JPH11199972A - Copper plated steel sheet for doubly wound pipe excellent in copper interstition resistance or the like and its production - Google Patents
Copper plated steel sheet for doubly wound pipe excellent in copper interstition resistance or the like and its productionInfo
- Publication number
- JPH11199972A JPH11199972A JP712598A JP712598A JPH11199972A JP H11199972 A JPH11199972 A JP H11199972A JP 712598 A JP712598 A JP 712598A JP 712598 A JP712598 A JP 712598A JP H11199972 A JPH11199972 A JP H11199972A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- copper
- pipe
- plated steel
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車のブレーキ
チューブや冷蔵庫の放冷管等として使用される二重巻き
パイプを製造するための耐銅浸入性等にすぐれた銅めっ
き鋼板およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-plated steel sheet having excellent copper penetration resistance and the like for producing double-wound pipes used as brake tubes of automobiles and cooling tubes of refrigerators, and a method for producing the same. About.
【0002】[0002]
【従来の技術】銅めっき鋼板を素材とする二重巻きパイ
プは、所定幅に裁断した銅めっき鋼板のフープを造管用
ロールでパイプ状に巻き重ねた後、銅の融点以上(例え
ば1130℃) に加熱されたDXガス中に適当時間(約1〜
2分程度)保持して銅めっき層を溶融し、巻き重ね面間
を融着結合させる、いわゆるセルフ・ブレージング処理
を施すことにより製造される。図6は、二重巻きパイプ
の断面を示している。1は素地鋼板(冷延鋼板)、2は
銅めっき層,3はセルフ・ブレージングにより形成され
た銅融着層であり、巻き重ね面間の接合性の良否は、渦
流探傷法や曲げ試験などにより検査される。2. Description of the Related Art A double-wound pipe made of a copper-plated steel sheet is obtained by winding a hoop of a copper-plated steel sheet cut to a predetermined width into a pipe shape using a pipe-forming roll, and then melting the copper to a temperature equal to or higher than the melting point of copper (eg, 1130 ° C.) For a suitable time (about 1 to
It is manufactured by performing so-called self-brazing treatment in which the copper plating layer is melted while being held for about 2 minutes, and the wrapped surfaces are fused and bonded. FIG. 6 shows a cross section of a double wound pipe. 1 is a base steel plate (cold rolled steel plate), 2 is a copper plating layer, 3 is a copper fusion layer formed by self-brazing, and the quality of the bonding between the wrapped surfaces is determined by an eddy current flaw detection method, a bending test, or the like. Inspected by
【0003】二重巻きパイプの製造に使用される銅めっ
き鋼板は、セルフ・ブレージングの熱処理で、素地鋼板
の結晶組織が粗大化し過ぎないこと(耐粗粒化性)、素
地鋼板中への溶融銅の浸入(鋼板の脆化を引き起こす)
を生じにくいこと(耐銅浸入性)、および二重巻きパイ
プ成形後に行われる拡管加工やフレア加工に耐える良好
な延性を有すること等が要求される。上記銅めっき鋼板
の素地鋼として、低炭素アルミキルド鋼が使用され、特
公平8-14013 号公報には、C: 0.01〜0.15%, Si: 0.
1 %以下, Mn: 0.05〜0.6%, Al: 0.003 〜0.1 %,
P: 0.015 %以下,B: 0.0004〜0.004 %,残部はF
eおよび不可避不純物からなる素地鋼板に銅めっきを施
したものが開示されている。そこには、素地鋼板のB含
有効果として、結晶組織が微細化され,耐溶接割れ性が
改善されることが記載されている。[0003] The copper-plated steel sheet used in the production of the double-wound pipe must not be excessively coarsened by the heat treatment of self-brazing (coarse-graining resistance). Infiltration of copper (causing embrittlement of steel sheet)
(Copper infiltration resistance), and good ductility to withstand expansion and flaring performed after forming a double wound pipe. Low carbon aluminum killed steel is used as the base steel of the copper-plated steel sheet. Japanese Patent Publication No. 8-14013 discloses that C: 0.01 to 0.15%, Si: 0.
1% or less, Mn: 0.05-0.6%, Al: 0.003-0.1%,
P: 0.015% or less, B: 0.0004 to 0.004%, and the balance is F
It discloses that a base steel plate made of e and unavoidable impurities is subjected to copper plating. It describes that as a B-containing effect of the base steel sheet, the crystal structure is refined and the weld crack resistance is improved.
【0004】[0004]
【発明が解決しようとする課題】従来の銅めっき鋼板
は、その素地鋼板が、低炭素アルミキルド鋼板の範疇に
属するものであっても、耐銅浸入性,耐粗粒化性等の不
足により、二重巻きパイプ成形加工後のセルフ・ブレー
ジング熱処理において、溶融銅の浸入による粒界脆化や
フェライト組織の針状化・粗大化等による延性の低下を
生じ易く、その後の拡管加工やフレア加工で、割れを発
生する例が多くみられる。低炭素アルミキルド鋼のB元
素の添加は、前記公報に記載されているように、フェラ
イト組織の微細化に有効ではあるが、B添加量や、C,
sol.Al,N等の含有量の多寡により、ブレージング熱処
理におけるフェライト組織の粗大化・銅の浸入による粒
界脆化,あるいはブレージング処理後の冷却過程におけ
るフェライト組織の過度の微細化や針状化等による硬質
化を生じ易い。このため、パイプ造管後の拡管加工やフ
レア加工に要求される充分な成形加工性を保証すること
は困難である。本発明は、二重巻きパイプに関する従来
の問題を解消し、拡管加工やフレア加工等に耐え得る良
好な加工性を保証するための改良された耐粗粒化性,耐
銅浸入性等を備えた銅めっき鋼板およびその製造方法を
提供するものである。The conventional copper-plated steel sheet, even if the base steel sheet belongs to the category of low-carbon aluminum-killed steel sheet, has a lack of copper penetration resistance, coarse-graining resistance and the like. In the self-brazing heat treatment after forming the double-wound pipe, it is easy to cause grain boundary embrittlement due to infiltration of molten copper and a decrease in ductility due to needle-like and coarsening of the ferrite structure. In many cases, cracks occur. As described in the above-mentioned publication, the addition of the element B to the low-carbon aluminum-killed steel is effective in refining the ferrite structure.
Depending on the content of sol. Al, N, etc., the ferrite structure becomes coarse in the brazing heat treatment, grain boundary embrittlement due to copper intrusion, or the ferrite structure becomes excessively fine or acicular in the cooling process after the brazing treatment. Hardening easily occurs. For this reason, it is difficult to guarantee sufficient formability required for pipe expansion and flare processing after pipe formation. The present invention solves the conventional problems related to double-wound pipes, and has improved coarse-graining resistance, copper penetration resistance, and the like for ensuring good workability that can withstand tube expansion and flaring. And a method for producing the same.
【0005】[0005]
【課題を解決するための手段】本発明の二重巻きパイプ
用銅めっき鋼板は、重量%で,C: 0.03〜0.08
%,Si: 0.1%以下,Mn: 0.05〜0.5%,
P: 0.020%以下,S: 0.015%以下,sol.A
l: 0.03〜0.08%,N: 0.003〜0.00
8%,B: 0.0008〜0.002%,残部は実質的
にFeおよび不可避不純物からなる素地鋼板とその表面
を被覆するめっき層からなることを特徴としている。Means for Solving the Problems The copper-plated steel sheet for a double-wound pipe according to the present invention has a C content of 0.03-0.08% by weight.
%, Si: 0.1% or less, Mn: 0.05-0.5%,
P: 0.020% or less, S: 0.015% or less, sol.A
l: 0.03 to 0.08%, N: 0.003 to 0.00
8%, B: 0.0008 to 0.002%, and the balance is substantially composed of a base steel sheet substantially composed of Fe and unavoidable impurities and a plating layer covering the surface thereof.
【0006】本発明の銅めっき鋼板は、前記化学組成を
有する鋼のスラブを、熱間圧延し、圧下率40〜90%
で冷間圧延した後、冷延鋼板を、水素濃度2vol %以上
のN 2 −H2 混合ガス中、再結晶温度〜850℃の温度
域で焼鈍処理し、ついで該鋼板に銅めっき処理を施す工
程により製造される。本発明の銅めっき鋼板を使用して
製造される二重巻きパイプは、素地鋼板の化学組成、特
にC,Al,NおよびBの含有量の規定により、ブレー
ジング熱処理における溶融銅の浸入とそれによる粒界脆
化が効果的に抑制防止され、またブレージング熱処理に
つづく冷却過程でのフェライト組織の細粒化や針状化が
防止されるほか、鋼中の固溶N量が低減することによ
り、パイプの軟質化効果が得られる。これらの効果とし
て改良された加工性が与えられ、拡管加工やフレア加工
に必要とされる延性(約25%以上の伸び率が必要とさ
れている)を十分に満たすことが可能となる。[0006] The copper-plated steel sheet of the present invention has the above chemical composition.
Hot-rolled steel slab having a rolling reduction of 40-90%
After cold-rolling, the cold-rolled steel sheet is subjected to a hydrogen concentration of 2 vol% or more.
N Two-HTwoRecrystallization temperature to 850 ° C in mixed gas
In the zone where the steel sheet is annealed, and then the steel sheet is plated with copper.
It is manufactured by the process. Using the copper plated steel sheet of the present invention
The manufactured double-wound pipe has the chemical composition of the base steel sheet,
According to the provisions of C, Al, N and B contents,
Infiltration of molten copper during graining heat treatment and grain boundary brittleness
Can be effectively prevented and can be used for brazing heat treatment.
In the subsequent cooling process, the ferrite structure becomes finer and needle-like.
In addition to the reduction in the amount of solute N in steel.
Thus, the effect of softening the pipe is obtained. With these effects
To provide improved workability, pipe expansion and flare processing
Required ductility (elongation of about 25% or more is required)
) Can be sufficiently satisfied.
【0007】本発明の銅めっき鋼板からなる二重巻きパ
イプの上記材質改善において、Bの適量添加の効果は重
要である。二重巻きパイプのブレージング熱処理におい
ては、フェライト結晶粒の粗大化および溶融銅の粒界浸
入の抑制防止に寄与し、またブレージングにつづく冷却
過程では、フェライト組織の針状化・過度の微細化を抑
制防止すると共に、パイプの軟質化, 時効劣化の防止等
に奏効する。更には、ブレージング熱処理前の二重巻き
パイプ造管加工における成形加工性の向上効果をもたら
す。In the improvement of the above-mentioned properties of the double-wound pipe made of the copper-plated steel sheet of the present invention, the effect of adding an appropriate amount of B is important. In the brazing heat treatment of double-wound pipes, it contributes to the prevention of coarsening of ferrite crystal grains and the suppression of infiltration of molten copper at grain boundaries, and in the cooling process following brazing, the ferrite structure becomes acicular and excessively fine. It is effective in preventing suppression, softening the pipe, and preventing aging deterioration. Furthermore, the effect of improving the formability in the double-winding pipe forming process before the brazing heat treatment is provided.
【0008】すなわち、鋼中の固溶Bは、固溶Alに比
しNに対する親和力が強いことにより、熱延鋼板の巻取
り段階や冷延鋼板の焼鈍処理段階で、鋼中の固溶Nと優
先的に結合し、窒化硼素(BN)の析出物を形成する。
窒化アルミニウム(AlN)が微細な析出物を形成する
のに対し、BNはAlNよりも大きな析出物を形成し、
従って析出生成する窒化物としてAlN析出物に比し、
素地鋼板の軟質化に有利である。このため、降伏点(Y
P)の低減および延性(El)の向上による素地鋼板の
軟質化効果が得られ、ブレージング熱処理前に行われる
二重巻きパイプの成形加工性が向上し、パイプの造管生
産性が高められる。[0008] That is, since solid solution B in steel has a stronger affinity for N than solid solution Al, the solid solution B in steel in the winding stage of a hot-rolled steel plate and the annealing stage of a cold-rolled steel plate is increased. To form a precipitate of boron nitride (BN).
Aluminum nitride (AlN) forms fine precipitates, whereas BN forms larger precipitates than AlN,
Therefore, compared to AlN precipitates as nitrides generated by precipitation,
This is advantageous for softening the base steel sheet. Therefore, the yield point (Y
The effect of softening the base steel sheet by reducing P) and improving the ductility (El) is obtained, the formability of the double-wound pipe performed before the brazing heat treatment is improved, and the productivity of pipe forming is enhanced.
【0009】また、二重巻きパイプのブレージング熱処
理(1100〜1150℃)においては、その初期段階
(約950〜1050℃)で、BN析出物の一部が分解
し、固溶Bと固溶Nを生成する。その固溶Bはパイプの
昇温に伴つて、フェライト結晶粒界に析出する。パイプ
温度が銅の融点(約1100℃)以上となって銅めっき
層が溶融し、巻き重ね面の融着結合を生じる段階におい
ては、すでに固溶Bがフェライト結晶粒界に析出してお
り、その析出による粒界強化の効果として、溶融銅の粒
界浸入を抑制防止しつつ、巻き重ね面の融着結合が達成
される。また、粒界に析出したBは、結晶粒の異常成長
を抑制し、フェライト組織の粗大化防止に奏効する。In the brazing heat treatment (1100 to 1150 ° C.) of a double-wound pipe, in the initial stage (about 950 to 1050 ° C.), a part of the BN precipitate is decomposed, and solute B and solute N are dissolved. Generate The solute B precipitates at the ferrite crystal grain boundaries as the temperature of the pipe rises. At the stage where the pipe temperature is equal to or higher than the melting point of copper (about 1100 ° C.), the copper plating layer is melted, and fusion bonding of the winding surface occurs, solute B is already precipitated at the ferrite crystal grain boundary, As an effect of strengthening the grain boundary by the precipitation, fusion bonding of the wrapped surface is achieved while suppressing and preventing penetration of the molten copper into the grain boundary. In addition, B precipitated at the grain boundaries suppresses abnormal growth of crystal grains and is effective in preventing ferrite structure from becoming coarse.
【0010】更に、ブレージング熱処理につづく冷却過
程において、鋼中の固溶Bは固溶Nと結合し、BN析出
物を形成する。なお、AlNについても、前記ブレージ
ング熱処理過程でAlとNとに分解し、それぞれ鋼中に
固溶されてはいるが、この冷却過程の冷却速度が比較的
大きいために、鋼中のAlとNとの反応(AlN析出物
の生成)は殆ど生起しない。これに対し、BはNとの親
和力がAlに比し強いことにより、BN析出物を形成す
るのである。このBN析出物の生成反応により、素地鋼
中の固溶N量が減少し、その効果としてパイプが軟質化
される。しかも、そのBN析出物は比較的大きく、これ
は素地鋼の軟質化に有利に作用する。これらの効果とし
て、二重巻きパイプの加工(拡管加工,フレア加工等)
に要求される高度の加工性(伸び率約25%以上)を確
保することが可能となるのである。Further, in the cooling process following the brazing heat treatment, the solute B in the steel combines with the solute N to form BN precipitates. Note that AlN is also decomposed into Al and N in the brazing heat treatment process and is dissolved in steel, respectively. However, since the cooling rate in this cooling process is relatively high, Al and N (The formation of AlN precipitates) hardly occurs. On the other hand, B forms BN precipitates because it has a stronger affinity for N than Al. The BN precipitate formation reaction reduces the amount of solute N in the base steel, and as a result, the pipe is softened. In addition, the BN precipitates are relatively large, which advantageously acts to soften the base steel. As these effects, processing of double wound pipes (expansion processing, flare processing, etc.)
It is possible to secure a high degree of workability (elongation rate of about 25% or more) required for (1).
【0011】本発明における素地鋼板の化学組成の限定
理由は次のとおりである。 C: 0.03〜0.08% 冷延鋼板の延性を高める点からはC量は少ない程よい
が、その量が少な過ぎると、耐粗粒化性の不足をきた
す。また、粒界強度の低下に起因して耐銅浸入性も低下
する。一方C量が多くなると、炭化物析出量の増加によ
る延性の低下を招き、特に0.08%を越えると、セル
フ・ブレージング処理後の冷却過程で、針状のフェライ
ト組織が形成され易く、延性の低下が顕著になる。この
ため、0.03〜0.08%とする。The reasons for limiting the chemical composition of the base steel sheet in the present invention are as follows. C: 0.03 to 0.08% From the viewpoint of increasing the ductility of the cold-rolled steel sheet, the smaller the amount of C, the better. However, if the amount is too small, the coarse graining resistance will be insufficient. Further, the copper penetration resistance is also reduced due to the decrease in the grain boundary strength. On the other hand, when the C content is increased, the ductility is reduced due to an increase in the amount of carbide precipitation. In particular, when it exceeds 0.08%, a needle-like ferrite structure is easily formed in the cooling process after the self-brazing treatment, and the ductility is reduced. The drop is remarkable. Therefore, the content is set to 0.03 to 0.08%.
【0012】Si: 0.1%以下 Siは、鋼の溶製工程における脱酸元素として添加され
る。そのための添加量は0.1%までで十分である。ま
たそれ以上の多量添加は、延性を低下させるので、これ
を上限とする。 Mn: 0.05〜0.5% Mnは、鋼の熱間脆性を防止する目的で添加される。
0.05%に満たないと、その効果が不足し、他方0.
5%を越えると、延性の低下をきたす。Si: 0.1% or less Si is added as a deoxidizing element in the steel melting process. The addition amount for that purpose is sufficient up to 0.1%. Further, addition of a large amount more than this lowers the ductility, so this is made the upper limit. Mn: 0.05-0.5% Mn is added for the purpose of preventing hot brittleness of steel.
If it is less than 0.05%, the effect will be insufficient, while on the other hand it will be less than 0.1%.
If it exceeds 5%, the ductility decreases.
【0013】P: 0.020%以下, Pは、降伏強度および引張強度を高める効果を有する
が、多量に添加すると、延性の低下を招き、また結晶粒
界に偏析して、粒界の強度を低下させる。このため、
0.020%以下とする。好ましくは0.008〜0.
015%である。 S: 0.015% Sは、MnS等の非金属介在物を形成して、加工割れの
原因となる。0.015%以下であれば、その実害は回
避されるので、これを上限とする。P: 0.020% or less, P has an effect of increasing the yield strength and tensile strength. However, when added in a large amount, it causes a decrease in ductility and segregates at the crystal grain boundaries, and the strength of the grain boundaries is increased. Lower. For this reason,
0.020% or less. Preferably 0.008-0.
015%. S: 0.015% S forms nonmetallic inclusions such as MnS and causes work cracking. If it is 0.015% or less, the actual harm is avoided, so this is set as the upper limit.
【0014】sol.Al: 0.03〜0.08% Alは、鋼の溶製工程の脱酸剤として添加される元素で
あるが、本発明では、それにとどまらず、AlNの析出
物を形成し、ブレージングにおける耐粗粒化性,耐銅浸
入性を高める目的で添加される。これらの効果を得るに
は、sol.Al量(可溶性Al量)として、少なくとも
0.03%を必要とする。しかし、多量に添加すると、
AlNの過剰析出により延性が低下し、また非金属介在
物の増加による鋼板表面品質の低下(表面疵の増加)を
きたすので、0.08%を上限とする。Sol. Al: 0.03 to 0.08% Al is an element added as a deoxidizing agent in the steel smelting process, but the present invention is not limited to this. It is added for the purpose of increasing the resistance to coarsening and the penetration of copper during brazing. To obtain these effects, at least 0.03% is required as the sol.Al content (soluble Al content). However, when added in large amounts,
Since the excessive precipitation of AlN lowers the ductility, and the increase in nonmetallic inclusions lowers the steel sheet surface quality (increases in surface flaws), the upper limit is made 0.08%.
【0015】N: 0.003〜0.008%,Nは、A
lと反応し、AlNの微細な析出物を形成して素地鋼板
の耐粗粒化性を高め、ブレージング処理におけるフェラ
イト組織の粗大化を防止する。含有量が0.003%に
満たないと、AlNの析出量が不足し、耐粗粒化性を確
保することができない。他方、あまり多く添加すると、
AlNの過剰析出に伴う延性の低下,パイプの硬質化を
招く。このため、0.008%を上限とする。N: 0.003-0.008%, N is A
reacts with 1 to form fine precipitates of AlN to increase the coarse-graining resistance of the base steel sheet and prevent the ferrite structure from becoming coarse during the brazing treatment. If the content is less than 0.003%, the precipitation amount of AlN is insufficient, and it is not possible to secure the coarse graining resistance. On the other hand, if you add too much,
This leads to a decrease in ductility due to excessive precipitation of AlN and a hardening of the pipe. Therefore, the upper limit is 0.008%.
【0016】B: 0.0008〜0.002% Bは、前述のように、ブレージング熱処理前の段階にお
いては二重巻きパイプの造管加工性を高め、またブレー
ジング熱処理においては、フェライト結晶粒の粒界に析
出して耐粗粒化性を高めると共に、溶融銅の粒界浸入お
よび粒界脆化を抑制防止する。更にブレージング熱処理
に続く冷却過程では、素地鋼中の固溶Nと結合して、固
溶N量を低減しパイプを軟質化し、かつ時効劣化の防止
に奏効する。これらの効果を得るために、少なくとも
0.0008%の含有を必要とする。しかし、0.00
2%を超えると、ブレージング後の冷却過程における素
地鋼組織の過度の微細化,針状化による硬質化を招き、
パイプの加工性を損なう。このため、0.002%を上
限とする。B: 0.0008% to 0.002% B, as described above, enhances the workability of the double-wound pipe before the brazing heat treatment, and increases the ferrite crystal grains during the brazing heat treatment. Precipitates at the grain boundaries to increase the coarse-graining resistance, and suppresses and prevents the penetration of the molten copper into the grain boundaries and the embrittlement of the grain boundaries. Further, in the cooling process following the brazing heat treatment, the steel is combined with the solute N in the base steel to reduce the amount of solute N, soften the pipe, and effectively prevent aging deterioration. To obtain these effects, a content of at least 0.0008% is required. However, 0.00
If the content exceeds 2%, the microstructure of the base steel structure in the cooling process after brazing becomes excessively fine, and the base steel becomes hardened due to acicularization.
The workability of the pipe is impaired. Therefore, the upper limit is 0.002%.
【0017】次に本発明の製造工程について説明する。
まず製鋼炉で所定の化学組成に溶製された鋼を、造塊・
分解圧延により、または連続鋳造によりスラブとし、ス
ラブ表面手入れを適宜施した後、熱間圧延する。連続鋳
造につづいて熱鋳片をそのまま加熱炉に装入して熱間圧
延するようにしてもよい。熱間圧延は常法により行なわ
れる。熱延鋼板品質や熱延効率等の点から、仕上げ温度
はAr3変態点直上の温度に調整され、巻取り温度は約5
00〜700℃の範囲が適当である。Next, the manufacturing process of the present invention will be described.
First, steel melted to a specified chemical composition in a steelmaking furnace is cast into
The slab is formed by decomposition rolling or continuous casting, and after appropriately treating the slab surface, hot rolling is performed. After the continuous casting, the hot slab may be directly charged into a heating furnace and hot rolled. Hot rolling is performed by a conventional method. In view of the quality of hot-rolled steel sheet and hot-rolling efficiency, the finishing temperature is adjusted to the temperature just above the Ar3 transformation point, and the winding temperature is about 5
The range of 00 to 700 ° C is appropriate.
【0018】熱延鋼板は、酸洗処理の後、冷間圧延に供
する。冷間圧延は、結晶粒の粗大化を抑制し、延性の良
好な冷延鋼板を得るために、圧下率を40%以上とする
ことが必要である。圧下率が90%を越えると、結晶粒
の微細化効果は飽和し、それ以上の圧下率は圧延負荷の
増大による操業面の不利を招くので、90%を上限とす
る。After the pickling treatment, the hot-rolled steel sheet is subjected to cold rolling. In cold rolling, it is necessary to reduce the rolling reduction to 40% or more in order to suppress the coarsening of crystal grains and obtain a cold-rolled steel sheet having good ductility. If the rolling reduction exceeds 90%, the effect of refining the crystal grains is saturated, and if the rolling reduction is higher than that, the operation surface becomes disadvantageous due to an increase in the rolling load, so the upper limit is 90%.
【0019】冷延鋼板は表面浄化されたうえ、焼鈍処理
に付される。焼鈍処理において鋼板は再結晶する。この
焼鈍処理は、水素濃度が2体積%以上のN2 −H2 混合
ガスを雰囲気とし、再結晶温度(約600 ℃)〜850℃
の温度域で加熱することにより行われる。処理温度の上
限を850℃としているのは、それ以上の高温度を必要
としないだけでなく、高温化により結晶組織の粗大化を
きたすからである。焼鈍方式はバッチ焼鈍または連続焼
鈍のいずれでもよいが、比較的長い処理時間が与えられ
るバッチ焼鈍の場合は、焼鈍温度を約650℃〜720
℃とし、処理時間の短い連続焼鈍の場合は、約750〜
850℃に調節するのが好ましい。The cold rolled steel sheet is subjected to an annealing treatment after its surface is purified. In the annealing process, the steel sheet recrystallizes. In this annealing treatment, an N 2 -H 2 mixed gas having a hydrogen concentration of 2% by volume or more is used as an atmosphere, and a recrystallization temperature (about 600 ° C.) to 850 ° C.
This is performed by heating in the temperature range described above. The upper limit of the processing temperature is set to 850 ° C. because not only does not require a higher temperature, but also a higher temperature causes a coarsening of the crystal structure. The annealing method may be either batch annealing or continuous annealing, but in the case of batch annealing in which a relatively long processing time is given, the annealing temperature is set to about 650 ° C to 720 ° C.
° C and in the case of continuous annealing with a short treatment time,
Preferably, the temperature is adjusted to 850 ° C.
【0020】また、焼鈍雰囲気として、N2 −H2 混合
ガスを適用しているのは、還元作用による鋼板の金属光
沢を確保するためであり、H2 濃度を2体積%以上とし
ているのは、それより低い濃度では、還元作用が十分で
なく金属光沢の確保が困難となるからである。そのN2
−H2 混合ガスとして、例えばNXガス(H 2 : 2 vol
%, CO:3 vol%,残部 N2 ) ,DXガス(H 2 :10 vol%, C
O:10 vol%, CO2 :7 vol%,残部 N2 )等を使用すること
ができる(これらの混合ガスはCOやCO2 を含有している
が、それによって焼鈍効果を損なわれることはない)。
雰囲気ガスのH2 濃度を高めると共に、還元作用は増強
されるが、約80体積%を超えると、その効果は飽和
し、それ以上の高濃度化はコスト高などの操業面での不
利を伴う。従って約80体積%を上限とするのがよい。
処理効率およびコスト等の面から、H2 濃度: 10〜7
5体積%、焼鈍雰囲気の露点: −10℃以下の条件で焼
鈍処理するのが適当である。The reason why the N 2 -H 2 mixed gas is used as the annealing atmosphere is to secure the metallic luster of the steel sheet by the reducing action, and the H 2 concentration is set to 2% by volume or more. If the concentration is lower than this, the reducing action is not sufficient and it is difficult to secure the metallic luster. Its N 2
As an H 2 mixed gas, for example, NX gas (H 2 : 2 vol
%, CO: 3 vol%, balance N 2 ), DX gas (H 2 : 10 vol%, C
O: 10 vol%, CO 2 : 7 vol%, may be used, balance N 2), etc. (These mixed gas contains CO and CO 2, thereby to impair the annealing effect Absent).
The H 2 concentration of the atmospheric gas is increased, and the reducing action is enhanced. However, when the concentration exceeds about 80% by volume, the effect is saturated, and a further increase in the concentration is accompanied by a disadvantage in operation such as an increase in cost. . Therefore, the upper limit is preferably about 80% by volume.
From the viewpoints of processing efficiency and cost, the concentration of H 2 : 10 to 7
It is appropriate to perform the annealing treatment under the condition of 5% by volume and the dew point of the annealing atmosphere: -10 ° C or less.
【0021】焼鈍処理された鋼板は、常法に従って、調
質圧延および連続電気めっき等による銅めっき(めっき
層厚: 例えば1〜5μm/片面当たり)を施されて二重
巻きパイプ用銅めっき鋼板に仕上げられる。得られた銅
めっき鋼板は、二重巻きパイプに成形加工されたうえ、
巻き重ね面間を融着するブレージング熱処理(処理温
度: 約1100〜1150℃,処理時間: 約1〜2分)
に付される。The annealed steel sheet is subjected to copper plating (plating layer thickness: for example, 1 to 5 μm / per side) by temper rolling, continuous electroplating, etc. according to a conventional method, and the copper-plated steel sheet for a double-wound pipe. Finished. The obtained copper-plated steel sheet is formed into a double wound pipe,
Brazing heat treatment for fusing between wound surfaces (processing temperature: about 1100 to 1150 ° C, processing time: about 1 to 2 minutes)
Attached to
【0022】次に、二重巻きパイプの延性・加工性に及
ぼす素地鋼板の化学組成の影響について具体的に説明す
る。図1は二重巻きパイプの延性に及ぼす素地鋼板のC
含有量の影響を示している。供試鋼板およびパイプ(管
径: 4.76mm)の製造条件は下記のとおりである。 (1)素地鋼板の化学組成(wt %) C:0.01 〜0.12, Si:0.008, Mn:0.25. P:0.013, S:0.00
6, sol Al:0.035, N:0.0040, B:0.0015, Fe:Bal。 (2)冷間圧延: 圧下率 83 %,板厚: 0.335 mm。Next, the effect of the chemical composition of the base steel sheet on the ductility and workability of the double-wound pipe will be specifically described. Fig. 1 shows the effect of C on the base steel sheet on the ductility of the double-wound pipe.
The effect of content is shown. The manufacturing conditions for the test steel plate and pipe (tube diameter: 4.76 mm) are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.01 to 0.12, Si: 0.008, Mn: 0.25. P: 0.013, S: 0.00
6, sol Al: 0.035, N: 0.0040, B: 0.0015, Fe: Bal. (2) Cold rolling: reduction of 83%, thickness: 0.335 mm.
【0023】(3)焼鈍処理(バッチ焼鈍) 雰囲気: N 2 −12 vol% H 2 処理温度・時間: 660℃×12 hr (4)調質圧延: 圧下率 1% (5)銅めっき: 連続電気めっき,層厚 3.5μm(片面当
り) (6)二重巻き成形後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1min(3) Annealing treatment (batch annealing) Atmosphere: N 2 -12 vol% H 2 Treatment temperature / time: 660 ° C. × 12 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating: continuous Electroplating, layer thickness 3.5μm (per side) (6) Self-brazing treatment after double winding molding Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ℃) Processing temperature / time: 1130 ℃ × 1min
【0024】図1に示したように、二重巻きパイプは、
素地鋼板のC量0.03〜0.08%の範囲において、
伸び率25%以上の高い延性が与えられている。C量
0.03%未満の領域で延性が低いのは、鋼板のフェラ
イト組織が過度に粗大化したことによるものである。他
方、C量0.08%を越える領域での延性低下は、鋼中
の炭化物(Fe3 C)の増量、および針状のフェライト組織
の生成に起因してパイプが硬質化したことによる。二重
巻きパイプの拡管加工・フレア加工性には、伸び率約2
5%以上の延性が必要とされており、図1は、その要求
を充足するために、素地鋼板のC量を0.03〜0.0
8%の範囲に調整する必要があることを示している。As shown in FIG. 1, the double wound pipe is
In the range of 0.03-0.08% of C amount of the base steel sheet,
High ductility with an elongation of 25% or more is given. The low ductility in the region where the C content is less than 0.03% is due to the ferrite structure of the steel sheet being excessively coarsened. On the other hand, the decrease in ductility in the region where the C content exceeds 0.08% is due to an increase in the amount of carbide (Fe 3 C) in the steel and the hardening of the pipe due to the formation of a needle-like ferrite structure. The expansion and flare workability of a double wound pipe requires an elongation of about 2
FIG. 1 shows that the C content of the base steel sheet is set to 0.03 to 0.03% in order to satisfy the requirement.
This indicates that it is necessary to adjust to the range of 8%.
【0025】図2は、素地鋼板のAl量, N量と二重巻
きパイプの伸び値の関係を示している。供試鋼板および
パイプ(管径:4.76 mm)の製造条件は次のとおりであ
る。 (1)素地鋼板の化学組成(wt%) C:0.05, Si:0.009, Mn:0.35. P:0.013, S:0.006, sol A
l:0.010 〜0.090, N:0.0010〜0.0090, B:0.0014, Fe:Ba
l (2)冷間圧延: 圧下率 83 %,板厚: 0.335 mmFIG. 2 shows the relationship between the Al content and the N content of the base steel sheet and the elongation value of the double-wound pipe. The manufacturing conditions for the test steel plate and pipe (tube diameter: 4.76 mm) are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.05, Si: 0.009, Mn: 0.35.P: 0.013, S: 0.006, sol A
l: 0.010 to 0.090, N: 0.0010 to 0.0090, B: 0.0014, Fe: Ba
l (2) Cold rolling: reduction rate 83%, thickness: 0.335 mm
【0026】(3)焼鈍処理(バッチ焼鈍) 雰囲気:N2 -12 vol% H 2混合ガス 処理温度・時間: 670 ℃×10hr (4)調質圧延: 圧下率 1% (5)銅めっき: 連続電気めっき, 層厚 4.0μm(片面当
たり) (6)二重巻き成形後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1min(3) Annealing treatment (batch annealing) Atmosphere: N 2 -12 vol% H 2 mixed gas Treatment temperature / time: 670 ° C. × 10 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating: Continuous electroplating, layer thickness 4.0μm (per side) (6) Self-brazing treatment after double winding forming Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ℃) Processing temperature / time: 1130 ℃ × 1min
【0027】図2中の各記号は下記のとおりである。 ○…伸び率 25 %以上 △…AlN の過剰析出により、伸び率 25 %未満 ×…AlN の析出不足(フェライト粒粗大化)により、伸
び率 25 %未満 この図より、二重巻きパイプの拡管加工・フレア加工に
要求される延性(伸び率約25%以上)を満たすために
は、Al量は0.03〜0.08%、N量は0.003
〜0.008%の範囲に調整すべきことがわかる。Each symbol in FIG. 2 is as follows. ○: Elongation rate of 25% or more △: Elongation of less than 25% due to excessive precipitation of AlN ×: Elongation of less than 25% due to insufficient precipitation of AlN (coarse ferrite grains) -To satisfy the ductility (elongation rate of about 25% or more) required for flare processing, the Al content is 0.03 to 0.08% and the N content is 0.003.
It can be seen that it should be adjusted to the range of 0.008%.
【0028】図3は、素地鋼板のB含有量と二重巻きパ
イプの伸び値との関係、図4は、素地鋼板のB含有量と
パイプのフェライト結晶粒度番号(FGS.NO) との関係を
示し、また図5は、素地鋼板のB含有量とパイプの素地
鋼への銅浸入深さとの関係を示している。これらの供試
鋼板および二重巻きパイプ(管径:4.76 mm) の製造条件
は次のとおりである。 (1)素地鋼板の化学組成(wt%) C:0.07, Si:0.010, Mn:0.45. P:0.018, S:0.005, sol A
l:0.040, N: 0.0050,B:0.0004〜0.004, Fe:Bal (2)冷間圧延: 圧下率 80 %,板厚: 0.335 mmFIG. 3 shows the relationship between the B content of the base steel plate and the elongation value of the double-wound pipe, and FIG. 4 shows the relationship between the B content of the base steel plate and the ferrite grain size number (FGS.NO) of the pipe. FIG. 5 shows the relationship between the B content of the base steel sheet and the copper penetration depth of the pipe into the base steel. The manufacturing conditions for these test steel plates and double-wound pipes (tube diameter: 4.76 mm) are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.07, Si: 0.010, Mn: 0.45.P: 0.018, S: 0.005, sol A
l: 0.040, N: 0.0050, B: 0.0004 to 0.004, Fe: Bal (2) Cold rolling: 80% reduction, thickness: 0.335 mm
【0029】(3)焼鈍処理(バッチ焼鈍) 雰囲気:N2 -12 vol% H 2混合ガス 処理温度・時間: 660 ℃×12hr (4)調質圧延: 圧下率 1% (5)銅めっき: 連続電気めっき, 層厚 4.0μm(片面当
たり) (6)二重巻き成形後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1min(3) Annealing treatment (batch annealing) Atmosphere: N 2 -12 vol% H 2 mixed gas Treatment temperature / time: 660 ° C. × 12 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating: Continuous electroplating, layer thickness 4.0μm (per side) (6) Self-brazing treatment after double winding forming Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ℃) Processing temperature / time: 1130 ℃ × 1min
【0030】図3に示したように、二重巻きパイプは、
素地鋼板のB量が0.0008〜0.002%の範囲に
おいて、伸び率25%以上の高い延性を有している。ま
た、図4は、素地鋼板のB量の増加と共に、フェライト
組織が細粒化することを示している。B量が0.000
8%未満では、ファライト粒度番号(FGS.NO)が6.0 以
下の粗粒組織となり、これは粒界強度の不足をきたし、
溶融銅の粒界浸入を充分に抑制防止することができな
い。他方、B量が0.002%を超えると、FGS.N0 8.5
以上の細粒組織となり、またブレージング処理後の冷却
過程でフェライト組織の針状化を生じることになる。As shown in FIG. 3, the double wound pipe is
When the B content of the base steel sheet is in the range of 0.0008 to 0.002%, the base steel sheet has a high ductility of at least 25%. FIG. 4 shows that the ferrite structure becomes finer as the B content of the base steel sheet increases. B amount is 0.000
If it is less than 8%, a coarse grain structure having a fallite grain size number (FGS.NO) of 6.0 or less, which results in insufficient grain boundary strength,
The infiltration of the molten copper into the grain boundaries cannot be sufficiently suppressed and prevented. On the other hand, if the B content exceeds 0.002%, FGS.N0 8.5
The fine grain structure described above is obtained, and the ferrite structure becomes acicular in the cooling process after the brazing treatment.
【0031】更に、図5に示したように、Bの添加効果
として、パイプの素地鋼への銅の浸入深さは小さくな
る。銅浸入深さが約20μmを超えると、粒界の脆化に
起因する延性不足等の実害が生じる。B量を0.000
8%以上とすることにより、銅の浸入深さを20μm以
下に抑え、粒界脆化とそれによるパイプ延性の低下を防
止することができる。このように、図3〜図5は、B量
を0.0008%〜0.002%とすることにより、フ
ェライト結晶粒の粗大化とそれに伴う溶融銅の浸入・粒
界脆化、およびフェライト組織の過度の微細化を防止し
得ることを示している。Further, as shown in FIG. 5, as a result of the addition of B, the penetration depth of copper into the base steel of the pipe is reduced. When the copper penetration depth exceeds about 20 μm, actual harm such as insufficient ductility due to embrittlement of grain boundaries occurs. B amount 0.000
When the content is 8% or more, the penetration depth of copper can be suppressed to 20 μm or less, and grain boundary embrittlement and a decrease in pipe ductility due to the embrittlement can be prevented. Thus, FIGS. 3 to 5 show that the B content is 0.0008% to 0.002%, so that the ferrite crystal grains are coarsened, the molten copper is infiltrated, the grain boundary is embrittled, and the ferrite structure is increased. It can be seen that excessive miniaturization can be prevented.
【0032】[0032]
【実施例】〔1〕供試材の製造 転炉および脱ガス処理装置により溶製・成分調整を行っ
た溶鋼を連続鋳造に付してスラブとし、熱間圧延→熱延
板の酸洗処理→冷間圧延→冷延板の電解清浄処理→焼鈍
処理→調質圧延→銅めっき→二重巻き成形加工・ブレー
ジング処理の工程を経由して二重巻きパイプ(管径4.
76mm)を得る。 (1)鋼組成: 表1,表2参照 No.1〜14は発明例、No.51 〜66はいずれかの元素の含有
量(表中,下線付記)が本発明の規定から外れている比
較例である。 (2)熱間圧延 加熱温度: 1230℃、熱延仕上げ温度: 890 ℃、熱延巻取
り温度: 510 ℃ (3)冷間圧延 圧下率: 80%、冷延板板厚: 0.335 mmExample [1] Production of test material Molten steel that has been melted and component-adjusted by a converter and degassing equipment is subjected to continuous casting to form a slab, and then hot-rolled → pickling of hot-rolled sheet → Cold rolling → Electrolytic cleaning of cold rolled sheet → Annealing treatment → Temper rolling → Copper plating → Double winding forming / brazing process Double winding pipe (tube diameter 4.
76 mm). (1) Steel composition: See Tables 1 and 2 Nos. 1 to 14 are invention examples, and Nos. 51 to 66 are contents of any element (underlined in the table) out of the range of the present invention. It is a comparative example. (2) Hot rolling Heating temperature: 1230 ° C, hot rolling finishing temperature: 890 ° C, hot rolling winding temperature: 510 ° C (3) Cold rolling reduction: 80%, cold rolled sheet thickness: 0.335 mm
【0033】(4)焼鈍処理(バッチ焼鈍) 雰囲気: N2 −H2 混合ガス(H2 濃度 2〜75vol%) 処理温度: 650 〜700 ℃, 処理時間: 8 〜15 hr (5)調質圧延: 圧下率1% (6)銅めっき(連続電気めっき): めっき層厚 3.5μm
(片側当たり) (7)二重巻き成形加工 ・成形加工法: ロール造管(フープ幅 27.5 mm) ・セルフ・ブレージング処理: 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1 min(4) Annealing treatment (batch annealing) Atmosphere: N 2 -H 2 mixed gas (H 2 concentration 2 to 75 vol%) Processing temperature: 650 to 700 ° C., Processing time: 8 to 15 hr (5) Tempering Rolling: rolling reduction 1% (6) Copper plating (continuous electroplating): plating layer thickness 3.5μm
(Per side) (7) Double winding forming process-Forming method: Roll tube forming (hoop width 27.5 mm)-Self-brazing process: Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ° C) Processing temperature / time: 1130 ° C x 1 min
【0034】〔2〕パイプの特性評価 (a)引張試験: JIS Z 2241(11号試験片使用) による。 (b)フェライト粒度: パイプの断面を5 %ナイタールで
腐食し、切断法(JIS G 0552)により粒度番号(FGS.N0)を
判定(倍率: ×200 )。 (c)パイプの素地鋼への銅の浸入深さ: パイプの断面を5
%ナイタールで腐食した後、XMA分析装置により、
銅の溶着部(倍率: ×500 )のCu特性X線像を撮影し
て浸入深さ(μm)を測定。[2] Evaluation of characteristics of pipe (a) Tensile test: According to JIS Z 2241 (using No. 11 test piece). (b) Ferrite particle size: The cross section of the pipe was corroded with 5% nital, and the particle size number (FGS.N0) was determined by the cutting method (JIS G 0552) (magnification: × 200). (c) Copper penetration depth into the base steel of the pipe:
% Nital, and by XMA analyzer,
A copper characteristic X-ray image of a copper welded portion (magnification: × 500) was taken to measure the penetration depth (μm).
【0035】表1および表2に、素地鋼板の化学組成,
銅めっき鋼板および二重巻きパイプの製造条件と併せて
製品パイプの試験結果を示す。発明例No.1〜14のパイプ
は、耐銅浸入性が高く、銅の浸入深さは約3〜9μmと
少ない。フェライト組織も、FGS.NO 約7〜8と適度の
結晶粒径を有している。このように銅の浸入が抑制さ
れ、かつフェライト組織が適度の粒径を有する効果とし
て、拡管加工やフレア加工に必要とされる25%以上の
伸び率を有している。Tables 1 and 2 show the chemical composition of the base steel sheet,
The test results of the product pipe are shown together with the production conditions of the copper plated steel sheet and the double wound pipe. The pipes of Invention Examples Nos. 1 to 14 have high copper penetration resistance, and the copper penetration depth is as small as about 3 to 9 μm. The ferrite structure also has a moderate grain size of about 7 to 8 FGS.NO. As described above, the infiltration of copper is suppressed, and the ferrite structure has an elongation of 25% or more, which is required for pipe expansion and flaring as an effect of having an appropriate grain size.
【0036】他方、比較例No.51 〜66において、No.51
およびNo.52 のパイプの延性が低いのは、鋼板のC量の
不足のため、フェライト粒が粗大化し、銅の浸入深さが
大きく、粒界の脆化が生じたことによる。No.53 および
No.54 のパイプの延性が劣るのは、素地鋼板のC量が多
すぎるため、鋼中の炭化物(Fe3 C)量が過剰に析出した
こと、および針状のフェライト組織が形成されたことに
より硬質化しているのである。No.55 とNo.56 (素地鋼
板Al量不足)およびNo.59 とNo.60 (素地鋼板N量不
足)のパイプの延性が劣るのは、AlNの析出量が不足
してフェライト粒が粗大化し、このため銅の浸入深さが
大きくなり、粒界が脆化したからである。On the other hand, in Comparative Examples Nos. 51 to 66, No. 51
The low ductility of the No. 52 and No. 52 pipes is due to the ferrite grains being coarsened, the copper penetration depth being large, and the grain boundaries being embrittled due to the lack of C content in the steel sheet. No.53 and
The poor ductility of No. 54 pipe is due to the excessive amount of carbide (Fe 3 C) in the steel due to the excessive C content of the base steel sheet and the formation of acicular ferrite structure. Is hardened. The poor ductility of the pipes of No. 55 and No. 56 (insufficient Al content of the base steel plate) and No. 59 and No. 60 (insufficient N content of the base steel plate) is due to the insufficient amount of AlN precipitation and coarse ferrite grains. This is because the penetration depth of copper is increased and the grain boundaries are embrittled.
【0037】No.57 とNo.58 (素地鋼板Al量過剰)お
よびNo.61 とNo.62 (素地鋼板N量過剰)のパイプの延
性が劣るのは、鋼中にAlNが過剰に析出して硬質化し
たことによる。No.63 とNo.64 (素地鋼板B量不足)の
パイプの延性が低いのは、素地鋼板のB量が少ないた
め、フェライト粒が粗大化し、銅の浸入深さが大きくな
り、粒界の脆化が生じたことによる。No.65 とNo.66
(素地鋼板B量過剰)のパイプ延性が低いのは、素地鋼
板のB量が多過ぎるため、固溶B量が過剰に析出して、
フェライト粒が過度に微細化したこと、および針状のフ
ェライト組織が形成されたことにより、硬質化している
のである。The inferior ductility of the pipes of No. 57 and No. 58 (base steel sheet with excessive amount of Al) and No. 61 and No. 62 (base steel sheet with excessive amount of N) are due to excessive precipitation of AlN in the steel. Due to hardening. The low ductility of the No. 63 and No. 64 pipes (insufficient B content of the base steel plate) is because the B content of the base steel plate is small, ferrite grains are coarsened, copper penetration depth is increased, and grain boundary Due to embrittlement. No.65 and No.66
The reason why the pipe ductility of (base steel sheet B content is excessive) is low is that the base steel sheet has too much B content, so that the solute B content precipitates excessively,
Hardening is caused by excessively fine ferrite grains and the formation of an acicular ferrite structure.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 [Table 2]
【0040】[0040]
【発明の効果】本発明の二重巻きパイプ用銅めっき鋼板
は、セルフ・ブレージング処理における耐銅浸入性が高
く、銅の浸入およびそれに起因する粒界脆化を抑制防止
し、またブレージング処理後のフェライト組織の粗大化
や針状化とそれに付随するパイプの硬質化も抑制防止さ
れる。従って得られる二重巻きパイプは、高い延性を有
し、拡管加工やフレア加工等における加工割れが抑制防
止され、製造歩留りの向上,パイプ品質の向上安定化等
の効果が得られる。The copper-plated steel sheet for a double-wound pipe according to the present invention has a high resistance to copper penetration in self-brazing treatment, suppresses copper penetration and grain boundary embrittlement resulting from the penetration, and furthermore, after brazing treatment. The ferrite structure is also prevented from becoming coarse or needle-like and the accompanying hardening of the pipe is prevented. Therefore, the obtained double-wound pipe has high ductility, processing cracks in pipe expansion processing, flare processing, and the like are suppressed, and effects such as improvement in production yield, improvement in pipe quality, and stabilization of pipe quality are obtained.
【図1】二重巻きパイプの伸び値と素地鋼板のC量との
関係を示すグラフである。FIG. 1 is a graph showing the relationship between the elongation value of a double-wound pipe and the C content of a base steel sheet.
【図2】二重巻きパイプの伸び値と素地鋼板のAl,N
量との関係を示すグラフである。Fig. 2 Elongation value of double wound pipe and Al, N of base steel sheet
It is a graph which shows the relationship with quantity.
【図3】二重巻きパイプの伸び値と素地鋼板のB量との
関係を示すグラフである。FIG. 3 is a graph showing the relationship between the elongation value of a double-wound pipe and the B content of a base steel sheet.
【図4】二重巻きパイプの素地鋼板のフェライト粒度番
号(FGS.NO)とB量との関係を示すグラフである。FIG. 4 is a graph showing a relationship between a ferrite grain size number (FGS. NO) and a B content of a base steel sheet of a double-wound pipe.
【図5】二重巻きパイプの素地鋼への銅の浸入深さと素
地鋼板のB量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the penetration depth of copper into the base steel of the double-wound pipe and the B content of the base steel sheet.
【図6】二重巻きパイプを示す模式的断面図である。FIG. 6 is a schematic sectional view showing a double wound pipe.
1: 素地鋼板 2: 銅めっき層 3: 銅の融着層 1: Base steel sheet 2: Copper plating layer 3: Copper fusion layer
Claims (2)
Si: 0.1%以下,Mn: 0.05〜0.5%,P:
0.020%以下,S: 0.015%以下,sol.Al:
0.03〜0.08%,N: 0.003〜0.008
%,B: 0.0008〜0.002%、 残部は実質的にFeおよび不可避不純物からなる素地鋼
板とその表面を被覆するめっき層からなることを特徴と
する耐銅浸入性等にすぐれた二重巻きパイプ用銅めっき
鋼板。(1) C: 0.03 to 0.08% by weight,
Si: 0.1% or less, Mn: 0.05-0.5%, P:
0.020% or less, S: 0.015% or less, sol.
0.03 to 0.08%, N: 0.003 to 0.008
%, B: 0.0008 to 0.002%, with the balance being a base steel sheet substantially composed of Fe and unavoidable impurities and a plating layer covering the surface thereof, and having excellent copper penetration resistance and the like. Copper plated steel sheet for heavy wound pipe.
n: 0.05〜0.5%,P: 0.020%以下,S:
0.015%以下,sol.Al: 0.03〜0.08%,
N: 0.003〜0.008%,B: 0.0008〜
0.002%、 残部Feおよび不可避不純物からなるスラブを熱間圧延
し、圧下率40〜90%で冷間圧延した後、冷延鋼板
を、水素濃度2vol %以上のN2 −H2 混合ガス中、再
結晶温度〜850℃の温度域で焼鈍処理し、ついで該鋼
板に銅めっき処理を施すことを特徴とする耐銅浸入性等
にすぐれた二重巻きパイプ用銅めっき鋼板の製造方法。2. In% by weight, C: 0.03 to 0.08%, Si: 0.1% or less, M
n: 0.05-0.5%, P: 0.020% or less, S:
0.015% or less, sol.Al: 0.03-0.08%,
N: 0.003-0.008%, B: 0.0008-
A slab consisting of 0.002%, balance Fe and unavoidable impurities is hot-rolled and cold-rolled at a rolling reduction of 40 to 90%, and then a cold-rolled steel sheet is mixed with an N 2 -H 2 mixed gas having a hydrogen concentration of 2 vol% or more. A method for producing a copper-plated steel sheet for a double-wound pipe having excellent copper penetration resistance and the like, wherein the steel sheet is subjected to an annealing treatment in a temperature range of a recrystallization temperature to 850 ° C. and then to a copper plating treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00712598A JP3720183B2 (en) | 1998-01-19 | 1998-01-19 | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00712598A JP3720183B2 (en) | 1998-01-19 | 1998-01-19 | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11199972A true JPH11199972A (en) | 1999-07-27 |
JP3720183B2 JP3720183B2 (en) | 2005-11-24 |
Family
ID=11657367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00712598A Expired - Lifetime JP3720183B2 (en) | 1998-01-19 | 1998-01-19 | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3720183B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009203506A (en) * | 2008-02-27 | 2009-09-10 | Nisshin Steel Co Ltd | High strength copper plated steel sheet for double-wound pipe, and method for producing the same |
WO2017111512A1 (en) * | 2015-12-22 | 2017-06-29 | 주식회사 포스코 | Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor |
-
1998
- 1998-01-19 JP JP00712598A patent/JP3720183B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009203506A (en) * | 2008-02-27 | 2009-09-10 | Nisshin Steel Co Ltd | High strength copper plated steel sheet for double-wound pipe, and method for producing the same |
WO2017111512A1 (en) * | 2015-12-22 | 2017-06-29 | 주식회사 포스코 | Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor |
CN108603270A (en) * | 2015-12-22 | 2018-09-28 | Posco公司 | Continuous type is from soldering cold-rolled steel sheet and its manufacturing method |
EP3395983A4 (en) * | 2015-12-22 | 2018-12-19 | Posco | Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3720183B2 (en) | 2005-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4445365B2 (en) | Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability | |
JP5707671B2 (en) | Nb-added ferritic stainless steel sheet excellent in workability and manufacturability and method for producing the same | |
JP5560578B2 (en) | Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof | |
JP2008056991A (en) | High-strength thin steel sheet having superior delayed-fracture resistance after having been formed, and manufacturing method therefor | |
JP4586449B2 (en) | Ultra-high-strength cold-rolled steel sheet excellent in bendability and stretch flangeability and manufacturing method thereof | |
KR20210107806A (en) | A hot-pressed member, a cold-rolled steel sheet for a hot-pressed member, and their manufacturing method | |
TWI506146B (en) | High strength cold rolled steel sheet excellent in weldability and method for manufacturing the same | |
JP3720185B2 (en) | Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same | |
JP2005133181A (en) | High-strength cold-rolled steel sheet and manufacturing method therefor | |
JP2005105361A (en) | High yield ratio and high strength hot rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method | |
JP3815762B2 (en) | Copper-plated steel sheet for single pipe excellent in coarse grain resistance, copper penetration resistance, etc. and method for producing the same | |
JP4022019B2 (en) | High-strength cold-rolled steel sheet with excellent formability after welding and difficult to soften weld heat-affected zone | |
JP3720183B2 (en) | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same | |
JP2007177303A (en) | Steel having excellent ductility and its production method | |
JP2018131668A (en) | HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME | |
JP4419605B2 (en) | Steel sheet for double-wound pipe and manufacturing method thereof | |
JP3659542B2 (en) | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same | |
JP2010174293A (en) | Steel sheet to be die-quenched superior in hot-punchability | |
JP3943754B2 (en) | High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone. | |
JPH05345916A (en) | Production of high strength hot rolled steel plate for automobile under carriage parts excellent in stretch flange formability and corrosion resistance | |
JPS633929B2 (en) | ||
JPH0774383B2 (en) | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking | |
JPH0790474A (en) | Production of contained oxide-dispersed slab and rolled shape steel excellent in toughness by the same slab | |
KR20230077508A (en) | High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same | |
WO2019146683A1 (en) | High-ductility high-strength steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050907 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |