of sulfer-containing electrolytic nickel
JPH0238536A (en) Separation of noble metal in acidic iridium solution
JPH03115592A (en) Molten salt electrolytic cell
JP2570076B2 (en) Manufacturing method of high purity nickel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term