JPH11199985A - Superhigh hardness and high toughness steel and its production - Google Patents

Superhigh hardness and high toughness steel and its production

Info

Publication number
JPH11199985A
JPH11199985A JP1832298A JP1832298A JPH11199985A JP H11199985 A JPH11199985 A JP H11199985A JP 1832298 A JP1832298 A JP 1832298A JP 1832298 A JP1832298 A JP 1832298A JP H11199985 A JPH11199985 A JP H11199985A
Authority
JP
Japan
Prior art keywords
steel
toughness
ultra
hardness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1832298A
Other languages
Japanese (ja)
Inventor
Tatsuya Kumagai
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1832298A priority Critical patent/JPH11199985A/en
Publication of JPH11199985A publication Critical patent/JPH11199985A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel combining superhigh hardness of >=600 HB and excellent toughness and to provide a method for producing it. SOLUTION: In a steel having a compsn. contg., by weight, 0.4 to 0.55% C, 0.03 to 0.15% Si, <=0.5% Mn, 5 to 13% Ni, 0.5 to 3% Cr, 0.2 to 2% Mo, 0.05 to 0.2% V, and the balance Fe with inevitable impurities, it is composed of a microstructure essentially consisting of martensite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超高硬度高靱性
鋼およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-hard and tough steel and a method for producing the same.

【0002】[0002]

【従来の技術】ブルドーザーやパワーショベル等の建設
機械や、産業廃棄物を切断処理するカッター等の耐摩耗
性が強く要求される鋼材には高硬度鋼が広く用いられて
いる。鋼材の耐摩耗性は硬度が高くなるほど向上するの
で、このような用途ではできるだけ高硬度であることが
望ましい。しかし、現在汎用されている高硬度鋼はブリ
ネル硬さが500程度以下のものがほとんどである。そ
の理由は、鋼材の硬度が高くなるほど一般に靱性が低下
するために、折損やき裂の発生が起きやすいので、耐用
期間がかえって短くなってしまうからである。特に寒冷
地の氷点下の環境において強い衝撃を受ける用途に使用
される場合などでは、その懸念が大きい。高硬度鋼の例
としては、特開昭63−83225号公報、特公平1−
21846号公報、特開平8−41535号公報などが
あるが、こられはいずれもブリネル硬さHB600未満
の硬さの鋼材に関するものである。また、特開平5−5
9427号公報には、浸炭処理により表面にHB600
を超える硬さの層を得る方法が提案されているが、得ら
れる超高硬度層はごく薄い層に限られるため、使用中の
摩滅により耐摩耗性が低下することが懸念され、浸炭処
理が必要なのでコストも割高になる。
2. Description of the Related Art High-hardness steel is widely used for construction machines such as bulldozers and power shovels, and steel materials which require strong wear resistance, such as cutters for cutting industrial waste. Since the wear resistance of the steel material increases as the hardness increases, it is desirable that the hardness be as high as possible in such applications. However, most of the currently used high hardness steels have a Brinell hardness of about 500 or less. The reason for this is that the higher the hardness of the steel material, the lower the toughness generally, so that breakage and cracks are likely to occur, so that the service life is rather shortened. In particular, in the case of being used for an application that receives a strong impact in an environment below the freezing point of a cold region, there is a great concern. Examples of high-hardness steel are disclosed in JP-A-63-83225,
21846 JP, there are such Hei 8-41535, JP-Korare relates steel both Brinell hardness H B 600 less hardness. Also, Japanese Patent Application Laid-Open No.
The 9427 JP, H B 600 on the surface by carburizing
Although a method of obtaining a layer having a hardness higher than that has been proposed, since the obtained ultra-high hardness layer is limited to an extremely thin layer, there is a concern that abrasion resistance during use is reduced due to wear during use. The cost is higher because it is necessary.

【0003】[0003]

【発明が解決しようとする課題】ブリネル硬さHBが6
00以上の超高硬度鋼は、非常に優れた耐摩耗性を示
し、瞬時の大きな衝撃に対する変形抵抗も大きいので、
土木建設機械の耐摩耗材料などをはじめ利用価値は非常
に高いが、折損やき裂の発生の可能性が低い十分な靱性
をあわせて具備するものはなく、このような分野にこれ
まで実用化された例はなかった。
The Brinell hardness H B is 6
Since ultra-high hardness steel of 00 or more shows extremely excellent wear resistance and large deformation resistance to a large instantaneous impact,
Although its utility value is extremely high, including wear-resistant materials for civil engineering and construction machinery, none has sufficient toughness with low possibility of breakage or cracking, and it has been practically used in such fields. There was no example.

【0004】本発明は、このような課題を解決するため
に、HB600以上の超高硬度と優れた靱性を兼ね備え
る鋼及びその製造方法を提供することを目的とするもの
である。
[0004] The present invention, in order to solve such problems, it is an object to provide a steel and a manufacturing method thereof bring together excellent toughness and H B 600 or more ultra-high hardness.

【0005】[0005]

【課題を解決するための手段】発明者は、超高硬度鋼の
靱性に対する合金元素と製造法の影響について種々検討
した結果、Siを低減しCr、Mo、Vなどを適正量含
む高C高Ni鋼板に、通常の焼入れ熱処理に次いで深冷
処理と低温焼戻し熱処理を行うことにより、HB600
以上の硬さと優れた靱性を兼ね備える超高硬度高靱性鋼
とその製造で方法が得られることを見出した。
The inventors of the present invention have conducted various studies on the effects of alloying elements and manufacturing methods on the toughness of ultra-high hardness steel. a Ni steel plate, by performing the cryogenic process and the low temperature tempering subsequent to normal quenching heat treatment, H B 600
It has been found that a method can be obtained by ultra-high hardness and high toughness steel having both the above hardness and excellent toughness and its production.

【0006】本発明は、この知見に基づいて構成したも
ので、その要旨とするところは、 (1) 重量%で、C:0.4〜0.55%、Si:
0.03〜0.15%、Mn:0.5%以下、Ni:5
〜13%、Cr:0.5〜3%、Mo:0.2〜2%、
V:0.05〜0.2%を含み、残部Feおよび不可避
的不純物からなる組成を有する鋼において、マルテンサ
イト主体のミクロ組織からなることをを特徴とする、超
高硬度高靱性鋼。
The present invention has been made based on this finding, and the gist thereof is as follows: (1) C: 0.4 to 0.55% by weight, Si:
0.03 to 0.15%, Mn: 0.5% or less, Ni: 5
1313%, Cr: 0.5-3%, Mo: 0.2-2%,
V: An ultra-high hardness and toughness steel containing 0.05 to 0.2% and having a composition comprising the balance of Fe and unavoidable impurities, wherein the steel has a microstructure mainly composed of martensite.

【0007】(2) 重量%で、さらにCo:3〜10
%、Nb:0.02〜0.2%、Ti:0.01〜0.
2%からなる靱性向上元素群のうち一種以上を含有する
ことを特徴とする前記(1)記載の超高硬度高靱性鋼。
(2) Co: 3 to 10% by weight
%, Nb: 0.02-0.2%, Ti: 0.01-0.
The ultra-high hardness and high toughness steel according to the above (1), which contains one or more of a toughness improving element group consisting of 2%.

【0008】(3) 重量%で、さらに、B:0.00
05〜0.005%を含有することを特徴とする前記
(1)または前記(2)記載の超高硬度高靭性鋼。
(3) By weight%, B: 0.00
The ultra-high hardness and high toughness steel according to the above (1) or (2), containing 0.05 to 0.005%.

【0009】(4) マルテンサイト主体のミクロ組織
が、マルテンサイトと残留オーステナイトの混合組織で
あり、残留オーステナイトの組織分率が3%以下である
ことを特徴とする前記(1)または前記(2)または前
記(3)記載の超高硬度高靱性鋼。
(4) The microstructure mainly composed of martensite is a mixed structure of martensite and retained austenite, and the microstructure fraction of retained austenite is 3% or less. ) Or the ultra-hard and tough steel according to (3).

【0010】(5) 重量%で、C:0.4〜0.55
%、Si:0.03〜0.15%、Mn:0.5%以
下、Ni:5〜13%、Cr:0.5〜3%、Mo:
0.2〜2%、V:0.05〜0.2%を含み、残部F
eおよび不可避的不純物からなる組成を有する鋼片また
は鋳片を加熱し、熱間圧延の後、これをA3変態点以上
の温度から10℃/sec以上の冷却速度で100℃以
下まで冷却する焼入れ熱処理を行ない、ついで深冷処理
し、さらに100℃〜300℃の温度で焼戻し熱処理す
ることを特徴とする、超高硬度高靱性鋼の製造方法。
(5) C: 0.4-0.55% by weight
%, Si: 0.03 to 0.15%, Mn: 0.5% or less, Ni: 5 to 13%, Cr: 0.5 to 3%, Mo:
0.2 to 2%, V: 0.05 to 0.2%, balance F
e and a slab having a composition consisting of unavoidable impurities are heated and, after hot rolling, are cooled from a temperature above the A 3 transformation point to 100 ° C. or less at a cooling rate of 10 ° C./sec or more. A method for producing an ultra-hard and high-toughness steel, comprising performing a quenching heat treatment, a deep cooling treatment, and a tempering heat treatment at a temperature of 100 ° C to 300 ° C.

【0011】(6) 重量%で、さらに、Co:3〜1
0%、Nb:0.02〜0.2%、Ti:0.01〜
0.2%からなる靱性向上元素群のうち一種以上を含有
する鋼片または鋳片であることを特徴とする前記(5)
記載の超高硬度高靱性鋼の製造方法。
(6) By weight%, Co: 3-1
0%, Nb: 0.02 to 0.2%, Ti: 0.01 to
(5) The steel slab or the cast slab containing at least one of the toughness improving element group consisting of 0.2%.
A method for producing the ultra-hard and tough steel described.

【0012】(7) 重量%で、さらに、B:0.00
05〜0.005%を含有することを特徴とする前記
(5)または前記(6)記載の超高硬度高靱性鋼の製造
方法。
(7) B: 0.00% by weight
The method for producing an ultra-hard and tough steel according to the above (5) or (6), wherein the steel contains 0.05 to 0.005%.

【0013】(8) 深冷処理温度が−50℃以下であ
ることを特徴とする前記(5)または前記(6)または
前記(7)記載の超高硬度高靱性鋼の製造方法。
(8) The method for producing an ultra-hard and high-toughness steel according to the above (5), (6) or (7), wherein the cryogenic treatment temperature is -50 ° C or lower.

【0014】[0014]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0015】HB600を超える超高硬度を得るために
は、ミクロ組織はマルテンサイト主体であることが必須
である。さらにマルテンサイトの硬さはほぼ含有C量で
決定されるため、高硬度を得るためにはCを高くするこ
とは不可欠である。一方、Niはマトリックスの靱性向
上に有効な元素であるが、HB600クラスの超高硬度
鋼においは3%未満程度のNi添加ではあまり効果は大
きくない。また、Niを単純に多量に添加しても焼入れ
後の靱性はあまり高くならない。その理由として本発明
者は高C高Ni鋼ではマルテンサイト変態温度が非常に
低くなり、通常の焼入れ熱処理ではマルテンサイト変態
が不完全となって残留オーステナイト分率が高くなるた
めと考えている。すなわち、残留オーステナイトが多量
に存在すると、硬さを低下させると同時に靱性を低下さ
せ、そのためにNiの靱性向上効果が相殺されてしまう
ためと推察している。さらにSiの低減も靱性向上に効
果があるが、高C−高Ni鋼においては低Si化もやは
りマルテンサイト変態温度を低下させるので、焼入れ後
の残留オーステナイトを増加させる。すなわち、Siを
低減した高C高Ni鋼を、焼入時にほぼ完全にマルテン
サイト変態させることにより、十分な硬度を得ることが
でき、同時にNi多量含有と低Si化による靱性向上効
果を有効に利用することができる。本発明者は、このよ
うな鋼を完全にマルテンサイト変態をさせる方法とし
て、通常の焼入れに続いて、鋼材を0℃未満の低温に冷
却する、深冷化処理を行うことが極めて有効であり、そ
の際、図1の残留オーステナイト分率と硬さ、靭性の関
係に示すように、マルテンサイトが主体のマルテンサイ
トと残留オーステナイトの混合組織において残留オース
テナイト分率を3%以下とすることが、超高硬度高靱性
を得るのに有効であることを新たに見出して本発明を成
し遂げたものである。さらに、本発明者は、深冷処理後
に所定温度の低温焼戻しを組み合わせることによって本
発明の組成からなる鋼において前記のミクロ組織を容易
にかつ安定的に生成可能であり、超高硬度高靱性鋼が効
率的に製造できることを新たに見出したものである。な
お、図1における供試料の鋼組成は、C:0.42%、
Si:0.08%、Mn:0.35%、Ni:6.4
%、Cr:2.02%、Mo:0.35%、V:0.1
1%である。
In order to obtain an ultra-high hardness exceeding H B 600, it is essential that the microstructure is mainly composed of martensite. Further, since the hardness of martensite is almost determined by the contained C content, it is indispensable to increase C in order to obtain high hardness. Meanwhile, Ni is an element effective in improving the toughness of the matrix, ultra high hardness steel odor H B 600 class is not very effective large in Ni addition of about less than 3%. Further, even if Ni is simply added in a large amount, the toughness after quenching does not increase so much. The inventor believes that the martensitic transformation temperature is very low in a high-C high-Ni steel, and the martensitic transformation is incomplete by ordinary quenching heat treatment, and the fraction of retained austenite increases. That is, it is presumed that the presence of a large amount of retained austenite lowers the hardness and at the same time lowers the toughness, thereby offsetting the effect of improving the toughness of Ni. Further, the reduction of Si is also effective in improving the toughness, but in a high C-high Ni steel, lowering the Si also lowers the martensitic transformation temperature, thereby increasing the retained austenite after quenching. That is, sufficient hardness can be obtained by almost completely transforming the martensitic transformation of a high-C high-Ni steel with reduced Si during quenching, and at the same time, a large amount of Ni and an effect of improving toughness due to low Si can be effectively obtained. Can be used. As a method for completely transforming such steel into martensite, the present inventor is extremely effective to perform a deep cooling treatment in which the steel material is cooled to a low temperature of less than 0 ° C., following normal quenching. At this time, as shown in the relationship between the retained austenite fraction and the hardness and toughness in FIG. 1, the retained austenite fraction in the mixed structure of martensite mainly composed of martensite and retained austenite is set to 3% or less. The present invention was newly found to be effective for obtaining ultra-high hardness and high toughness, and achieved the present invention. Furthermore, the present inventor can easily and stably generate the microstructure in a steel having the composition of the present invention by combining low-temperature tempering at a predetermined temperature after the deep cooling treatment, Has been found to be able to be manufactured efficiently. The steel composition of the sample in FIG. 1 is C: 0.42%,
Si: 0.08%, Mn: 0.35%, Ni: 6.4
%, Cr: 2.02%, Mo: 0.35%, V: 0.1
1%.

【0016】また、耐摩耗用途に使用する場合には、摩
擦熱のために鋼材温度が高くなることがあるので、焼戻
し軟化抵抗が高いことが望ましく、Cr、Mo、Vを適
量含有することにより、焼戻し軟化抵抗を高めることが
できる。本発明のように、マルテンサイト組織主体で所
定残留オーステナイトを混合した組織からなる高C−低
Si−高Ni成分系鋼では、前記のCr、Mo、Vを所
望量含有せしめても、これらは同時に焼入性向上元素と
して有効にはたらくが、超高硬度(HB600以上の硬
さ)と高靱性の両立をほとんど阻害しないので発明にお
いてCr、Mo、Vも発明上必須元素である。
Further, when the steel material is used for abrasion resistance, since the temperature of the steel material may increase due to frictional heat, it is desirable that the tempering softening resistance is high, and by containing appropriate amounts of Cr, Mo, and V, In addition, tempering softening resistance can be increased. As in the present invention, in a high C-low Si-high Ni component steel having a structure in which a predetermined retained austenite is mainly mixed with a martensite structure, even if Cr, Mo, and V are contained in desired amounts, While effectively serve as a hardenability improving element simultaneously, a Cr, Mo, V even invention on essential element in the invention since ultra high hardness (H B 600 or hardness) and hardly inhibit both high toughness.

【0017】次に、本発明の鋼成分の限定理由を述べ
る。
Next, the reasons for limiting the steel components of the present invention will be described.

【0018】C:上述のようにマルテンサイトの硬さは
ほぼCで決まるので、HB600以上の硬さを得るには
Cは0.4%以上は必要である。ただしCを0.55%
以上添加しても、マルテンサイト硬さの向上効果は少な
くなり、むしろ靱性低下への影響が大きくなるので、C
含有量は0.4〜0.55%に限定した。
[0018] C: Since determined almost the hardness of martensite, as described above C, to obtain a H B 600 or more hardness C is required than 0.4%. However, C is 0.55%
Even with the above addition, the effect of improving martensite hardness is reduced, and the effect on the reduction of toughness is rather increased.
The content was limited to 0.4-0.55%.

【0019】Si:Siは脱酸元素であり、この種の鋼
には通常0.2%〜0.3%程度含まれるが、これを
0.15%未満に低減することにより焼入れまま組織の
靱性が大きく改善できる。いっぽう、0.03%未満で
はその効果が少ないので、Si含有量は0.03〜0.
15%とした。
Si: Si is a deoxidizing element, and this kind of steel usually contains about 0.2% to 0.3%, but by reducing this to less than 0.15%, the structure of the as-quenched steel is reduced. The toughness can be greatly improved. On the other hand, if the content is less than 0.03%, the effect is small, so the Si content is 0.03 to 0.3.
15%.

【0020】Mn:Mnは、MnSを形成して破壊の起
点となる介在物を形成するため特に耐折損性に有害であ
る。少なくともMnは0.5%以下に低減することが好
ましい。
Mn: Mn is particularly detrimental to breakage resistance because it forms MnS to form inclusions that serve as starting points for destruction. At least Mn is preferably reduced to 0.5% or less.

【0021】Ni:Niは靱性を向上させるための重要
な元素であるが、本発明鋼のような高C成分では、顕著
な靱性向上のためには5%以上の添加が必要である。た
だし、13%を越えて添加しても著しい靱性向上効果は
望み難く、コストも高くなるので、Ni含有量は5〜1
3%とした。
Ni: Ni is an important element for improving toughness. However, in a high C component such as the steel of the present invention, addition of 5% or more is necessary for remarkable improvement in toughness. However, even if added over 13%, a remarkable effect of improving toughness is hardly expected, and the cost increases, so that the Ni content is 5 to 1%.
3%.

【0022】Cr:Crは焼入性向上および焼戻し軟化
抵抗向上に有効である。0.5%未満ではそれらの効果
は小さく、逆に3%を超えると靱性に有害である。した
がって、Crの含有量は0.5〜3%とする。
Cr: Cr is effective for improving hardenability and tempering softening resistance. If it is less than 0.5%, their effect is small, and if it exceeds 3%, on the other hand, it is detrimental to toughness. Therefore, the content of Cr is set to 0.5 to 3%.

【0023】Mo:Moも焼入性向上および焼戻し軟化
抵抗向上に有効である。0.2%未満ではそれらの効果
は小さく、2%を越えて添加してもそれらの効果は飽和
するので、経済性を考慮してそれを上限とし、Moの含
有量は0.2〜2%とした。
Mo: Mo is also effective for improving the hardenability and the tempering softening resistance. If the content is less than 0.2%, their effects are small, and even if added over 2%, their effects are saturated. Therefore, considering the economy, the upper limit is set, and the Mo content is 0.2 to 2%. %.

【0024】V:Vも焼入性向上および焼戻し軟化抵抗
向上に有効である。0.05%未満ではそれらの効果は
小さく、逆に0.2%を超えると粗大析出物を形成する
ために靱性に有害である。したがって、Vの含有量は
0.05〜0.2%とする。
V: V is also effective for improving the hardenability and the tempering softening resistance. If it is less than 0.05%, the effect is small, and if it exceeds 0.2%, coarse precipitates are formed, which is harmful to toughness. Therefore, the content of V is set to 0.05 to 0.2%.

【0025】以上は本発明における鋼の基本成分である
が、さらに本発明では上記成分の他に、靭性向上元素群
Co、Nb、TiとBのうち一種または二種以上添加す
ることができる。
The above are the basic components of steel in the present invention. In the present invention, in addition to the above components, one or more of the toughness improving element group Co, Nb, Ti and B can be added.

【0026】Co:Coは靱性向上に有効な元素であ
り、その効果は3%以上で発揮される。しかし、10%
を越えて添加してもそれ以上の靱性向上効果はなく、コ
ストも高くなるので、Coの添加量は3%〜10%とす
ることが望ましい。
Co: Co is an element effective for improving toughness, and its effect is exhibited at 3% or more. But 10%
If more than Co is added, there is no further effect of improving toughness and the cost increases, so the Co addition amount is desirably 3% to 10%.

【0027】Nb:Nbは圧延前の加熱時におけるオー
ステナイト粒の粗大化抑制と効果によって結晶粒の微細
化に寄与し、靱性向上に有効である。この効果を発揮す
るためには0.02%以上の添加が必要である。ただ
し、0.2%を超えて添加すると、粗大なNb析出物を
生じて靱性が低下する。このためNb含有量は0.02
〜0.2%とすることが望ましい。
Nb: Nb contributes to the refinement of crystal grains by suppressing and increasing the austenite grains during heating before rolling, and is effective in improving toughness. In order to exhibit this effect, it is necessary to add 0.02% or more. However, if it is added in excess of 0.2%, coarse Nb precipitates are formed and the toughness is reduced. Therefore, the Nb content is 0.02
It is desirable to set it to 0.2%.

【0028】Ti:Tiは結晶粒の微細化に有効であ
り、この効果のためには0.01%以上の添加が好まし
いが、0.2%を超えて添加すると靱性が低下しやすい
ので、Ti含有量は0.01〜0.2%とすることが望
ましい。
Ti: Ti is effective in refining crystal grains. For this effect, addition of 0.01% or more is preferable. However, if added in excess of 0.2%, toughness tends to decrease. It is desirable that the Ti content be 0.01 to 0.2%.

【0029】B:Bは焼入性を高めて硬さを上昇させ、
特に常温での耐摩耗性を向上させる。その効果を発揮す
るには0.0005%以上必要であるが、0.005%
以上では靱性が低下しやすい。したがって、Bの含有量
は0.0005〜0.005%とすることが望ましい。
B: B enhances hardenability to increase hardness,
Particularly, the wear resistance at room temperature is improved. To achieve the effect, 0.0005% or more is necessary, but 0.005%
Above, the toughness tends to decrease. Therefore, the content of B is desirably 0.0005 to 0.005%.

【0030】上記の成分の他に不可避的不純物として、
P、S、N、Oは、靱性を低下させる有害な元素である
ので、その量は少ないほうが良い。望ましくは、P:
0.005%以下、S:0.003%以下、N:0.0
1%以下、O:0.003%以下とする。
As unavoidable impurities other than the above components,
Since P, S, N, and O are harmful elements that lower the toughness, the smaller the amount, the better. Preferably, P:
0.005% or less, S: 0.003% or less, N: 0.0
1% or less, O: 0.003% or less.

【0031】前記のように、本発明は鋼組成とミクロ組
織の組み合わせにて初めて超高硬度高靱性鋼が得られた
ものであり、マルテンサイト主体のミクロ組織が、マル
テンサイトと残留オーステナイトの混合組織であり、残
留オーステナイトの組織分率が3%以下であることを特
徴とする。残留オーステナイトはマルテンサイト組織と
形態的には類似しており、ミクロ組織の観察から残留オ
ーステナイトとマルテンサイトを判別することは容易で
はない。残留オーステナイトの組織分率は、X線分析に
よりフェライトの積分強度とオーステナイトの積分強度
の比から定量的に求められる。
As described above, according to the present invention, an ultra-high hardness and high toughness steel is obtained for the first time by combining the steel composition and the microstructure, and the microstructure mainly composed of martensite is a mixture of martensite and retained austenite. It is a structure, and the structure fraction of retained austenite is 3% or less. Retained austenite is morphologically similar to the martensite structure, and it is not easy to discriminate between retained austenite and martensite from observation of a microstructure. The structural fraction of retained austenite can be quantitatively determined by X-ray analysis from the ratio of the integrated intensity of ferrite to the integrated intensity of austenite.

【0032】次に製造方法について述べる。Next, the manufacturing method will be described.

【0033】まず、上記の鋼成分組成の鋼片または鋳片
を加熱し、熱間圧延を行なう。加熱温度は1000〜1
300℃の間で鋼組成や鋼の要求特性に応じて適宜選択
すれば良い。また熱間圧延も特に規定されるものではな
く、再結晶域のみの圧延でも良いし、再結晶域と未再結
晶域の双方で圧延してもかまわない。次に熱間圧延した
鋼を一旦Ac3変態点未満に冷却した後、再びAc3変態
点以上の温度に加熱して焼き入れる(再加熱焼入れ)
か、または熱間圧延後直ちにAr3変態点以上の温度か
ら焼き入れる(直接焼入れ)のどちらでもかまわない。
すなわちA3変態点とは、再加熱焼入れの場合にはAc3
変態点以上をさし、直接焼入れの場合にはAr3変態点
以上をさす。いずれの焼入れの場合も焼入れに引き続
き、適当な冷媒(例えば変性アルコール等)を用いて鋼
板に深冷処理を行なう。深冷処理の温度は、0℃以下、
更には−50℃以下で低温ほど好ましいが、−130℃
を越えた低温側では効果はほぼ飽和するので、−130
℃以上が望ましい。この深冷処理にて、ほぼ完全にマル
テンサイト変態をさせ、かつ深冷処理後の低温焼戻しに
おいてマルテンサイト主体組織、すなわち所定量の残留
オーステナイトを有するマルテンサイト混合組織を得る
には、焼入れ温度から100℃以下までの冷却速度は1
0℃/sec以上が必要である。冷却速度は早いことが
望ましいが、300℃/secで効果がほぼ飽和するの
で、300℃/sec以内で十分である。
First, a slab or a slab having the above-mentioned steel composition is heated and hot-rolled. Heating temperature is 1000-1
The temperature may be appropriately selected between 300 ° C. according to the steel composition and the required characteristics of the steel. Also, hot rolling is not particularly limited, and rolling in only a recrystallized region or rolling in both a recrystallized region and a non-recrystallized region may be performed. Then after cooling once Ac less than 3 transformation point of hot rolled steel, put baked by heating again Ac 3 transformation point or above the temperature (reheating quenching)
Alternatively, quenching from a temperature equal to or higher than the Ar 3 transformation point immediately after hot rolling (direct quenching) may be used.
That is, the A 3 transformation point is Ac 3 in the case of reheating quenching.
In the case of direct quenching, it refers to the Ar 3 transformation point or higher. In any case of quenching, following the quenching, the steel sheet is subjected to a deep cooling treatment using an appropriate refrigerant (for example, denatured alcohol or the like). The temperature of the deep cooling process is 0 ° C or less,
Further, it is preferable that the temperature is lower than −50 ° C. or lower, but −130 ° C.
The effect is almost saturated on the low temperature side beyond
C or higher is desirable. In this deep cooling, the martensitic transformation is made almost completely, and in the low temperature tempering after the deep cooling, a martensite-based structure, that is, a martensite mixed structure having a predetermined amount of retained austenite, is obtained from the quenching temperature. Cooling rate below 100 ° C is 1
0 ° C./sec or more is required. The cooling rate is desirably fast, but the effect is almost saturated at 300 ° C./sec, so that it is sufficient within 300 ° C./sec.

【0034】また焼入れ開始から深冷処理完了までの時
間は300sec以内であることが望ましい。さらに深
冷処理の後、鋼板は150〜300℃の温度で焼戻し熱
処理することが必要である。図2は焼戻し温度と硬さ、
靱性の関係を示す。図2の供試材(鋼組成はC:0.4
2%、Si:0.08%、Mn:0.35%、Ni:
6.4%、Cr:2.02%、Mo:0.35%、V:
0.11%)では熱間圧延後Ar3変態点以上の温度か
ら焼入れし、次いで−80℃で深冷処理を行った後、焼
戻しを行なっている。焼戻し温度が150℃未満では高
い靱性が得られず、焼戻し温度が300℃超えると硬さ
が低下してHB600以上の確保が難しくなり、靱性も
やや低下する。よって、超高硬度高靱性鋼の製造方法と
して、焼戻し温度は100℃〜300℃に限定した。
It is desirable that the time from the start of quenching to the completion of the deep cooling process is within 300 seconds. Further, after the deep cooling, the steel sheet needs to be tempered at a temperature of 150 to 300 ° C. Figure 2 shows the tempering temperature and hardness,
The relation of toughness is shown. The test material of FIG. 2 (steel composition: C: 0.4
2%, Si: 0.08%, Mn: 0.35%, Ni:
6.4%, Cr: 2.02%, Mo: 0.35%, V:
(0.11%), after hot rolling, quenching is performed at a temperature equal to or higher than the Ar 3 transformation point, and then a deep cooling treatment is performed at −80 ° C., followed by tempering. Tempering temperature is not obtained a high toughness is less than 0.99 ° C., ensuring more H B 600 decreases the hardness when tempering temperature exceeds 300 ° C. is difficult, toughness decreases slightly. Therefore, the tempering temperature is limited to 100 ° C. to 300 ° C. as a method for producing ultra-high hardness and high toughness steel.

【0035】このような製造方法で得られる鋼は、残留
オーステナイト分率が3%以下のマルテンサイト組織で
あり、HB600以上の硬さと−40℃におけるシャル
ピー吸収エネルギー(vE-40)が40J以上の優れた
靱性を示す。
The steel obtained by such a manufacturing method, the residual austenite fraction is 3% or less of martensite structure, H B 600 or more hardness and Charpy absorbed energy at -40 ℃ (vE -40) is 40J It shows the above excellent toughness.

【0036】鋼としては、厚板、薄板(熱延板、冷延
板)、形鋼、条鋼、棒鋼のいずれでもかまわない。
As the steel, any of a thick plate, a thin plate (a hot rolled plate, a cold rolled plate), a shaped steel bar, a bar steel, and a steel bar may be used.

【0037】[0037]

【実施例】表1に示す組成を有する鋼を溶製して得られ
た鋼片を、1150℃加熱後、850℃以上で熱間圧延
を行ない、表2に示す本発明と比較法のそれぞれの製造
条件に基づいて板厚10mm〜40mm鋼板に製造し
た。
EXAMPLE A steel slab obtained by melting a steel having the composition shown in Table 1 was heated at 1150 ° C., and then hot-rolled at 850 ° C. or more. Was manufactured into a steel plate having a thickness of 10 mm to 40 mm based on the manufacturing conditions of the above.

【0038】これらについて母材のブリネル硬さHB
靱性を調査した。硬さ測定は、板厚方向位置1/4tの
硬さを、ブリネル硬さ試験方法(JIS Z2243)
により25℃で測定した。靱性は−40℃におけるシャ
ルピー衝撃試験の吸収エネルギー値の3本の平均値で評
価した(JIS Z22014号試験片、試験片の板厚
方向採取位置:1/4t、試験片採取方向は板厚方向に
直角)。残留オーステナイト分率(%)は、X線により
フェライト(211)面とオーステナイト(220)面
の積分強度比を求め、(i)式により算出した。
For these, the Brinell hardness H B and toughness of the base material were investigated. The hardness was measured by measuring the hardness at a 1 / 4t position in the thickness direction with the Brinell hardness test method (JIS Z2243).
Measured at 25 ° C. The toughness was evaluated by the average value of three absorbed energy values of the Charpy impact test at -40 ° C (JIS Z22014 test piece, sampling position in the thickness direction of the test piece: 1 / 4t, the sampling direction in the thickness direction). At right angles). The retained austenite fraction (%) was calculated from the integrated intensity ratio between the ferrite (211) plane and the austenite (220) plane using X-rays, and calculated by the equation (i).

【0039】 残留オーステナイト体積率(%)={1/〔(0.6Ia/Ir)+1〕} ×100 (i) Ia:フェライトの積分強度、Ir:オーステナイトの
積分強度 なお表中、下線を付した数値は、本発明外の成分値、温
度条件および特性が不十分なものを示す。
Retained austenite volume fraction (%) = {1 / [(0.6Ia / Ir) +1]} × 100 (i) Ia: integrated strength of ferrite, Ir: integrated strength of austenite In the table, underlined The numerical values given above indicate that the component values, temperature conditions and characteristics outside the present invention are insufficient.

【0040】表2の本発明例1−A〜10−Jにおいて
は、ブリネル硬さHBが600以上、−40℃における
シャルピー吸収エネルギー値vE−40℃が40J以上
と、どちらも高いレベルにある。これに対し、本発明に
より限定された化学組成範囲を逸脱した比較鋼において
は、製造法は本発明法であるにもかかわらず、比較例1
1−KはC量が低いため、比較例16−PはCr量が低
いため、比較例18−RはMo量が低いため、比較例1
9−SはV量が低いため、それぞれ硬さが低い。また、
比較例12−LはC量が高いため、比較例13−MはS
i量が高いため、比較例14−NはMn量が高いため、
比較例15−OはNi量が低いため、比較例17−Qは
Cr量が高いため、比較例20−TはV量が高いためそ
れぞれ靱性が低い。本発明鋼であっても本発明の製造法
を逸脱した比較例においては、比較例21−Aは焼入れ
再加熱温度が低いため、比較例22−Aは深冷処理を行
っていないため、比較例24−Aは焼戻し温度が高いた
め硬さ、靱性とも低い。比較例23−Aは焼戻し温度が
低いため靱性が低い。
[0040] In Table 2 of the present invention Example 1-A~10-J, Brinell hardness H B is 600 or more, and Charpy absorbed energy value vE-40 ° C. is 40J or more at -40 ° C., are both high level is there. On the other hand, in the comparative steels deviating from the chemical composition range limited by the present invention, Comparative Example 1 was used despite the fact that the production method was the method of the present invention.
Since 1-K has a low C content, Comparative Example 16-P has a low Cr content, and Comparative Example 18-R has a low Mo content.
Since 9-S has a low V amount, each has low hardness. Also,
Since Comparative Example 12-L has a high C content, Comparative Example 13-M shows S
Since the amount of i is high, Comparative Example 14-N has a high amount of Mn.
Comparative Example 15-O has a low Ni content, Comparative Example 17-Q has a high Cr content, and Comparative Example 20-T has a high V content, and thus has low toughness. In the comparative example which deviated from the production method of the present invention even in the case of the steel of the present invention, the comparative example 21-A has a low quenching reheating temperature, and the comparative example 22-A has not been subjected to the deep cooling treatment. Example 24-A has low hardness and toughness due to high tempering temperature. Comparative Example 23-A has low toughness due to low tempering temperature.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明によれば、HB600以上の超高
硬度と優れた靱性を兼ね備える鋼及びその製造方法が得
られる。
According to the present invention, the steel and its manufacturing method combines excellent toughness and H B 600 or more ultra-high hardness is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋼組成における残留オーステナイト分
率と硬さ、靱性との関係を示した図である。
FIG. 1 is a diagram showing the relationship between the retained austenite fraction and the hardness and toughness in the steel composition of the present invention.

【図2】本発明の鋼組成における焼戻し温度と硬さ、靱
性との関係を示した図である。
FIG. 2 is a diagram showing the relationship between tempering temperature, hardness, and toughness in the steel composition of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.4〜0.55%、S
i:0.03〜0.15%、Mn:0.5%以下、N
i:5〜13%、Cr:0.5〜3%、Mo:0.2〜
2%、V:0.05〜0.2%を含み、残部Feおよび
不可避的不純物からなる組成を有する鋼において、マル
テンサイト主体のミクロ組織からなることをを特徴とす
る、超高硬度高靱性鋼。
C. 0.4 to 0.55% by weight, S
i: 0.03 to 0.15%, Mn: 0.5% or less, N
i: 5 to 13%, Cr: 0.5 to 3%, Mo: 0.2 to
2%, V: 0.05 to 0.2%, a steel having a composition comprising the balance of Fe and unavoidable impurities, characterized in that the steel has a microstructure mainly composed of martensite, and is characterized by being ultra-hard and tough. steel.
【請求項2】 重量%で、さらにCo:3〜10%、N
b:0.02〜0.2%、Ti:0.01〜0.2%か
らなる靱性向上元素群のうち一種以上を含有することを
特徴とする請求項1記載の超高硬度高靱性鋼。
2. In% by weight, further Co: 3 to 10%, N
2. The ultra-hard, high-toughness steel according to claim 1, comprising one or more of a toughness improving element group consisting of b: 0.02 to 0.2% and Ti: 0.01 to 0.2%. .
【請求項3】 重量%で、さらに、B:0.0005〜
0.005%を含有することを特徴とする請求項1また
は請求項2記載の超高硬度高靭性鋼。
3. The composition according to claim 2, wherein B: 0.0005 to
The ultra-high hardness and high toughness steel according to claim 1 or 2, which contains 0.005%.
【請求項4】 マルテンサイト主体のミクロ組織が、マ
ルテンサイトと残留オーステナイトの混合組織であり、
残留オーステナイトの組織分率が3%以下であることを
特徴とする請求項1または請求項2または請求項3記載
の超高硬度高靱性鋼。
4. The microstructure mainly composed of martensite is a mixed structure of martensite and retained austenite,
4. The ultra-high hardness and toughness steel according to claim 1, wherein the structure fraction of retained austenite is 3% or less.
【請求項5】 重量%で、C:0.4〜0.55%、S
i:0.03〜0.15%、Mn:0.5%以下、N
i:5〜13%、Cr:0.5〜3%、Mo:0.2〜
2%、V:0.05〜0.2%を含み、残部Feおよび
不可避的不純物からなる組成を有する鋼片または鋳片を
加熱し、熱間圧延の後、これをA3変態点以上の温度か
ら10℃/sec以上の冷却速度で100℃以下まで冷
却する焼入れ熱処理を行ない、ついで深冷処理し、さら
に100℃〜300℃の温度で焼戻し熱処理することを
特徴とする、超高硬度高靱性鋼の製造方法。
5. C: 0.4 to 0.55% by weight, S
i: 0.03 to 0.15%, Mn: 0.5% or less, N
i: 5 to 13%, Cr: 0.5 to 3%, Mo: 0.2 to
2% V: includes 0.05% to 0.2%, heating the steel slab or cast slab having a composition the balance being Fe and inevitable impurities, after hot rolling, which A 3 transformation point or above of An ultra-high hardness and high hardness characterized by performing a quenching heat treatment of cooling from a temperature to 100 ° C. or less at a cooling rate of 10 ° C./sec or more, then performing a deep cooling treatment, and further performing a tempering heat treatment at a temperature of 100 ° C. to 300 ° C. Manufacturing method for tough steel.
【請求項6】 重量%で、さらに、Co:3〜10%、
Nb:0.02〜0.2%、Ti:0.01〜0.2%
からなる靱性向上元素群のうち一種以上を含有する鋼片
または鋳片であることを特徴とする請求項5記載の超高
硬度高靱性鋼の製造方法。
6. In% by weight, Co: 3 to 10%,
Nb: 0.02-0.2%, Ti: 0.01-0.2%
The method for producing an ultra-hard and high-toughness steel according to claim 5, wherein the steel slab or the slab contains one or more of the toughness improving element group consisting of:
【請求項7】 重量%で、さらに、B:0.0005〜
0.005%を含有することを特徴とする請求項5また
は請求項6記載の超高硬度高靱性鋼の製造方法。
7. In% by weight, B: 0.0005 to
The method for producing an ultra-hard and high-toughness steel according to claim 5 or 6, comprising 0.005%.
【請求項8】 深冷処理温度が−50℃以下であること
を特徴とする請求項5または請求項6または請求項7記
載の超高硬度高靱性鋼の製造方法。
8. The method for producing ultra-high hardness and toughness steel according to claim 5, wherein the cryogenic treatment temperature is -50 ° C. or lower.
JP1832298A 1998-01-16 1998-01-16 Superhigh hardness and high toughness steel and its production Withdrawn JPH11199985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1832298A JPH11199985A (en) 1998-01-16 1998-01-16 Superhigh hardness and high toughness steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1832298A JPH11199985A (en) 1998-01-16 1998-01-16 Superhigh hardness and high toughness steel and its production

Publications (1)

Publication Number Publication Date
JPH11199985A true JPH11199985A (en) 1999-07-27

Family

ID=11968383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1832298A Withdrawn JPH11199985A (en) 1998-01-16 1998-01-16 Superhigh hardness and high toughness steel and its production

Country Status (1)

Country Link
JP (1) JPH11199985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592113A (en) * 2022-01-20 2022-06-07 合肥力和机械有限公司 Micro steel ball for inducing martensite phase to generate and cryogenic treatment process
CN117107168A (en) * 2023-08-07 2023-11-24 武汉科技大学 Low-density steel plate with ultrahigh strength and ductility product and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592113A (en) * 2022-01-20 2022-06-07 合肥力和机械有限公司 Micro steel ball for inducing martensite phase to generate and cryogenic treatment process
CN117107168A (en) * 2023-08-07 2023-11-24 武汉科技大学 Low-density steel plate with ultrahigh strength and ductility product and preparation method thereof
CN117107168B (en) * 2023-08-07 2024-05-24 武汉科技大学 Low-density steel plate with ultrahigh strength and ductility product and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4572002B1 (en) Steel sheet for line pipe having good strength and ductility and method for producing the same
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP5277672B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2003253331A (en) Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP2004359973A (en) High strength steel sheet having excellent delayed fracture resistance, and its production method
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2020506293A (en) Thick steel plate with low yield ratio and high strength and high toughness and method for producing the same
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP4320198B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP4344919B2 (en) High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP2004270001A (en) Wear resistant steel having excellent low temperature toughness, and production method therefor
JPH11199985A (en) Superhigh hardness and high toughness steel and its production
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JPS63118012A (en) Production of low yield ratio high tensile thick steel plate
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPS60152654A (en) Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same
KR20110120528A (en) Fire-resistant steel for construction having low yield ratio and method for production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405