JP4320198B2 - Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties - Google Patents

Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties Download PDF

Info

Publication number
JP4320198B2
JP4320198B2 JP2003091145A JP2003091145A JP4320198B2 JP 4320198 B2 JP4320198 B2 JP 4320198B2 JP 2003091145 A JP2003091145 A JP 2003091145A JP 2003091145 A JP2003091145 A JP 2003091145A JP 4320198 B2 JP4320198 B2 JP 4320198B2
Authority
JP
Japan
Prior art keywords
mass
austenite
strength
rolled steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091145A
Other languages
Japanese (ja)
Other versions
JP2004300452A (en
JP2004300452A5 (en
Inventor
浩次 面迫
孝 松元
智郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2003091145A priority Critical patent/JP4320198B2/en
Publication of JP2004300452A publication Critical patent/JP2004300452A/en
Publication of JP2004300452A5 publication Critical patent/JP2004300452A5/ja
Application granted granted Critical
Publication of JP4320198B2 publication Critical patent/JP4320198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、引張強度が750N/mm2級以上の自動車用鋼板,建築用構造部材および家電製品向けの高強度冷延鋼板であって、衝撃靭性と形状凍結性に優れた高強度冷延鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、自動車の軽量化に伴う燃費向上を目的として自動車用鋼板の薄肉化が図られている。一方で、自動車の衝突安全に対する法規制も強化されており、自動車用鋼板には、薄肉高強度化と同時に、優れた衝撃靭性を兼備することが求められるようになった。この傾向は、自動車産業に留まらず、住宅・建材や家電製品の分野にも波及しつつある。
ところで、一般に鋼板における強度と延性は相反する性質であって、高強度化を図ろうとすると、延性劣化を招くとともに衝撃靭性も極度に低減していく。また高強度化手段として最も効果的と考えられている析出硬化手段を採用した高強度鋼板は、変形加工後の弾性復元量が多く、形状凍結性が良くないと言う問題がある。
【0003】
【発明が解決しようとする課題】
これらの技術的課題を鑑み、高延性を示す高張力鋼板に着目した従来技術として残留オーステナイトを利用した技術が提案されている。
特開昭60−43464号公報では、C:0.30〜0.55%,Si:0.7〜2.0%,Mn:0.5〜2.5%を含有する鋼板をオーステナイト単相域に加熱後、650〜750℃に4〜15秒保持し、続いてその後の冷却過程の450〜650℃間で合計10〜50秒の保持を行うことにより、“マルテンサイトあるいはベイナイト中に体積%で10%以上のフェライトと残留オーステナイトを含む混合組織”を出現させて、“高延性を示す高張力鋼板”を得ることが提案されている。
また、特開昭61−157625号公報では、C:0.12〜0.55%,Si:0.4〜1.8%,Mn:0.2〜2.5%のほか、必要により適量のP,Ni,Cu,Cr,Ti、Nb,VおよびMoの1種以上を含む鋼板を“フェライト+オーステナイト単相域”に加熱した後、その冷却途中の500〜350℃の温度域で30秒〜30分間保持することにより、“フェライト+ベイナイト+残留オーステナイト混合組織”を出現させて、“高延性を示す高張力鋼板”を得ることが提案されている。
【0004】
しかしこれらの技術は、“加工時の変形中に残留オーステナイトが歪誘起変態を起こして大きな伸びを示す現象(変態誘起塑性)”を利用して高延性を確保したものである。そのため、750N/mm2級以上の高強度を得ることは困難であり、自動車用鋼板に求められている性能を十分に満足するものは得られない。
特開平6−145808号公報には、炭化物生成の抑制と残留オーステナイトの安定化を図る元素としてSiを利用した、Si添加型の残留オーステナイト含有鋼板が提案されている。しかし、この技術でも、工業的規模で狙いとする“高延性で、かつ形状凍結性および衝撃特性に優れた高張力鋼板”を安定して製造すると言う問題を十分に克服できるものではなかった。
本発明は、このような問題を解消すべく案出されたものであり、高強度ゆえの延性劣化をなくし、且つ析出元素を含まない比較的低成分系鋼を用いて、工業的レベルで750N/mm2級以上の高強度を確保しつつ、衝撃靭性と形状凍結性に優れた高張力冷延鋼板を得ることを目的とする。
【0005】
【課題を解決するための手段】
本発明の衝撃特性と形状凍結性に優れた高強度冷延鋼板の製造方法は、その目的を達成するため、C:0.08〜0.18質量%,Si:1.00〜2.0質量%,Mn:1.5〜3.0質量%,P:0.03質量%以下,S:0.005%質量%以下,T.Al:0.01〜0.1質量%,かつ残部はFe及び不可避的不純物の組成を有し、下記(1)式で定義されるMn偏析度が1.05〜1.10であるスラブを熱間圧延し、さらに冷間圧延した後、連続焼鈍ラインで750〜870℃の2相域または単相域で保持時間60秒以上加熱し、その後720〜600℃の温度域を平均冷却速度10℃/s以下で冷却した後、平均冷却速度10℃/s以上で350〜460℃まで冷却して30秒〜20分保持後、室温まで冷却してポリゴナルフェライト+アシュキュラーフェライト+ベイナイト+残留オーステナイト+マルテンサイトの5相組織とすることを特徴とする。
