JPH066763B2 - Method for manufacturing high strength aluminum alloy sintered member - Google Patents

Method for manufacturing high strength aluminum alloy sintered member

Info

Publication number
JPH066763B2
JPH066763B2 JP61079513A JP7951386A JPH066763B2 JP H066763 B2 JPH066763 B2 JP H066763B2 JP 61079513 A JP61079513 A JP 61079513A JP 7951386 A JP7951386 A JP 7951386A JP H066763 B2 JPH066763 B2 JP H066763B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy powder
weight
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61079513A
Other languages
Japanese (ja)
Other versions
JPS62238341A (en
Inventor
治男 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61079513A priority Critical patent/JPH066763B2/en
Publication of JPS62238341A publication Critical patent/JPS62238341A/en
Publication of JPH066763B2 publication Critical patent/JPH066763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、機械的性質を損なう粗大な金属間化合物を析
出させる傾向のある合金元素を含有する高強度アルミニ
ウム合金製部材を、粉末冶金法によって得る方法に関す
るものである。
TECHNICAL FIELD The present invention obtains a high-strength aluminum alloy member containing an alloying element which tends to precipitate a coarse intermetallic compound which impairs mechanical properties, by a powder metallurgy method. It is about the method.

従来技術およびその問題点 近年、α固溶体に対して溶解限度を越える量の合金元素
を含有する高強度アルミニウム合金製部材が、粉末冶金
法によって製造される傾向にある。この方法において
は、生産性の良好なる空気噴射法(アトマイゼーショ
ン)、あるいは不活性ガス噴射法によって得たアルミニ
ウム合金粉末が多用されている。
2. Description of the Related Art In recent years, there has been a tendency for a high-strength aluminum alloy member containing an alloying element in an amount exceeding the melting limit of an α solid solution to be manufactured by powder metallurgy. In this method, an aluminum alloy powder obtained by an air injection method (atomization) or an inert gas injection method, which has good productivity, is often used.

しかるに、前記ガス噴射法によってアルミニウム合金粉
末を得る場合、溶融状態からその冷却速度が、102℃/
秒以上、104℃/秒未満であって小さく、強度、剛性の
異なる向上を計って前記合金元素を多量に添加したアル
ミニウム合金にあっては、粗大な金属間化合物が生ずる
不具合がある。そのため、該粉末によって得た焼結品
は、引張り荷重に対する伸び率が不足し、構造用部材と
して要求される特性が得られないだけでなく、鍛造等の
二次加工が困難である。
However, when the aluminum alloy powder is obtained by the gas injection method, the cooling rate from the molten state is 10 2 ° C /
The aluminum alloy containing a large amount of the above alloying elements, which is small at more than 10 seconds and less than 10 4 ° C./second and has different strength and rigidity, has a problem that a coarse intermetallic compound occurs. Therefore, the sintered product obtained from the powder has an insufficient elongation rate with respect to a tensile load, so that not only the characteristics required as a structural member cannot be obtained, but also secondary processing such as forging is difficult.

従来では、その問題に対処して、ガス噴射法によって得
たアルミニウム合金粉末を圧粉成形して押出し用ビレッ
トになし、該ビレットを熱間押出し加工することによ
り、粗大な金属間化合物を破砕しつつ焼結、組織の緻密
化を行い、もって焼結晶の伸び率を増大させ、二次加工
性の向上を計っていた。この熱間押出し加工は、工数増
しになるだけでなく製品歩留りの低下を招き、製品価格
を押し上げていた。
Conventionally, in order to deal with the problem, an aluminum alloy powder obtained by a gas injection method is compacted into a billet for extrusion, and the billet is hot extruded to crush coarse intermetallic compounds. At the same time, sintering and densification of the structure were carried out, thereby increasing the elongation of the fired crystal and improving the secondary workability. This hot extrusion process not only increases the number of steps, but also lowers the product yield and pushes up the product price.

問題点を解決するための手段および作用 本発明の目的は、機械的性質を損なう粗大な金属間化合
物を析出させる合金元素を多量に含有する高強度アルミ
ニウム合金焼結部材を、熱間加工法によることなく、低
廉な価格で得る点にある。
Means and Actions for Solving Problems The object of the present invention is to provide a high-strength aluminum alloy sintered member containing a large amount of alloying elements that precipitate coarse intermetallic compounds that impair mechanical properties, by a hot working method. It's about getting at a low price.

この目的は、機械的性質を損なう粗大な金属間化合物を
析出させる合金元素を多量に含有する第一のアルミニウ
ム合金粉末として、溶融状態からの冷却速度が104〜106
℃/秒のものを用いるとともに、他の第二の合金粉末と
して、溶融状態からの冷却速度が102℃/秒以上、104
/秒未満のものを用い、第一のアルミニウム合金粉末5
重量部以上、30重量部未満と、前記第二のアルミニウム
合金粉末70重量部以上、95重量部未満とを混合した後、
これを圧粉、焼結して高強度アルミニウム合金焼結部材
を得ることによって達成される。
The purpose of the first aluminum alloy powder containing a large amount of alloying elements that precipitates coarse intermetallic compounds that impair mechanical properties is that the cooling rate from the molten state is 10 4 to 10 6
C./sec. And other second alloy powders with a cooling rate from the molten state of 10 2 ° C / sec or more, 10 4 ° C
/ Second is used, and the first aluminum alloy powder 5
By weight or more, less than 30 parts by weight, after mixing the second aluminum alloy powder 70 parts by weight or more, less than 95 parts by weight,
This is achieved by compacting and sintering to obtain a high strength aluminum alloy sintered member.

機械的性質を損なう粗大な金属間化合物を析出させる合
金元素を多量に含有するアルミニウム合金の粉末を、溶
融状態からの冷却速度が104℃/秒以上になる様に製造
するならば、金属間化合物の粗大化を防ぐことが可能で
ある。ところが、斯様な大きな冷却速度で粉末を得るに
は、噴霧ロール法、メルトスプニング法、スプラットク
ール法等によらねばならず、これ等の粉末製造法は、工
程管理の煩雑さ等、種々の問題を有しており、多量生産
に適さず、粉末製造経費が高価になる欠点がある。
If an aluminum alloy powder containing a large amount of alloying elements that precipitates coarse intermetallic compounds that impair mechanical properties is produced at a cooling rate from the molten state of 10 4 ° C / sec or more, It is possible to prevent coarsening of the compound. However, in order to obtain a powder at such a large cooling rate, it is necessary to use a spray roll method, a melt spuning method, a splat cool method, etc., and these powder manufacturing methods are complicated in process control, etc. However, it is not suitable for mass production and the powder manufacturing cost becomes high.

本発明者は、斯かる認識の下で、問題となる合金元素を
多量に含有する第一のアルミニウム合金粉末と、他の第
二のアルミニウム合金粉末とを混合して目標合金組成を
達成することとし、第一のアルミニウム合金粉末のみを
製造経費の高価な前記高速冷却法で製造するのが有効で
あることを見出した。
The present inventor, under such recognition, achieves the target alloy composition by mixing the first aluminum alloy powder containing a large amount of the alloy element in question with another second aluminum alloy powder. It was found that it is effective to produce only the first aluminum alloy powder by the high-speed cooling method, which is expensive to produce.

すなわち、機械的性質を損なう粗大な金属間化合物を析
出させる合金元素を多量に含有する第一のアルミニウム
合金粉末と、他の第二のアルミニウム合金粉末とを混合
することにより、圧粉成形後の焼結工程において、粉末
間の濃度勾配を利用して拡散を促進させ、焼結性の向上
を計ることが可能であり、また圧粉成形性の悪い第一の
アルミニウム合金粉末に比して、圧粉成形性の良好な第
二のアルミニウム合金粉末の混合量を多くすることによ
り、圧粉体の密度を増大させて焼結性を向上させ、焼結
後の鍛造を行って、目標とする機械的性質を得ることが
できる。この方法によるならば、焼結品中の金属間化合
物の粗大化を防ぎ得るだけでなく、熱間押出し加工工程
を省略し、かつ低廉なる第二のアルミニウム合金粉末を
多量に用いて、製造経費の低減化を達成することができ
る。
That is, by mixing a first aluminum alloy powder containing a large amount of alloying elements that precipitate a coarse intermetallic compound that impairs mechanical properties, and another second aluminum alloy powder, after compacting In the sintering process, it is possible to promote the diffusion by utilizing the concentration gradient between the powders, and improve the sinterability, and compared with the first aluminum alloy powder having poor compactability, By increasing the mixing amount of the second aluminum alloy powder having good compaction formability, the density of the compact is increased to improve the sinterability, and the forging after sintering is performed to achieve the target. The mechanical properties can be obtained. According to this method, not only the coarsening of intermetallic compounds in the sintered product can be prevented, but also the hot extrusion process is omitted, and a large amount of inexpensive second aluminum alloy powder is used, and the manufacturing cost is reduced. Can be achieved.

具体的には、機械的性質を損なう粗大な金属間化合物を
析出させる合金元素を多量に含有する第一のアルミニウ
ム合金粉末の配合率を、5重量%以上、30重量%未満と
し、第二のアルミニウム合金粉末の配合量を70重量%以
上、95重量%未満にするのが適当である。その理由は、
第一のアルミニウム合金粉末の配合率が5重量%未満で
あると、所望の製品強度を実現するための合金元素添加
量が不足し、30重量%を越えると、粉末の圧粉成形性が
低下するだけでなく、製造経費の増大を招くからであ
る。
Specifically, the compounding ratio of the first aluminum alloy powder containing a large amount of alloying elements that precipitates coarse intermetallic compounds that impair mechanical properties is set to 5% by weight or more and less than 30% by weight, It is suitable that the blending amount of the aluminum alloy powder is 70% by weight or more and less than 95% by weight. The reason is,
If the compounding ratio of the first aluminum alloy powder is less than 5% by weight, the amount of alloying elements added to achieve the desired product strength will be insufficient, and if it exceeds 30% by weight, the powder compactability of the powder will decrease. This is not only due to the increase in manufacturing cost.

今仮に、目標合金組成が、12.0≦Si≦28.0%、0.8≦
Cu≦5.0%、0.3≦Mg≦3.5%、2.0≦Fe≦10.0%、
0.5≦Mn≦5.0%(いずれも重量%)であるとするなら
ば、第一のアルミニウム合金粉末の組成を、5≦Fe≦
40重量%、3≦Mn≦25重量%、残部Alとし、第二の
アルミニウム合金粉末の組成を、13≦Si≦29重量%、
2≦Cu≦5重量%、0.5≦Mg≦2重量%、残部Al
とするのが好適である。ここで、第二のアルミニウム合
金粉末を、Al−Si−Cu−Mg合金としてFeを除
外したのは、溶融金属からの冷却速度が102℃/秒以
上、104℃/秒未満である場合に、SiとFeが共存す
ると、Al−Si−Fe系の粗大な金属間化合物が生じ
易いからである。またAl−Fe−Mn合金である第一
のアルミニウム合金粉末を製造する際の溶融金属からの
冷却速度を104〜106℃/秒にしなければならない理由
は、Al−Fe−Mn合金の固液共存温度域(凝固開始
から凝固完了に至る温度範囲)が広く、冷却速度が小さ
いと、AlFe等の金属間化合物が粗大に析出し、最
終製品の伸び率を低下させるからである。なお、Fe、
Mnに限らずNi、Cr、V、Co、Ti等の遷移元素
は、Alに対するその固溶限界が1.5重量%以下であっ
て、これ等の各元素を含有するアルミニウム合金では、
該元素を含む金属間化合物が粗大に析出し易いため、該
アルミニウム合金粉末を製造する際の冷却速度は、これ
を十分大きくするのが好ましく、またこれ等の合金元素
を含むアルミニウム合金粉末は、自己崩壊性を示し、粉
末微細化のために行われる粉砕を効率良く行うことがで
きることから、多量生産に適する利点がある。
Suppose now that the target alloy composition is 12.0 ≦ Si ≦ 28.0%, 0.8 ≦
Cu ≦ 5.0%, 0.3 ≦ Mg ≦ 3.5%, 2.0 ≦ Fe ≦ 10.0%,
If 0.5 ≦ Mn ≦ 5.0% (both by weight), the composition of the first aluminum alloy powder is 5 ≦ Fe ≦
40% by weight, 3 ≦ Mn ≦ 25% by weight, balance Al, and the composition of the second aluminum alloy powder is 13 ≦ Si ≦ 29% by weight,
2 ≦ Cu ≦ 5% by weight, 0.5 ≦ Mg ≦ 2% by weight, balance Al
Is preferred. Here, the second aluminum alloy powder excludes Fe as an Al-Si-Cu-Mg alloy when the cooling rate from the molten metal is 10 2 ° C / sec or more and less than 10 4 ° C / sec. In addition, if Si and Fe coexist, a coarse Al—Si—Fe intermetallic compound is likely to occur. In addition, the reason why the cooling rate from the molten metal at the time of producing the first aluminum alloy powder that is an Al-Fe-Mn alloy must be 10 4 to 10 6 ° C / sec is that the Al-Fe-Mn alloy solid This is because when the liquid coexistence temperature range (the temperature range from the start of solidification to the completion of solidification) is wide and the cooling rate is small, intermetallic compounds such as Al 3 Fe coarsely precipitate and the elongation rate of the final product decreases. In addition, Fe,
Not only Mn but also transition elements such as Ni, Cr, V, Co, and Ti have a solid solution limit of 1.5% by weight or less with respect to Al, and in an aluminum alloy containing these elements,
Since the intermetallic compound containing the element is likely to coarsely precipitate, the cooling rate during the production of the aluminum alloy powder is preferably sufficiently large, and the aluminum alloy powder containing these alloy elements is Since it exhibits self-disintegrating property and can be efficiently pulverized for finely pulverizing powder, it has an advantage suitable for mass production.

本発明方法は、例えば下記の手順にて実施される。The method of the present invention is carried out by the following procedure, for example.

アルミニウム合金粉末の製造:第一のアルミニウム合
金粉末は、噴霧ロール法によりこれを製造し、次いで粉
砕機により細粒化した後、100メッシュよりも細かくな
る様に分級する。100メッシュよりも粗い粉末は、最終
製品の伸び率を低下させるため、これを使用するのは好
ましくない。
Production of aluminum alloy powder: The first aluminum alloy powder is produced by the spray roll method, then finely divided by a pulverizer, and then classified so as to be finer than 100 mesh. Powders coarser than 100 mesh reduce the elongation of the final product and are not recommended for use.

また、第二のアルミニウム合金粉末は、ガス噴射法によ
りこれを製造した後、100メッシュよりも細かくなる様
に分級する。
The second aluminum alloy powder is manufactured by a gas injection method and then classified so as to be finer than 100 mesh.

粉末の混合:斯くして得られた第一および第二のアル
ミニウム合金粉末を、ダブルコーン混合機(double con
eblender)、ボールミル等により均一に混合する。
Mixing of powders: The first and second aluminum alloy powders thus obtained are mixed with a double cone mixer.
Mix evenly with an eblender) or ball mill.

圧粉成形:混合後の粉末を温度250〜350℃に加熱し、
ワックスを用いることなく、同温度に加熱した金型によ
り、3〜8トン/cm2の圧力で成形を行う。この時、粉
末成形温度が250℃末端では、粉末の変形抵抗が大き
く、350℃を超えると、加圧の際、粉末相互の凝着によ
り架橋現象(bridge formation)が生じ易く、金型充填
性の低下およびそれに伴う生産性低下を招く。
Compacting: heating the mixed powder to a temperature of 250-350 ° C,
Molding is performed at a pressure of 3 to 8 ton / cm 2 by a mold heated to the same temperature without using wax. At this time, when the powder molding temperature is 250 ° C., the deformation resistance of the powder is large, and when it exceeds 350 ° C., a bridge phenomenon is apt to occur due to the mutual adhesion of the powders during pressurization, and the mold filling property And the resulting decrease in productivity.

また、冷間静水圧プレス成形法(CIP法)等の成形法
により、同じく3〜8トン/cm2の圧力で成形を行って
も良い。
Further, the molding may be carried out at a pressure of 3 to 8 ton / cm 2 by a molding method such as cold isostatic pressing (CIP method).

いずれの成形法においても、加圧力が3トン/cm2未満
では十分な焼結強度を得ることができず、8トン/cm2
を越えると、装置の大型化により、製造費の上昇を招
き、工業的に成立しない。
In any of the molding methods, if the applied pressure is less than 3 ton / cm 2 , sufficient sintering strength cannot be obtained, and 8 ton / cm 2
If it exceeds the above range, the manufacturing cost is increased due to the increase in the size of the device, and it is not industrially established.

そして、結果として得られた圧粉体の密度比(圧粉体と
同一組成の金属の真密度(g/cc)に対する圧粉密度
(g/cc)の比率を百分比で表わしたもの)は90〜99.5
%であることが望ましい。その理由は、密度比が90%未
満では、所望の焼結強度が得られず、密度比が99.5%を
超えると、焼結時における含有ガスの除去が完全でな
く、焼結晶の内部に有害ガスが残留することになるから
である。
The density ratio of the resulting green compact (the ratio of the green compact density (g / cc) to the true density (g / cc) of the metal having the same composition as the green compact expressed as a percentage) is 90. ~ 99.5
% Is desirable. The reason is that if the density ratio is less than 90%, the desired sintering strength cannot be obtained, and if the density ratio exceeds 99.5%, the removal of the contained gas during sintering is not complete and it is harmful to the inside of the sintered crystal. This is because the gas will remain.

焼結:前項で得られた圧粉体を焼結炉に入れ、望まし
くは、真空、窒素ガス、アルゴンガス等の不活性雰囲気
中で、温度350〜580℃に加熱保持する。焼結温度が350
℃未満であると、焼結が十分進行せず、580℃を超える
と、多量の液相が出現して製品強度が低下する。
Sintering: The green compact obtained in the preceding paragraph is placed in a sintering furnace and preferably heated and maintained at a temperature of 350 to 580 ° C. in an inert atmosphere such as vacuum, nitrogen gas or argon gas. Sintering temperature is 350
If it is less than ℃, the sintering does not proceed sufficiently, and if it exceeds 580 ° C, a large amount of liquid phase appears and the product strength decreases.

鍛造:必要に応じ、通常のプレス装置を用いて、得ら
れた焼結品の鍛造加工を行う。鍛造加工温度は、350〜4
80℃とするのが望ましい。温度350℃未満では、焼結品
の温度が金型に奪われ、その温度が低下して鍛造割れが
生じ、480℃を超えると、鍛造加工により発生する変形
熱の影響で焼結品の温度が過度に上昇し、液相が出現し
て製品強度が低下する。
Forging: If necessary, the obtained sintered product is forged by using an ordinary press machine. Forging temperature is 350-4
80 ° C is desirable. If the temperature is lower than 350 ° C, the temperature of the sintered product will be lost to the mold, and the temperature will decrease, causing forging cracking.If it exceeds 480 ° C, the temperature of the sintered product will be affected by the deformation heat generated by forging. Excessively rises, a liquid phase appears and the product strength decreases.

熱処理、機械加工:前項で得られた鍛造成形品に対し
て、必要に応じて、T(溶体化処理後、人工時硬化処
理)、T(溶体化処理後、安定化処理)等の熱処理を
施し、さらには機械加工を施して完成品とする。
Heat treatment, machining: For preceding obtained in forged product, if necessary, T 6 (after solution treatment, artificial upon curing process), T 7 (after solution treatment, stabilization), such as Heat-treated and then machined to obtain a finished product.

試験例 第一段階:表1に示す組成の第一および第二のアルミニ
ウム合金粉末を先の項の方法で製造し、第一のアルミ
ニウム合金粉末10重量部、第二のアルミニウム合金粉末
90重量部を、ダブルコーン混合機により30分間処理して
均一に混合したものを用い、これを内径30mmφの金型内
に装入して、下記条件で圧粉成形を行い、30mmφ×50mm
の円柱形圧粉体を得た。
Test Example First stage: The first and second aluminum alloy powders having the compositions shown in Table 1 were produced by the method of the above-mentioned item, 10 parts by weight of the first aluminum alloy powder, and the second aluminum alloy powder.
90 parts by weight, with those uniformly mixed for 30 minutes by a double cone blender, which was charged into a mold having an inner diameter of 30 mm phi, perform powder compaction under the following conditions, 30 mm phi × 50 mm
A cylindrical green compact of was obtained.

第二段階:前記圧粉体を大気中で温度470℃に加熱し、
温度430℃に予備加熱した金型を用いて鍛造加工を行
い、47mmφ×20mmの鍛造成形品である焼結部材(表1、
本発明例合金A参照)を得た。
Second step: heating the green compact to a temperature of 470 ° C. in the atmosphere,
Forging was performed using a die preheated to a temperature of 430 ° C, and a sintered member that was a forged product of 47 mm φ × 20 mm (Table 1,
Inventive Example Alloy A) was obtained.

第三段階:該焼結部材から、平行部径5mmφ、平行部長
さ30mmの引張り試験片を切り出し、室温で引張り試験を
実施した。その結果を表2に示す。
The third step: from sintered member was cut parallel portion diameter 5 mm phi, tensile specimens parallel portion length 30 mm, was conducted a tensile test at room temperature. The results are shown in Table 2.

比較例B:表1に示す合金Bにつき、空気噴射法(溶融
金属からの冷却速度102℃/秒以上、10℃/秒未満)
により得た粉末を用い、本発明法による前記第一、第二
段階の操作と同様の方法で鍛造成形品を形成した。この
場合の圧粉体の密度比は、粉末の圧粉性が悪いために95
%に留まった。
Comparative Example B: Air injection method for alloy B shown in Table 1 (cooling rate from molten metal 10 2 ° C / sec or more, less than 10 4 ° C / sec)
Using the powder obtained in the above, a forged product was formed by the same method as the first and second steps of the method of the present invention. The density ratio of the green compacts in this case is 95 because the powder compactability is poor.
Stayed at%.

比較例C:表1に示す合金Cにつき、圧粉体を成形した
後、これを熱間押出し加工し、更に熱間鍛造を行った。
Comparative Example C: With respect to the alloy C shown in Table 1, a green compact was molded, hot extruded, and then hot forged.

そして、比較例B,Cで得た各成形品から本発明例と同
様な引張り試験片を切り出し、引張り試験を実施した。
その結果を表2に示す。
Then, the same tensile test pieces as those of the example of the present invention were cut out from the molded products obtained in Comparative Examples B and C, and the tensile test was carried out.
The results are shown in Table 2.

〈試験結果の評価〉 本発明例合金Aと比較例合金Bの比較から、本発明例
合金Aは、引張り強さ、耐力共に従来の空気噴射法によ
る粉末を用いた比較例合金Bよりも優れていることが判
る。
<Evaluation of Test Results> From the comparison between the invention alloy A and the comparative alloy B, the invention alloy A is superior in both tensile strength and proof stress to the comparative alloy B using powder by the conventional air injection method. You can see that

また、本発明例合金Aと比較例合金Cの比較から、伸び
率を除き、静的強度に有意差はなく、熱間押出し加工工
程を省いた低製造経費で、優れた特性を有する焼結部材
が得られることが判る。
Further, from the comparison between Inventive Example Alloy A and Comparative Example Alloy C, there is no significant difference in static strength except for the elongation rate, and there is no need for a hot extrusion process. It can be seen that the member is obtained.

発明の効果 以上の説明から明らかな様に、本発明では、第一のアル
ミニウム合金粉末として、溶融状態からの冷却速度が10
4〜106℃/秒のものを用いるとともに、第二のアルミニ
ウム合金粉末として、溶融状態からの冷却速度が102
/秒以上、104/秒未満のものを用い、前記第一のアル
ミニウム合金粉末5重量部以上、30重量部未満と、前記
第二のアルミニウム合金粉末70重量部以上、95重量部未
満とを混合した後、これを圧粉、焼結したため、従来必
要とされた熱間押出し加工工程を省略しても、製品焼結
部材中の粗大な金属間化合物を無くすことができ、生産
性の向上と、製品価格の低減化を企図し得る。
EFFECTS OF THE INVENTION As is clear from the above description, in the present invention, as the first aluminum alloy powder, the cooling rate from the molten state is 10
The second aluminum alloy powder has a cooling rate of 10 2 ° C from the molten state as well as 4 to 10 6 ° C / sec.
/ Second or more and less than 10 4 / second, and the first aluminum alloy powder 5 parts by weight or more and less than 30 parts by weight and the second aluminum alloy powder 70 parts by weight or more and less than 95 parts by weight. After mixing and compacting and sintering, it is possible to eliminate coarse intermetallic compounds in the product sintered parts even if the hot extrusion process that was required in the past is omitted, improving productivity. Therefore, the product price can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機械的性質を損なう粗大な金属間化合物を
析出させる合金元素を多量に含有する第一のアルミニウ
ム合金粉末と、他の第二のアルミニウム合金粉末とを混
合後、圧粉、焼結して高強度アルミニウム合金製部材を
製造する方法であって、 前記第一のアルミニウム合金粉末として、溶融状態から
の冷却速度が104〜106℃/秒のものを用いるとともに、
前記第二のアルミニウム合金粉末として、溶融状態から
の冷却速度が102℃/秒以上、104℃/秒未満のものを用
い、 前記第一のアルミニウム合金粉末5重量部以上、30重量
部未満と、前記第二のアルミニウム合金粉末70重量部以
上、95重量部未満とを混合した後、これを圧粉、焼結す
ることを特徴とする高強度アルミニウム合金焼結部材の
製造方法。
1. A first aluminum alloy powder containing a large amount of alloying elements for precipitating a coarse intermetallic compound that impairs mechanical properties, and another second aluminum alloy powder are mixed, and then pressed and fired. A method for producing a high-strength aluminum alloy member by binding, wherein, as the first aluminum alloy powder, a cooling rate from a molten state of 10 4 to 10 6 ° C / second is used,
As the second aluminum alloy powder, one having a cooling rate from a molten state of 10 2 ° C / sec or more and less than 10 4 ° C / sec is used, and the first aluminum alloy powder is 5 parts by weight or more and less than 30 parts by weight. And a mixture of 70 parts by weight and less than 95 parts by weight of the second aluminum alloy powder, and then compacting and sintering the mixture.
JP61079513A 1986-04-07 1986-04-07 Method for manufacturing high strength aluminum alloy sintered member Expired - Fee Related JPH066763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079513A JPH066763B2 (en) 1986-04-07 1986-04-07 Method for manufacturing high strength aluminum alloy sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079513A JPH066763B2 (en) 1986-04-07 1986-04-07 Method for manufacturing high strength aluminum alloy sintered member

Publications (2)

Publication Number Publication Date
JPS62238341A JPS62238341A (en) 1987-10-19
JPH066763B2 true JPH066763B2 (en) 1994-01-26

Family

ID=13692044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079513A Expired - Fee Related JPH066763B2 (en) 1986-04-07 1986-04-07 Method for manufacturing high strength aluminum alloy sintered member

Country Status (1)

Country Link
JP (1) JPH066763B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881069A (en) * 2019-04-09 2019-06-14 宁夏大学 A kind of high intensity, high tenacity, the preparation method of high-wearing feature metal material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318417A (en) * 1976-08-04 1978-02-20 Nissan Motor Co Ltd Production of heat resistant aluminum alloy product

Also Published As

Publication number Publication date
JPS62238341A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US3524744A (en) Nickel base alloys and process for their manufacture
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
US3811878A (en) Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
US4343650A (en) Metal binder in compaction of metal powders
US4432795A (en) Sintered powdered titanium alloy and method of producing same
US4464206A (en) Wrought P/M processing for prealloyed powder
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH066763B2 (en) Method for manufacturing high strength aluminum alloy sintered member
JP2730284B2 (en) Manufacturing method of Al-Si alloy sintered forged parts
JPH02259029A (en) Manufacture of aluminide
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
KR20040091627A (en) Stabilized grain size refractory metal powder metallurgy mill products
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH0688153A (en) Production of sintered titanium alloy
CN110016622B (en) Powder metallurgy material and application thereof
KR850000618B1 (en) Sintered powdered titanium alloy of method
JPH04371536A (en) Production of tial intermetallic compound powder
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees