JPH11199948A - Low-temperature-ductile material - Google Patents

Low-temperature-ductile material

Info

Publication number
JPH11199948A
JPH11199948A JP10000766A JP76698A JPH11199948A JP H11199948 A JPH11199948 A JP H11199948A JP 10000766 A JP10000766 A JP 10000766A JP 76698 A JP76698 A JP 76698A JP H11199948 A JPH11199948 A JP H11199948A
Authority
JP
Japan
Prior art keywords
temperature
low
powder
ductile material
ductile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10000766A
Other languages
Japanese (ja)
Inventor
Takahiro Okuhata
孝浩 奥畑
Hitoshi Aoyama
斉 青山
Tsutae Takahashi
伝 高橋
Shinichi Yumoto
進一 湯本
Yoshitaka Adachi
祥卓 足達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10000766A priority Critical patent/JPH11199948A/en
Publication of JPH11199948A publication Critical patent/JPH11199948A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a material having a ductile-brittle transition temp. of <=a specified temp. without executing plastic working by granulating high m.p. metal powder by using a binder and compacting and sintering this granulated powder. SOLUTION: This low temp. ductile material is composed of a high m.p. metal sintered body and has a ductile-brittle transition temp. of <=100 deg.C. The granulation is executed in such a manner that into the high m.p. metal powder, preferably with 1 to 5 μm particle size of molybdenum, tungsten, tantalum, rhenium or the like a binder such as polyvinyl alcohol, polyethylene glycol or the like is added. The average particle size of the granulated powder is preferably regulated to 20 to 100 μm. Next, th granulated powder is compacted to have the prescribed size and shape. The comporting pressure is preferably regulated to about 1 to 4 kg/cm<2> . The obtd. compacted body is degreased and is moreover sintered. Preferably, the degreasing is executed at 600 to 900 deg.C for 2 to 5 hr, and the sintering is executed at 1700 to 1900 deg.C for 5 to 10 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温延性材料に係
り、特に、炉用部材、半導体基板、その他構造用部材に
使用される低温延性材料に関する。
The present invention relates to a low-temperature ductile material, and more particularly to a low-temperature ductile material used for furnace members, semiconductor substrates, and other structural members.

【0002】[0002]

【従来の技術】モリブデン、タングステン等の高融点金
属材料は、一般に溶解法による製造が困難であるため、
通常、粉末冶金法により製造される。その製造手順は次
の通りである。
2. Description of the Related Art Refractory metal materials such as molybdenum and tungsten are generally difficult to produce by a melting method.
Usually, it is manufactured by a powder metallurgy method. The manufacturing procedure is as follows.

【0003】まず粒径2〜3μm程度のモリブデン粉末
を用意し、これを金型に充填して圧縮成形により所定の
形状に成形する。次いで、この成形体を1800℃程度
の融点より低い温度で焼結する。次に、得られた焼結体
を圧延して塑性加工することにより、延性脆性遷移温度
(DBTT)を下げ、その後、二次加工を施すことによ
り、製品を得ていた。この場合、DBTTを下げるに
は、50%以上の加工率による塑性加工が必要であると
されていた。また、粉末の成形を自動プレス機で行う場
合、粉末の流動性が悪く、操作性に問題があるため、効
率のよい成形を行うことが困難であった。
[0003] First, a molybdenum powder having a particle size of about 2 to 3 µm is prepared, filled in a mold, and formed into a predetermined shape by compression molding. Next, the compact is sintered at a temperature lower than the melting point of about 1800 ° C. Next, the obtained sintered body was rolled and plastically processed to lower the ductile brittle transition temperature (DBTT), and then subjected to secondary processing to obtain a product. In this case, in order to lower the DBTT, it was considered that plastic working at a working ratio of 50% or more was required. In addition, when the powder is formed by an automatic press machine, the flowability of the powder is poor and there is a problem in operability, so that it has been difficult to perform efficient forming.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情の下になされ、塑性加工を行うことなく、低温で延
性を示す低温延性材料を提供することを目的とする。本
発明の他の目的は、そのような低温延性材料を製造する
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-temperature ductile material which exhibits ductility at a low temperature without performing plastic working under such circumstances. Another object of the present invention is to provide a method for producing such a low temperature ductile material.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明(請求項1)は、高融点金属粉末をバインダ
を用いて造粒し、この造粒粉を成形および焼結してなる
高融点金属焼結体からなり、100℃以下の延性脆性遷
移温度を有することを特徴とする低温延性材料を提供す
る。
To solve the above problems, the present invention (claim 1) comprises granulating a high melting point metal powder using a binder, and molding and sintering the granulated powder. Provided is a low-temperature ductile material comprising a refractory metal sintered body and having a ductile brittle transition temperature of 100 ° C. or less.

【0006】本発明(請求項2)は、上記低温延性材料
(請求項1)において、35℃以下の延性脆性遷移温度
を有することを特徴とする。本発明(請求項3)は、上
記低温延性材料(請求項1)において、高融点金属はモ
リブデンであることを特徴とする。
The present invention (Claim 2) is characterized in that the low-temperature ductile material (Claim 1) has a ductile brittle transition temperature of 35 ° C. or less. The present invention (Claim 3) is characterized in that in the low-temperature ductile material (Claim 1), the high melting point metal is molybdenum.

【0007】本発明(請求項4)は、高融点金属粉末を
バインダを用いて造粒する工程、得られた造粒粉を成形
する工程、および得られた成形体を焼結する工程を具備
し、100℃以下の延性脆性遷移温度を有することを特
徴とする低温延性材料の製造方法を提供する。
The present invention (claim 4) comprises a step of granulating a high melting point metal powder using a binder, a step of forming the obtained granulated powder, and a step of sintering the obtained formed body. The present invention also provides a method for producing a low-temperature ductile material, which has a ductile brittle transition temperature of 100 ° C. or less.

【0008】本発明(請求項5)は、上記低温延性材料
の製造方法(請求項4)において、高融点金属はモリブ
デンであることを特徴とする。本発明(請求項6)は、
上記低温延性材料の製造方法(請求項4)において、造
粒粉は20〜100μmの平均粒径を有することを特徴
とする。
The present invention (Claim 5) is characterized in that, in the method for producing a low-temperature ductile material (Claim 4), the high melting point metal is molybdenum. The present invention (claim 6)
In the method for producing a low-temperature ductile material (claim 4), the granulated powder has an average particle diameter of 20 to 100 μm.

【0009】以上のように構成される本発明の低温延性
材料は、高融点金属粉末の粉末冶金法により製造され
る。高融点金属粉末としては、モリブデン、タングステ
ン、タンタル、レニウム等が用いられる。高融点金属粉
末の粒径は、1〜5μmであるのが好ましい。
[0009] The low-temperature ductile material of the present invention configured as described above is manufactured by powder metallurgy of a high melting point metal powder. As the high melting point metal powder, molybdenum, tungsten, tantalum, rhenium or the like is used. The particle size of the high melting point metal powder is preferably 1 to 5 μm.

【0010】本発明の低温延性材料の製造においては、
従来と異なり、高融点金属粉末を造粒して造粒粉を形成
する。造粒は、高融点金属粉末にバインダ−を添加して
行われる。バインダ−としては、ポリビニルアルコ−
ル、ポリエチレングリコ−ル等を用いることができる。
高融点金属粉末とバインダ−との混合割合は、200:
1〜50:1が好ましい。また、得られた造粒粉の粒径
は、20〜100μmであるのが好ましい。
In the production of the low-temperature ductile material of the present invention,
Unlike the conventional method, a high melting point metal powder is granulated to form a granulated powder. Granulation is performed by adding a binder to the high melting point metal powder. As the binder, polyvinyl alcohol
And polyethylene glycol can be used.
The mixing ratio of the high melting point metal powder and the binder is 200:
1-50: 1 is preferred. The particle size of the obtained granulated powder is preferably 20 to 100 μm.

【0011】造粒粉の粒径が20μm未満では、造粒粉
の流動性が悪化し、均一な成形体が得られなくなり、一
方、100μmを越えると、造粒粉の造粒が困難とな
り、好ましくない。より好ましくは40〜70μmであ
る。
When the particle size of the granulated powder is less than 20 μm, the fluidity of the granulated powder is deteriorated and a uniform molded body cannot be obtained. On the other hand, when it exceeds 100 μm, granulation of the granulated powder becomes difficult, Not preferred. More preferably, it is 40 to 70 μm.

【0012】次に、造粒粉は所定のサイズおよび形状に
成形される。成形圧力は、1〜4kg/cm2 程度が好
ましい。得られた成形体は、その後、脱脂され、更に焼
結される。脱脂は、600〜900℃の温度で2〜5時
間、焼結は、1700〜1900℃の温度で5〜10時
間、行うことが好ましい。焼結を過度に長時間行うと、
後述するように、低温延性に影響を与える因子の1つと
考えられるバインダ−中のカ−ボンが少なくなり過ぎて
しまうため、好ましくない。
Next, the granulated powder is formed into a predetermined size and shape. The molding pressure is preferably about 1 to 4 kg / cm 2 . The obtained molded body is thereafter degreased and further sintered. Degreasing is preferably performed at a temperature of 600 to 900 ° C for 2 to 5 hours, and sintering is preferably performed at a temperature of 1700 to 1900 ° C for 5 to 10 hours. If sintering is performed for an excessively long time,
As will be described later, the amount of carbon in the binder, which is considered to be one of the factors affecting low-temperature ductility, is undesirably reduced.

【0013】以上のようにして得られた焼結体は、所定
の形状に加工されて、炉用部材、整流素子用基板、半導
体基板、その他構造用部材等の製品とされる。以上説明
した本発明の低温延性材料は、100℃以下の延性脆性
遷移温度を有するという、低温で優れた延性を有する。
本発明の低温延性材料がこのように低温で優れた延性を
有する理由は、未だ明確ではないが、恐らく、従来の材
料とは異なり、造粒粉を成形・焼結していることから、
造粒工程、例えばバインダ−の使用が何らかの形で関与
していることが考えられる。
The sintered body obtained as described above is processed into a predetermined shape to obtain products such as furnace members, rectifying element substrates, semiconductor substrates, and other structural members. The low-temperature ductile material of the present invention described above has excellent ductility at low temperatures, having a ductile-brittle transition temperature of 100 ° C. or less.
The reason why the low-temperature ductile material of the present invention has excellent ductility at such a low temperature is not yet clear, but probably, unlike conventional materials, because granulated powder is molded and sintered,
It is possible that the granulation process, for example the use of a binder, is involved in some way.

【0014】すなわち、バインダ−の使用により導入さ
れたカ−ボンは、一般に、焼結により殆どが除去される
ものと考えられていたが、本発明者らの実験によると、
その半分程度が焼結後も残留していることがわかった。
この焼結体中に残留するカ−ボンが、低温での延性に影
響を与える因子の1つではないかと思われる。
That is, it has been generally thought that carbon introduced by the use of a binder is almost completely removed by sintering.
It was found that about half thereof remained after sintering.
It is considered that the carbon remaining in the sintered body is one of the factors affecting the low-temperature ductility.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を示し、本
発明についてより具体的に説明する。 実施例 図1に示す工程に従って、低温延性材料を製造した。ま
ず、粒径2.5μmのモリブデン粉末30kgを用意
し、これにバインダ−としてポリビニルアルコ−ル(P
VA)およびポリエチレングリコール(PEG)のそれ
ぞれ0.3kgを加え、混合し、次いで、スプレ−ドラ
イヤ−により造粒し、粒径50μmのモリブデン造粒粉
を得た。このモリブデン造粒粉中のカ−ボン含有量を測
定したところ、3300ppmであった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be shown, and the present invention will be described more specifically. Example A low-temperature ductile material was manufactured according to the process shown in FIG. First, 30 kg of molybdenum powder having a particle size of 2.5 μm was prepared, and polyvinyl alcohol (P) was used as a binder.
0.3 kg of each of VA) and polyethylene glycol (PEG) were added, mixed, and then granulated by a spray dryer to obtain a molybdenum granulated powder having a particle size of 50 μm. When the carbon content in the molybdenum granulated powder was measured, it was 3300 ppm.

【0016】次いで、得られたモリブデン造粒粉を1t
/cm2 、2t/cm2 、3t/cm2 、4t/cm2
の成形圧力により、径86mm×厚み3mmの形状に成
形し、4種の成形体を得た。成形機としては、油圧プレ
ス(500トン)を用いた。この場合、モリブデン造粒
粉は流動性に富んでいるので、成形機への充填をスム−
スに行うことができた。
Next, the obtained molybdenum granulated powder was
/ Cm 2 , 2 t / cm 2 , 3 t / cm 2 , 4 t / cm 2
, And formed into a shape having a diameter of 86 mm and a thickness of 3 mm to obtain four types of molded products. A hydraulic press (500 tons) was used as a molding machine. In this case, since the molybdenum granulated powder is rich in fluidity, filling the molding machine is smooth.
Was able to do it.

【0017】次に、形成体を850℃で脱脂し、更に1
750℃で7.5時間、焼結し、焼結体を得た。得られ
た4種の焼結体について、密度、カ−ボン残存量(pp
m)、伸びを測定したところ、下記表に示す結果を得
た。
Next, the formed body was degreased at 850 ° C.
Sintering was performed at 750 ° C. for 7.5 hours to obtain a sintered body. Regarding the obtained four types of sintered bodies, the density and the remaining amount of carbon (pp
m) and elongation were measured, and the results shown in the following table were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】上記表から、4種の焼結体は、1〜4t/
cm2 のいずれの成形圧力によっても、優れた延性を示
していることがわかる。なお、焼結によっても110〜
1550ppmのカ−ボンが残存しており、これが延性
に影響を及ぼしていることが考えられる。
From the above table, the four types of sintered bodies are 1 to 4 t /
It can be seen that excellent ductility is exhibited at any molding pressure of cm 2 . In addition, 110-110
It is thought that 1550 ppm of carbon remained, which affected ductility.

【0020】以上のようにして得られた焼結体は、次い
で曲げ加工等の二次加工が施され、所定の製品とされ
る。この場合、焼結体は、低温においても優れた延性を
有するため、曲げ加工等の二次加工を容易に行うことが
可能である。
The sintered body obtained as described above is then subjected to secondary processing such as bending to obtain a predetermined product. In this case, since the sintered body has excellent ductility even at a low temperature, it is possible to easily perform secondary processing such as bending.

【0021】なお、以上の実施例では、高融点金属とし
てモリブデンを用いた場合について説明したが、本発明
は、これに限らず、タングステン、タンタル、レニウム
等の他の高融点金属を用いることも可能であり、また、
これら高融点金属の合金を用いてもよい。
In the above embodiments, the case where molybdenum is used as the high melting point metal has been described. Is possible, and
An alloy of these refractory metals may be used.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
高融点金属粉末をバインダを用いて造粒し、この造粒粉
を成形および焼結してなる高融点金属焼結体により構成
されているため、塑性加工を施すことなく100℃以下
の延性脆性遷移温度を示すという、極めて優れた低温延
性を示す低温延性材料が得られる。
As described above, according to the present invention,
The high melting point metal powder is granulated using a binder, and the granulated powder is formed and sintered to form a high melting point metal sintered body. A low-temperature ductile material that exhibits a transition temperature and exhibits extremely excellent low-temperature ductility is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る低温延性材料の製造工
程を示す工程図。
FIG. 1 is a process chart showing a process for producing a low-temperature ductile material according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯本 進一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 足達 祥卓 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinichi Yumoto 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Inventor Yoshitaka Adachi 8th Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Yokohama Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高融点金属粉末をバインダを用いて造粒
し、この造粒粉を成形および焼結してなる高融点金属焼
結体からなり、100℃以下の延性脆性遷移温度を有す
ることを特徴とする低温延性材料。
1. A high melting metal sintered body obtained by granulating a high melting metal powder using a binder, molding and sintering the granulated powder, and having a ductile brittle transition temperature of 100 ° C. or less. A low-temperature ductile material characterized by the following.
【請求項2】 35℃以下の延性脆性遷移温度を有する
ことを特徴とする請求項1に記載の低温延性材料。
2. The low temperature ductile material according to claim 1, having a ductile brittle transition temperature of 35 ° C. or less.
【請求項3】 前記高融点金属はモリブデンであること
を特徴とする請求項1に記載の低温延性材料。
3. The low-temperature ductile material according to claim 1, wherein the refractory metal is molybdenum.
【請求項4】 高融点金属粉末をバインダを用いて造粒
する工程、得られた造粒粉を成形する工程、および得ら
れた成形体を焼結する工程を具備し、100℃以下の延
性脆性遷移温度を有することを特徴とする低温延性材料
の製造方法。
4. A process for granulating a high melting point metal powder using a binder, a step for molding the obtained granulated powder, and a step for sintering the obtained molded body, wherein the ductility is 100 ° C. or less. A method for producing a low-temperature ductile material, characterized by having a brittle transition temperature.
【請求項5】 前記高融点金属はモリブデンであること
を特徴とする請求項4に記載の低温延性材料の製造方
法。
5. The method according to claim 4, wherein the refractory metal is molybdenum.
【請求項6】 前記造粒粉は20〜100μmの平均粒
径を有することを特徴とする請求項4に記載の低温延性
材料の製造方法。
6. The method for producing a low-temperature ductile material according to claim 4, wherein the granulated powder has an average particle size of 20 to 100 μm.
JP10000766A 1998-01-06 1998-01-06 Low-temperature-ductile material Pending JPH11199948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10000766A JPH11199948A (en) 1998-01-06 1998-01-06 Low-temperature-ductile material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10000766A JPH11199948A (en) 1998-01-06 1998-01-06 Low-temperature-ductile material

Publications (1)

Publication Number Publication Date
JPH11199948A true JPH11199948A (en) 1999-07-27

Family

ID=11482830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10000766A Pending JPH11199948A (en) 1998-01-06 1998-01-06 Low-temperature-ductile material

Country Status (1)

Country Link
JP (1) JPH11199948A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259189A (en) * 2011-07-28 2011-11-30 北京科技大学 Preparation method of porous cathode substrate
WO2012157336A1 (en) * 2011-05-19 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
WO2012157334A1 (en) * 2011-05-16 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
WO2012169256A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169262A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169255A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169261A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169258A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476522A (en) * 2011-05-16 2013-12-25 株式会社东芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
WO2012157334A1 (en) * 2011-05-16 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
JP5917502B2 (en) * 2011-05-16 2016-05-18 株式会社東芝 Method for producing molybdenum granulated powder
JPWO2012157334A1 (en) * 2011-05-16 2014-07-31 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012157336A1 (en) * 2011-05-19 2012-11-22 株式会社東芝 Method for producing molybdenum granulated powder, and molybdenum granulated powder
JP5917503B2 (en) * 2011-05-19 2016-05-18 株式会社東芝 Method for producing molybdenum granulated powder
JPWO2012157336A1 (en) * 2011-05-19 2014-07-31 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169256A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169257A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169258A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169261A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169255A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169262A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
CN102259189A (en) * 2011-07-28 2011-11-30 北京科技大学 Preparation method of porous cathode substrate

Similar Documents

Publication Publication Date Title
Andersen et al. Novel metallic hollow sphere structures
US9255309B2 (en) Fine grain niobium sheet via ingot metallurgy
CZ20011740A3 (en) Low oxygen refractory hard-to-melt metal powder for powder metallurgy, process of its production and products produced therefrom
JPH11199948A (en) Low-temperature-ductile material
KR100947392B1 (en) Capacitor-grade lead wires with increased tensile strength and hardness
US5354534A (en) Method for manufacturing sintered parts
US4765952A (en) Process for producing tungsten heavy alloy sheet by a loose fill hydrometallurgical process
WO2007033885A1 (en) Tungsten scrap
US5114469A (en) Low-temperature consolidation metal-based compositions and method
EP0221746B1 (en) Activated sintering of metallic powders
JPS6299425A (en) Manufacture of malleable material of al-base intermetallic compound
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
JPH0429729B2 (en)
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
KR101115225B1 (en) Feedstock composition and method of using same for powder metallurgy forming of reactive metals
US5940675A (en) T222 production by powder metallurgy
JP2752857B2 (en) Manufacturing method of powder alloy billet
JPH0319293B2 (en)
JPH08170131A (en) Sintered compact for hot tool
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JPH10168505A (en) Low density molybdenum sintered compact and its production
JPH066763B2 (en) Method for manufacturing high strength aluminum alloy sintered member
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
JP2000144248A (en) Production of rolled silicon steel sheet
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same