Mn偏析度=(スラブ中心部Mn濃度−ベースMn濃度)/ベースMn濃度
・・・(1)
【0006】
【作用】
本発明者等は、衝撃靭性に着目して鋭意研究を重ねてきた。その結果、C,Mn,P,Sの含有量を比較的低くした低成分系鋼において、各成分の含有量を適正範囲に規制した上で、従来では敬遠されてきたスラブの偏析を利用して、低成分系鋼においても高強度を確保しながら連続焼鈍ラインでの初析フェライト変態を制御し、オーステナイト中のC濃度をコントロールすることによって残留オーステナイトの安定化を図り、衝撃靭性も確保できると言う新たな知見を得ることができたものである。
すなわち、スラブのMn偏析に起因する熱延後のバンド状組織が後続の連続焼鈍およびその後の冷却過程でオーステナイト中へのCの偏析を助長し、連続焼鈍ラインでの変態が遅滞し、残留オーステナイト量ならびにマルテンサイト量が増加する。これにより、高い加工硬化性能と衝撃靭性が確保でき、低成分系鋼にもかかわらず高強度が得られたものである。
【0007】
一般に、鋼板の強度確保には、第二相の量が大きく影響する。ベイナイト或いはマルテンサイトだけで強度をカバーしようとすると延性が低下する。そこで、アシュキュラーフェライトと残留オーステナイトの加工硬化を利用することが考えられる。しかしながら、低成分系鋼を通常の連続焼鈍ラインで焼鈍すると、冷却中にパーライトが生成し、残りのオーステナイトからの残留オーステナイトが減少するとともに、マルテンサイトも少なくなる。これによって強度は低下し、同時にパーライトが生成して延性も低下してしまう。
【0008】
通常の冷却速度でパーライトの生成を抑制するためにはオーステナイト中のC濃度が重要であり、オーステナイトの安定化とパーライト変態を遅滞させるMnの含有が有効である。しかし、Mnの過剰含有は溶接性を劣化させるとともに、変態組織を層状組織にするため加工性を極端に低下させることになる。そこで通常よりも僅かに多めのMnを含有させ、しかもスラブ製造時に適度に偏析させることにより、連続焼鈍ラインにおける焼鈍時にオーステナイト中のC濃度を上昇させ、パーライトの生成を抑制しつつアシュキュラーフェライトとベイナイトを生成させ、しかも残留オーステナイトを確保することができたものである。
そして最終的に、ポリゴナルフェライト+アシュキュラーフェライト+ベイナイト+残留オーステナイト+マルテンサイトの5相組織とすることにより、残留オーステナイトの歪誘起変態による延性の発現や吸収エネルギーの増大を最大限活用して、750N/mm2級以上の高強度を呈するのも拘わらず、優れた衝撃靭性と形状凍結性を有する冷延鋼板を得ることができたものである。
【0009】
【実施の態様】
本発明の高強度冷延鋼板を製造するに当たっては、まず鋼の成分組成を次のように定める。
C:0.08〜0.18質量%
Cは、鋼の強化元素であるとともに、本発明の特徴とする高い加工硬化性能と衝撃靭性を発揮する残留オーステナイト量および安定性に大きく影響を与える元素である。すなわち、オーステナイト安定元素であるCは、2相域或いはベイナイト変態時にフェライト中からオーステナイト中に濃化し、オーステナイトの化学的安定度を向上させる。しかしながら、C含有量が0.08質量%に満たないと本発明の要件を満たすのに必要な5%以上の残留オーステナイトを確保することができず、結果として強度も750N/mm2以上を確保することが困難になる。一方、0.18質量%を超えて含有させると、溶接性を劣化させるばかりでなく、過剰な強度向上を招いて加工性を極度に劣化させる。
【0010】
Si:1.00〜2.0質量%
Siは、固溶強化により強度−伸びのバランスを改善しつつ強度を高める上で有効な元素である。またオーステナイト中へのC濃化を促す作用を有している。このため、残留オーステナイトが安定化し、室温での変態誘起塑性を示す残留オーステナイトの確保が容易になる。同時に、フェライト変態を促進してオーステナイト中のC濃度を上げて間接的にオーステナイトを安定化させる。さらに350〜460℃のベイナイト変態域において、未変態オーステナイト中へのCの濃縮を促進させることができる。本発明の目的とする組織を得る上で有効な元素であり、所望の強度を確保するには、1.0質量%の含有が必要である。一方、多量のSi含有は、熱延時に脱スケール性の悪いスケールが生じて製品での表面性状に悪影響を与え、かつ酸洗性を低下させるとともに溶接性を劣化させるので、2.0質量%以下とする。
【0011】
Mn:1.5〜3.0質量%
Mnは、焼入れ性を確保し、オーステナイトを安定化する元素である。また冷却途中のパーライト生成を抑制する。すなわち、ベイナイト変態を助長し、強度確保を容易にするとともに、所要量の残留オーステナイトを確保するために添加する。Mn含有量が1.5質量%に満たないと前記作用による所望の効果が得られず、逆に、3.0質量%を超えて含有させると、鋼板の焼入れ性が過剰に高まって過度の強度上昇、延性低下を招く他、スポット溶接性も劣化する。
【0012】
P:0.03質量%以下
Pも、Siと同様にフェライト生成に影響を与える元素であるが、0.03質量%を超えるPを含有させると、延性の劣化が顕著になる。したがって、P含有量は0.03質量%を上限とする。
S:0.005%質量%以下
Sは、残留オーステナイトの生成に影響を及ぼさないものの、S量の増加に伴いA系化合物が多数生成するために加工性の劣化をもたらす。そしてこの傾向はS含有量が0.005質量%を超えると顕著になる。このためS含有量の上限は0.005質量%とした。好ましくは0.002質量%以下である。
【0013】
T.Al:0.01〜0.1質量%
Alは、Siと同様、室温において安定した残留オーステナイトの確保に欠かせない成分である。Alはセメンタイトに固溶せず、350〜460℃での等温保持(ベイナイト変態時)の際にもセメンタイトの析出を抑制し、変態を遅らせる作用を有している。ただし、AlはSiよりもフェライト形成能が強いので、Al添加の場合には変態開始がSi添加の場合よりも速くなってごく短期間の保持によっても2相共存温度域での焼鈍時にオーステナイト中にCが濃化されるようになる。このため、Alの含有によって一層のオーステナイトの化学的安定性を向上することができ、結果的に生成したオーステナイトのC濃度が高くなる上、生成する残留オーステナイト量が多くなって高歪域においても高い加工硬化特性を示すようになる。T.Al含有量が0.01質量%に満たないと前記作用による所望の効果が得られず、逆に、0.1質量%を超えて含有させると、鋼板の溶接性が劣化する。
【0014】
以上に説明した成分以外は不純物である。本発明は、高価な合金元素を添加せずに偏析による微細化効果や強度増加を得ることを特徴としているものである。Cr,Mo,Ti,Nb等は強度に影響を及ぼすおそれがあるので、添加しない。
【0015】
Mn偏析度:1.05〜1.10
Mn偏析度は、本発明の最大の特徴点である。この値が1.05に満たないような偏析が少ない状態では冷延鋼板の強度が不足し、逆に1.10を超えるように激しい偏析状態では、冷延鋼板の強度が急激に上昇するとともに材質安定性に欠ける。本発明はこのような現象を後述するような実験を繰り返すことにより、Mn偏析度の最適範囲を確認したものである。
なお、Mn偏析度は、上記成分組成を有する溶鋼を常法通りに転炉にて溶製し、連続鋳造でスラブを製造する際、電磁攪拌条件、鋳造速度条件等の調整・変更による連続鋳造条件の制御により調整される。
【0016】
熱間圧延:
Mnを偏析させたスラブを熱間のまま熱間圧延するか、或いは一旦室温まで冷却したものを加熱した後に熱間圧延して熱延鋼板とする。熱間圧延は、均熱加熱温度や圧延温度等には制限はなく通常の条件で行えばよい。冷間圧延時の負荷や酸洗性を考慮すると、熱延後500〜650℃の温度で巻き取ることが好ましい。
【0017】
冷間圧延:
巻き取られた熱延コイルは、引き続き常法により酸洗した後冷間圧延される。冷間圧延条件も特に限定する必要はないが、冷間圧延時の通板性を考慮すると冷間圧延率は30%以上とすることが好ましい。
【0018】
連続焼鈍:
連続焼鈍ラインでは、オーステナイト中へのC濃化を図る必要があるので、750〜870℃の2相域または単相域で加熱する必要がある。2相域温度で加熱することが好ましい。また熱間圧延で生成し炭化物の再固溶、オーステナイト中へのC濃化を図るためには再結晶焼鈍での加熱保持時間は60秒以上が必要である。
【0019】
冷却条件:
濃化されたCをオーステナイト中で0.17%以上に維持するために、720〜600℃の温度域を平均冷却速度10℃/s以下で徐冷する。その後平均冷却速度10℃/s以上で350〜460℃まで冷却し、この温度で保持してベイナイト変態を進行させる。変態時にフェライトからオーステナイトへのC濃化をより促進させる。この保持の温度が460℃を超えると、或いは冷却速度が遅いと炭化物が生成しやすく、オーステナイト中へのC濃化が起こり難くなる。また保持温度が340℃に満たないとマルテンサイトが生成し、急激な強度上昇によって延性の低下を招く。さらに、保持時間が30秒に満たないと十分にベイナイト変態が進行しないのでオーステナイト中へのC濃化が図られ難く、残留オーステナイトが少なくなって良好な延性と衝撃靭性の指標となる高い吸収エネルギーが得られない。
【0020】
ポリゴナルフェライトは冷却速度が遅い場合に出現しやすい。アシュキュラーフェライトは反対に冷却速度が速い場合に出現しやすい。Mn偏析部が他の部分よりも低い温度でオーステナイト化し、オーステナイトからの10℃/s以下の冷却速度でポリゴナルフェライトが生成し、引き続き10℃/s以上の冷却速度でアシュキュラーフェライトが生成する。
ポリゴナルフェライトはCを吐き出しオーステナイト中に濃化する。炭化物を含有するアシュキュラーフェライトは、ポリゴナルフェライトよりも変形能は劣る。しかし、偏析した部分からの変態であり、5相の組織単位が小さく残留オーステナイトも小さく分布するため、衝撃特性が良好となる。
【0021】
その後、室温まで冷却する。
連続焼鈍後、ポリゴナルフェライト+アシュキュラーフェライト+ベイナイト+未変態オーステナイトの組織の内、C濃化が図れなかった不安定なオーステナイトからは、Ms点が高いためマルテンサイトが生成する。未変態オーステナイト中のC濃度が1.2%以上の安定なオーステナイトはMs点が常温以下となり、残留オーステナイトとして残留する。
上記のような処理を施すことにより、ポリゴナルフェライト+アシュキュラーフェライト+ベイナイト+残留オーステナイト+マルテンサイトの5相組織を有する冷延鋼板が得られる。
残留オーステナイトの歪誘起変態による延性の発現や吸収エネルギーの増大により、衝撃靭性を高めた冷延鋼板が得られる。
【0022】
【実施例】
転炉によって種々の成分組成を有する鋼を溶製し、鋳造条件を適宜調整した連続鋳造によって、Mn偏析度約1.00〜約1.25のスラブを製造した。
一旦室温まで冷却した後、再度1250℃に均熱し、1150〜930℃で熱間圧延し、600℃で巻き取り、2.4mm厚の熱延鋼板を得た。
次に、得られた熱延鋼板を酸洗した後、冷間圧延して1.6mm厚の冷延鋼板とした。得られた冷延鋼板の成分・組成、およびスラブ段階のMn偏析度を表1に示す。
その後、冷延鋼板に条件を変えた連続焼鈍を施した。その熱処理パターンを表2に示す。
各連続焼鈍を施した各種供試鋼を、引張特性、衝撃特性およびスプリングバック量で評価した。引張特性は、JIS5号に準拠した引張試験片を採取し、引張速度10mm/分で試験した。衝撃試験は、2mmVノッチ衝撃試験片を用い、容量5kgf・mのシャルピー試験機で行った。スプリングバック量は、幅10mm×長さ150mmの試験片を作製し、90度Vブロック曲げ半径R8mmで成形後のバック角度を測定した。
それらの特性評価結果を表3,4に示す。
なお、本発明では、TS≧750N/mm2の高強度鋼板において、従来技術では得られなかったYR≦75%,T.El≧20%,吸収エネルギー以上20J,バック角度≦3度を基準としている。
【0023】

Figure 0004320198
【0024】
Figure 0004320198
【0025】
Figure 0004320198
【0026】
Figure 0004320198
【0027】
上記結果からもわかるように、所定の成分組成を有し、Mn偏析度を1.05〜1.10の範囲にし、所定の加熱条件、冷却条件を満たす連続焼鈍を施したものでは、750N/mm2以上の高強度を示し、従来技術では得られなかった衝撃特性やスプリングバック特性を有する冷延鋼板が得られている。
これに対して、所定の成分組成を有し、Mn偏析度を1.05〜1.10の範囲にしたものであっても、連続焼鈍およびその後の冷却条件が所定の条件を満たしていないと、所期の特性を有する冷延鋼板は得られない。
例えば、連続焼鈍時の加熱温度が低い(供試鋼No.7で、焼鈍パターンE)と、あるいは2次冷却温度での保持時間が短い(No.7のF)と、あるいはまた連続焼鈍時の加熱時間が短く一次冷却時の冷却速度が速い(No.7のG)と、オーステナイト中へのCの濃化が不十分なため、その他の処理条件が十分であっても伸びが少なくなっている。
また、Mn偏析度が1.05〜1.10の範囲から外れると、本発明の加熱条件、冷却条件を満たす連続焼鈍を施しても、所期の特性をもつ冷延鋼板は得られない。例えば、供試鋼No.8では、Mn偏析度が少ないために、Ti,Nbの析出硬化で降伏強度が増加し、スプリングバックも大きくなっている。供試鋼No.9についてもC,Siが、高くMo,V添加によりベイナイト主体の組織となり、Mo,V炭化物により降伏強度が増加し、スプリングバックも大きくなっている。供試鋼No.10は、Mn,Crが高いため、焼入れ性が増加し、ベイナイト主体の組織となるため、引張強度,降伏強度が増加し、スプリングバックも大きい。また、単一組織に近く、組織単位が大きいために衝撃吸収エネルギーが低下している。
【0028】
【発明の効果】
以上に説明したように、本発明によれば、C,Mn,P,Sの含有量を比較的低くした低成分系鋼において、各成分の含有量を適正範囲に規制した上で、鋳造スラブに適度のMn偏析を起こさせ、このMn偏析を最大限活用して連続焼鈍およびその後の冷却過程で残留オーステナイト量を増加させて、残留オーステナイトの歪誘起変態による延性の発現や吸収エネルギーの増大を最大限活用し、優れた衝撃靭性と形状凍結性を有する冷延鋼板を得ることができたものである。
低成分系鋼であるにも拘わらず、750N/mm2級以上の高強度と、優れた衝撃靭性および形状凍結性を併せ持つ冷延鋼板が得られるので、薄肉化と安全性を高めた自動車用鋼板等を製造することができる。[0001]
[Industrial application fields]
The present invention is a high-strength cold-rolled steel sheet for automobile steel sheets, building structural members, and home appliances having a tensile strength of 750 N / mm 2 or more, and is excellent in impact toughness and shape freezing properties. It relates to the manufacturing method.
[0002]
[Prior art]
2. Description of the Related Art In recent years, thinning of steel plates for automobiles has been attempted for the purpose of improving fuel consumption associated with weight reduction of automobiles. On the other hand, laws and regulations on automobile crash safety have been strengthened, and it has come to be required that steel sheets for automobiles have excellent impact toughness as well as high strength and thinness. This trend is spreading not only in the automobile industry but also in the fields of housing, building materials and home appliances.
By the way, in general, the strength and ductility of a steel sheet are contradictory properties, and when attempting to increase the strength, the ductility is deteriorated and the impact toughness is extremely reduced. Further, a high strength steel sheet employing precipitation hardening means that is considered to be the most effective as means for increasing strength has a problem that the amount of elastic recovery after deformation processing is large and the shape freezing property is not good.
[0003]
[Problems to be solved by the invention]
In view of these technical problems, a technique using retained austenite has been proposed as a conventional technique focusing on a high-tensile steel sheet exhibiting high ductility.
In JP-A-60-43464, a steel sheet containing C: 0.30 to 0.55%, Si: 0.7 to 2.0%, Mn: 0.5 to 2.5% is austenite single phase. After heating in the zone, hold at 650 to 750 ° C. for 4 to 15 seconds, and then hold for a total of 10 to 50 seconds between 450 to 650 ° C. in the subsequent cooling process, thereby “volume in martensite or bainite” It has been proposed to obtain a “high-strength steel sheet exhibiting high ductility” by causing a “mixed structure containing 10% or more of ferrite and residual austenite” to appear.
In JP-A-61-157625, C: 0.12 to 0.55%, Si: 0.4 to 1.8%, Mn: 0.2 to 2.5%, and an appropriate amount if necessary After heating a steel sheet containing at least one of P, Ni, Cu, Cr, Ti, Nb, V, and Mo to a “ferrite + austenite single phase region”, the steel plate is heated at a temperature range of 500 to 350 ° C. during the cooling. It has been proposed to obtain a “high-tensile steel plate exhibiting high ductility” by causing “ferrite + bainite + residual austenite mixed structure” to appear by holding for 2 to 30 minutes.
[0004]
However, these techniques ensure high ductility by utilizing “a phenomenon in which retained austenite undergoes strain-induced transformation during deformation during processing and exhibits large elongation (transformation-induced plasticity)”. Therefore, it is difficult to obtain a high strength of 750 N / mm 2 class or higher, and it is not possible to obtain a material that sufficiently satisfies the performance required for a steel sheet for automobiles.
Japanese Laid-Open Patent Publication No. 6-145808 proposes a Si-added type retained austenite-containing steel sheet using Si as an element for suppressing the formation of carbides and stabilizing the retained austenite. However, even this technique cannot sufficiently overcome the problem of stably producing a “high-tensile steel sheet having high ductility and excellent shape freezing property and impact characteristics” aimed at an industrial scale.
The present invention has been devised to solve such a problem, eliminates ductile deterioration due to high strength, and uses a relatively low component steel that does not contain a precipitated element, at an industrial level of 750 N. / Mm An object is to obtain a high-tensile cold-rolled steel sheet having excellent impact toughness and shape freezing property while ensuring high strength of grade 2 or higher.
[0005]
[Means for Solving the Problems]
In order to achieve the object, the method for producing a high-strength cold-rolled steel sheet excellent in impact properties and shape freezing properties according to the present invention has C: 0.08 to 0.18 mass%, Si: 1.00 to 2.0. % By mass, Mn: 1.5 to 3.0% by mass, P: 0.03% by mass or less, S: 0.005% by mass or less, T.I. Al: 0.01 to 0.1% by mass , and the balance is a slab having a composition of Fe and inevitable impurities and having a Mn segregation degree defined by the following formula (1) of 1.05 to 1.10. After hot rolling and further cold rolling, heating is performed in a continuous annealing line in a two-phase region at 750 to 870 ° C. or a single phase region for a holding time of 60 seconds or more, and then a temperature range of 720 to 600 ° C. is set at an average cooling rate of 10 After cooling at ℃ / s or less, cool to 350 to 460 ℃ at an average cooling rate of 10 ℃ / s or more and hold for 30 seconds to 20 minutes, then cool to room temperature and polygonal ferrite + ashular ferrite + bainite + residual A five-phase structure of austenite + martensite is used.
Mn segregation degree = (slab center Mn concentration−base Mn concentration) / base Mn concentration
... (1)
[0006]
[Action]
The inventors of the present invention have made extensive studies focusing on impact toughness. As a result, in low-component steels with relatively low contents of C, Mn, P, and S, the content of each component is regulated within an appropriate range, and slab segregation, which has been avoided in the past, is used. Even in low-component steels, it is possible to control the pro-eutectoid ferrite transformation in the continuous annealing line while ensuring high strength, and to stabilize residual austenite by controlling the C concentration in austenite, and to ensure impact toughness. I was able to gain new knowledge.
That is, the band-like structure after hot rolling caused by Mn segregation of the slab promotes the segregation of C into austenite during the subsequent continuous annealing and the subsequent cooling process, and the transformation in the continuous annealing line is delayed, and the residual austenite The amount as well as the amount of martensite increases. As a result, high work hardening performance and impact toughness can be secured, and high strength is obtained despite the low component steel.
[0007]
In general, the amount of the second phase greatly influences the strength of the steel sheet. If the strength is covered only with bainite or martensite, the ductility is lowered. Therefore, it is conceivable to use work hardening of ashular ferrite and retained austenite. However, when low-component steel is annealed in a normal continuous annealing line, pearlite is generated during cooling, and the retained austenite from the remaining austenite is reduced and martensite is also reduced. As a result, the strength is lowered, and at the same time, pearlite is generated and ductility is also lowered.
[0008]
In order to suppress the formation of pearlite at a normal cooling rate, the C concentration in austenite is important, and the stabilization of austenite and the inclusion of Mn that delays pearlite transformation are effective. However, excessive inclusion of Mn deteriorates weldability and extremely deteriorates workability because the transformation structure is made into a layered structure. Therefore, by containing slightly more Mn than usual, and by appropriately segregating during slab production, the C concentration in the austenite is increased during annealing in the continuous annealing line, while suppressing the formation of pearlite and Bainite was generated and retained austenite could be secured.
Finally, by making a five-phase structure of polygonal ferrite + ashicular ferrite + bainite + retained austenite + martensite, the maximum use of ductility and increased absorption energy due to strain-induced transformation of retained austenite is achieved. In spite of exhibiting high strength of 750 N / mm 2 or higher, a cold-rolled steel sheet having excellent impact toughness and shape freezing property could be obtained.
[0009]
Embodiment
In producing the high-strength cold-rolled steel sheet of the present invention, first, the component composition of the steel is determined as follows.
C: 0.08 to 0.18% by mass
C is a strengthening element of steel and is an element that greatly affects the amount of retained austenite and the stability that exhibit the high work-hardening performance and impact toughness characteristic of the present invention. That is, C, which is an austenite stable element, is concentrated from ferrite to austenite during the two-phase region or bainite transformation, and improves the chemical stability of austenite. However, if the C content is less than 0.08% by mass, 5% or more of retained austenite necessary to satisfy the requirements of the present invention cannot be secured, and as a result, the strength is also secured to 750 N / mm 2 or more. It becomes difficult to do. On the other hand, when the content exceeds 0.18% by mass, not only the weldability is deteriorated, but also the strength is excessively improved and the workability is extremely deteriorated.
[0010]
Si: 1.00 to 2.0 mass%
Si is an element effective in increasing the strength while improving the strength-elongation balance by solid solution strengthening. Moreover, it has the effect | action which accelerates | stimulates C concentration in austenite. For this reason, retained austenite is stabilized, and securing of retained austenite showing transformation-induced plasticity at room temperature becomes easy. At the same time, the ferrite transformation is promoted to raise the C concentration in the austenite, thereby indirectly stabilizing the austenite. Furthermore, in the bainite transformation region at 350 to 460 ° C., the concentration of C into untransformed austenite can be promoted. It is an effective element for obtaining the target structure of the present invention, and the content of 1.0% by mass is necessary to secure a desired strength. On the other hand, when a large amount of Si is contained, a scale with poor descalability occurs during hot rolling, adversely affects the surface properties of the product, and reduces pickling properties and deteriorates weldability. The following.
[0011]
Mn: 1.5 to 3.0% by mass
Mn is an element that ensures hardenability and stabilizes austenite. Further, pearlite generation during cooling is suppressed. That is, it is added in order to promote the bainite transformation, facilitate the securing of strength, and secure the required amount of retained austenite. If the Mn content is less than 1.5% by mass, the desired effect due to the above action cannot be obtained. Conversely, if the Mn content exceeds 3.0% by mass, the hardenability of the steel sheet is excessively increased and excessive. In addition to increasing strength and reducing ductility, spot weldability is also degraded.
[0012]
P: 0.03 mass% or less P is an element that affects the formation of ferrite in the same manner as Si. However, when P exceeding 0.03% by mass is contained, ductility deterioration becomes significant. Therefore, the upper limit of the P content is 0.03% by mass.
S: 0.005% by mass or less Although S does not affect the formation of retained austenite, a large number of A-based compounds are produced as the amount of S increases, resulting in deterioration of workability. And this tendency becomes remarkable when S content exceeds 0.005 mass%. For this reason, the upper limit of S content was made into 0.005 mass%. Preferably it is 0.002 mass% or less.
[0013]
T.A. Al: 0.01 to 0.1% by mass
Al, like Si, is an essential component for securing stable retained austenite at room temperature. Al does not dissolve in cementite, and has the effect of suppressing the precipitation of cementite and delaying the transformation even during isothermal holding at 350 to 460 ° C. (during bainite transformation). However, since Al has a stronger ferrite-forming ability than Si, in the case of Al addition, the onset of transformation becomes faster than in the case of Si addition, and even in the austenite during annealing in the two-phase coexisting temperature range even by holding for a very short time. C becomes thicker. For this reason, the chemical stability of one layer of austenite can be improved by the inclusion of Al. As a result, the C concentration of the generated austenite increases, and the amount of residual austenite generated increases, even in a high strain region. Shows high work hardening characteristics. T.A. If the Al content is less than 0.01% by mass, the desired effect due to the above action cannot be obtained. Conversely, if the Al content exceeds 0.1% by mass, the weldability of the steel sheet deteriorates.
[0014]
The components other than those described above are impurities. The present invention is characterized in that a refinement effect and an increase in strength are obtained by segregation without adding an expensive alloy element. Cr, Mo, Ti , Nb, etc. are not added because they may affect the strength.
[0015]
Mn segregation degree: 1.05-1.10
The degree of segregation of Mn is the greatest feature point of the present invention. In a state where there is little segregation such that this value is less than 1.05, the strength of the cold rolled steel sheet is insufficient, and conversely, in a severe segregated state exceeding 1.10, the strength of the cold rolled steel sheet increases rapidly. It lacks material stability. In the present invention, the optimum range of the degree of segregation of Mn is confirmed by repeating such an experiment as described later.
The Mn segregation degree is determined by continuous casting by adjusting / changing electromagnetic stirring conditions, casting speed conditions, etc., when molten steel having the above composition is melted in a converter as usual and slabs are produced by continuous casting. It is adjusted by controlling the conditions.
[0016]
Hot rolling:
A slab segregated from Mn is hot-rolled as it is hot, or once cooled to room temperature, it is hot-rolled to obtain a hot-rolled steel sheet. Hot rolling is not limited in soaking temperature and rolling temperature, and may be performed under normal conditions. Taking into consideration the load and pickling properties during cold rolling, it is preferable to wind up at a temperature of 500 to 650 ° C. after hot rolling.
[0017]
Cold rolling:
The wound hot rolled coil is subsequently pickled by a conventional method and then cold-rolled. Although it is not necessary to specifically limit the cold rolling conditions, the cold rolling rate is preferably set to 30% or more in consideration of the sheet passability during the cold rolling.
[0018]
Continuous annealing:
In the continuous annealing line, it is necessary to concentrate C in austenite, so it is necessary to heat in a two-phase region or a single-phase region at 750 to 870 ° C. Heating at a two-phase region temperature is preferred. Further, in order to re-dissolve carbides generated by hot rolling and to concentrate C in austenite, the heating and holding time in recrystallization annealing needs to be 60 seconds or more.
[0019]
Cooling conditions:
In order to maintain the concentrated C at 0.17% or more in austenite, the temperature range of 720 to 600 ° C. is gradually cooled at an average cooling rate of 10 ° C./s or less. Thereafter, it is cooled to 350 to 460 ° C. at an average cooling rate of 10 ° C./s or more, and kept at this temperature to advance the bainite transformation. It further promotes C concentration from ferrite to austenite during transformation. If this holding temperature exceeds 460 ° C., or if the cooling rate is low, carbides are likely to be generated, and C concentration in austenite is difficult to occur. On the other hand, if the holding temperature is less than 340 ° C., martensite is generated, and a rapid increase in strength causes a drop in ductility. Furthermore, since the bainite transformation does not proceed sufficiently if the holding time is less than 30 seconds, it is difficult to concentrate C in the austenite, and the residual austenite is reduced, resulting in high absorbed energy that is an indicator of good ductility and impact toughness. Cannot be obtained.
[0020]
Polygonal ferrite tends to appear when the cooling rate is slow. On the other hand, ashular ferrite tends to appear when the cooling rate is high. The Mn segregation part is austenitized at a lower temperature than the other parts, and polygonal ferrite is produced at a cooling rate of 10 ° C./s or less from austenite, and subsequently, an ash ferrite is produced at a cooling rate of 10 ° C./s or more. .
Polygonal ferrite spits out C and concentrates in austenite. Ashicular ferrite containing carbide is inferior in deformability to polygonal ferrite. However, this is a transformation from the segregated portion, and the five-phase structural unit is small and the retained austenite is also distributed small, so that the impact characteristics are good.
[0021]
Then, it cools to room temperature.
After continuous annealing, among the structures of polygonal ferrite + ashular ferrite + bainite + untransformed austenite, martensite is generated from unstable austenite that could not be enriched with C because the Ms point is high. Stable austenite having a C concentration of 1.2% or more in untransformed austenite has an Ms point of not more than room temperature and remains as retained austenite.
By performing the treatment as described above, a cold-rolled steel sheet having a five-phase structure of polygonal ferrite + ashular ferrite + bainite + retained austenite + martensite is obtained.
A cold-rolled steel sheet with improved impact toughness can be obtained by developing ductility and increasing absorbed energy due to strain-induced transformation of retained austenite.
[0022]
【Example】
Slabs having a Mn segregation degree of about 1.00 to about 1.25 were manufactured by continuous casting in which steels having various component compositions were melted by a converter and casting conditions were appropriately adjusted.
Once cooled to room temperature, it was soaked again to 1250 ° C., hot-rolled at 1150-930 ° C., wound up at 600 ° C., and a 2.4 mm thick hot-rolled steel sheet was obtained.
Next, the obtained hot-rolled steel sheet was pickled and then cold-rolled to obtain a 1.6 mm-thick cold-rolled steel sheet. Table 1 shows the components and composition of the obtained cold-rolled steel sheet and the degree of Mn segregation at the slab stage.
Then, the continuous annealing which changed conditions was given to the cold-rolled steel plate. The heat treatment pattern is shown in Table 2.
Various test steels subjected to each continuous annealing were evaluated by tensile properties, impact properties, and springback amounts. For tensile properties, a tensile specimen according to JIS No. 5 was sampled and tested at a tensile speed of 10 mm / min. The impact test was performed with a Charpy tester having a capacity of 5 kgf · m using a 2 mmV notch impact test piece. For the amount of spring back, a test piece having a width of 10 mm and a length of 150 mm was prepared, and the back angle after molding was measured at a 90-degree V block bending radius R8 mm.
The characteristics evaluation results are shown in Tables 3 and 4.
In the present invention, in a high-strength steel plate with TS ≧ 750 N / mm 2 , YR ≦ 75%, T.P. The standard is El ≧ 20%, the absorbed energy is 20 J or more, and the back angle ≦ 3 degrees.
[0023]
Figure 0004320198
[0024]
Figure 0004320198
[0025]
Figure 0004320198
[0026]
Figure 0004320198
[0027]
As can be seen from the above results, 750 N / s having a predetermined component composition, a Mn segregation degree in the range of 1.05 to 1.10, and subjected to continuous annealing satisfying predetermined heating conditions and cooling conditions. A cold-rolled steel sheet having a high strength of mm 2 or more and having impact characteristics and springback characteristics that could not be obtained with the prior art has been obtained.
On the other hand, even if it has a predetermined component composition and the Mn segregation degree is in the range of 1.05-1.10, continuous annealing and subsequent cooling conditions do not satisfy the predetermined conditions. A cold-rolled steel sheet having the desired characteristics cannot be obtained.
For example, when the heating temperature during continuous annealing is low (sample steel No. 7, annealing pattern E), or the holding time at the secondary cooling temperature is short (F of No. 7), or also during continuous annealing When the heating time is short and the cooling rate during primary cooling is fast (G in No. 7), the concentration of C in the austenite is insufficient, so that the elongation is small even if other processing conditions are sufficient. ing.
On the other hand, if the Mn segregation degree is out of the range of 1.05 to 1.10, a cold-rolled steel sheet having the desired characteristics cannot be obtained even if continuous annealing is performed that satisfies the heating and cooling conditions of the present invention. For example, test steel No. In No. 8, since the degree of segregation of Mn is small, the yield strength increases due to precipitation hardening of Ti and Nb, and the spring back also increases. Test steel No. As for No. 9, C and Si are high, and Mo and V are added to form a bainite-based structure. Mo and V carbides increase the yield strength and increase the springback. Test steel No. Since No. 10 has high Mn and Cr, the hardenability is increased, and a bainite-based structure is formed. Therefore, the tensile strength and yield strength are increased, and the spring back is large. Moreover, since it is close to a single tissue and has a large tissue unit, the impact absorption energy is reduced.
[0028]
【The invention's effect】
As described above, according to the present invention, in the low-component steel in which the contents of C, Mn, P, and S are relatively low, the content of each component is regulated to an appropriate range, and then the cast slab Moderate Mn segregation and maximize the use of this Mn segregation to increase the amount of retained austenite in the continuous annealing and subsequent cooling process, thereby increasing ductility and increasing the absorption energy due to strain-induced transformation of the retained austenite. It was possible to obtain a cold-rolled steel sheet having the best impact toughness and shape freezing property by making maximum use.
Despite being a low-component steel, a cold-rolled steel sheet with high strength of 750 N / mm 2 grade or higher, excellent impact toughness and shape freezing properties can be obtained, so it is thinner and safer for automobiles. Steel plates and the like can be manufactured.

Claims (1)

C:0.08〜0.18質量%,Si:1.00〜2.0質量%,Mn:1.5〜3.0質量%,P:0.03質量%以下,S:0.005%質量%以下,T.Al:0.01〜0.1質量%,かつ残部はFe及び不可避的不純物の組成を有し、下記(1)式で定義されるMn偏析度が1.05〜1.10であるスラブを熱間圧延し、さらに冷間圧延した後、連続焼鈍ラインで750〜870℃の2相域または単相域で保持時間60秒以上加熱し、その後720〜600℃の温度域を平均冷却速度10℃/s以下で冷却した後、平均冷却速度10℃/s以上で350〜460℃まで冷却して30秒〜20分保持後、室温まで冷却してポリゴナルフェライト+アシュキュラーフェライト+ベイナイト+残留オーステナイト+マルテンサイトの5相組織とすることを特徴とする衝撃特性と形状凍結性に優れた高強度冷延鋼板の製造方法。
Mn偏析度=(スラブ中心部Mn濃度−ベースMn濃度)/ベースMn濃度
・・・・(1)
C: 0.08 to 0.18 mass%, Si: 1.00 to 2.0 mass%, Mn: 1.5 to 3.0 mass%, P: 0.03 mass% or less, S: 0.005 % By mass or less, T.I. Al: 0.01 to 0.1% by mass , and the balance is a slab having a composition of Fe and inevitable impurities and having a Mn segregation degree defined by the following formula (1) of 1.05 to 1.10. After hot rolling and further cold rolling, heating is performed in a continuous annealing line in a two-phase region at 750 to 870 ° C. or a single phase region for a holding time of 60 seconds or more, and then a temperature range of 720 to 600 ° C. is set at an average cooling rate of 10 After cooling at ℃ / s or less, cool to 350 to 460 ℃ at an average cooling rate of 10 ℃ / s or more and hold for 30 seconds to 20 minutes, then cool to room temperature and polygonal ferrite + ashular ferrite + bainite + residual A method for producing a high-strength cold-rolled steel sheet excellent in impact characteristics and shape freezing property, characterized by having a five-phase structure of austenite + martensite.
Mn segregation degree = (slab center Mn concentration−base Mn concentration) / base Mn concentration
(1)
JP2003091145A 2003-03-28 2003-03-28 Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties Expired - Fee Related JP4320198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091145A JP4320198B2 (en) 2003-03-28 2003-03-28 Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091145A JP4320198B2 (en) 2003-03-28 2003-03-28 Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties

Publications (3)

Publication Number Publication Date
JP2004300452A JP2004300452A (en) 2004-10-28
JP2004300452A5 JP2004300452A5 (en) 2006-05-18
JP4320198B2 true JP4320198B2 (en) 2009-08-26

Family

ID=33404583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091145A Expired - Fee Related JP4320198B2 (en) 2003-03-28 2003-03-28 Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties

Country Status (1)

Country Link
JP (1) JP4320198B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716359B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High strength cold-rolled steel sheet excellent in uniform elongation and method for producing the same
US20100215981A1 (en) * 2009-02-20 2010-08-26 Nucor Corporation Hot rolled thin cast strip product and method for making the same
US8444780B2 (en) 2009-02-20 2013-05-21 Nucor Corporation Hot rolled thin cast strip product and method for making the same
JP5685167B2 (en) * 2011-03-31 2015-03-18 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
EP2695961B1 (en) * 2011-03-31 2019-06-19 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in workability and manufacturing method thereof
JP5685166B2 (en) * 2011-03-31 2015-03-18 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
KR101598307B1 (en) 2011-07-29 2016-02-26 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet having superior impact resistance, method for producing same, high-strength galvanized steel sheet, and method for producing same
WO2013018741A1 (en) 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
WO2013047755A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
CN108474069B (en) * 2015-12-28 2020-05-05 杰富意钢铁株式会社 High-strength steel sheet, high-strength galvanized steel sheet, and method for producing same
KR20230128531A (en) * 2021-03-25 2023-09-05 닛폰세이테츠 가부시키가이샤 Steel plate and welded joint
CN115216595B (en) * 2022-07-14 2024-01-30 马钢(合肥)钢铁有限责任公司 Cold-rolled complex phase steel and annealing method thereof

Also Published As

Publication number Publication date
JP2004300452A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP2022160585A (en) Cold-rolled steel sheet and method for manufacturing the same
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
EP1146132A1 (en) Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
JP6723377B2 (en) Ultra high strength and high ductility steel sheet with excellent yield ratio and method for producing the same
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP4320198B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent impact properties and shape freezing properties
CN115698365B (en) Heat-treated cold-rolled steel sheet and method for manufacturing same
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
KR102544854B1 (en) Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
JP2005325393A (en) High strength cold rolled steel sheet and its manufacturing method
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP2006342387A (en) High-strength hot-rolled steel sheet and its manufacturing method
JP3772686B2 (en) High-tensile steel plate and manufacturing method thereof
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP4430511B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent hole expandability
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
KR20220086172A (en) High strength cold-rolled steel sheet with excellent formability and mathod of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees