JPH11199315A - Refractory for blowing inert gas in melted metal and its production - Google Patents

Refractory for blowing inert gas in melted metal and its production

Info

Publication number
JPH11199315A
JPH11199315A JP9369368A JP36936897A JPH11199315A JP H11199315 A JPH11199315 A JP H11199315A JP 9369368 A JP9369368 A JP 9369368A JP 36936897 A JP36936897 A JP 36936897A JP H11199315 A JPH11199315 A JP H11199315A
Authority
JP
Japan
Prior art keywords
refractory
inert gas
gas
blowing
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9369368A
Other languages
Japanese (ja)
Other versions
JP3774557B2 (en
Inventor
Taijiro Matsui
泰次郎 松井
Masateru Nakaho
真輝 仲保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36936897A priority Critical patent/JP3774557B2/en
Publication of JPH11199315A publication Critical patent/JPH11199315A/en
Application granted granted Critical
Publication of JP3774557B2 publication Critical patent/JP3774557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refractory having excellent gas permeation stability and high tolerance by forming a gas-permeable tissue comprising silica, chromia and alumina in specific amounts, respectively, and binding portions used as aggregates with a component having a high melting point of specific temperature or higher. SOLUTION: This refractory for blowing an inert gas has a gas-permeable tissue comprising a refractory material containing 1-5 wt.% of silica, 1-5 wt.% of chromia and 90-98 wt.% of alumina, wherein portions used as aggregates are bound with a component having a high melting point of >=1,800 deg.C. The pore diameter distribution of the refractory has a <=75 μm pore diameter rate of 25-50%. The refractory is produced by adding a binder such as a phosphoric acid compound to a mixture containing corundum, chromium oxide, silica, mullite, etc., in a prescribed particle size and in a mixing ratio, kneading the mixture together with water, press-molding the kneaded product, and subsequently sintering the molded product at 1,800-1,860 deg.C. The formed refractory has gas-permeable tissues 21, 22 in which aggregates 29 are bound through a high melting point component having a melting point of >=1,800 deg.C and further in which gas-permeable pores are formed from spaces 31 among the aggregates 29.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属溶湯中に窒素ガ
ス、アルゴンガス等の不活性ガスを吹き込んで、金属溶
湯を攪拌させるために用いられるポーラスプラグ等の溶
融金属への不活性ガス吹込み用耐火物及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to blowing an inert gas, such as a nitrogen gas or an argon gas, into a molten metal and blowing the inert gas into a molten metal such as a porous plug used for stirring the molten metal. The present invention relates to a refractory for use and a method for producing the same.

【0002】[0002]

【従来の技術】従来、溶鋼の精錬工程において、溶鋼
鍋、タンディッシュの壁面又は底面に通気性のある不活
性ガス吹込み用耐火物を配置して、該耐火物を介して溶
鋼中に不活性ガスを吹き込むことにより溶鋼の攪拌を行
って、溶鋼の温度を調整したり、溶鋼成分の均一化を図
る方法が採用されている。しかし、これらの通気性のあ
る耐火物は、不活性ガスを通気させていない状態ではそ
の通気性組織の気孔中にメタルやスラグが浸潤する。こ
のため、不活性ガスの通気必要時に耐火物に高圧の背圧
をかけても不活性ガスの通気不良や不活性ガスの不発を
生じる。そして、このような通気不良や不発を防止する
ために、耐火物の使用後に、メタルあるいはスラグの浸
透する浸潤層に酸素ガスを吹き付けてメタルあるいはス
ラグを溶解させて除去するための酸素洗浄を行うことが
必要になる。この酸素洗浄の際には、高熱が発生するた
めに耐火物自体が溶損あるいは損傷して、その耐用回数
が少なくなり、耐火物コストが高騰する要因となる。ま
た、耐火物の交換作業が繁雑に発生するために、多くの
高熱重筋作業を強いられていた。
2. Description of the Related Art Conventionally, in a refining process of molten steel, a refractory for blowing an inert gas having air permeability is disposed on a wall surface or a bottom surface of a molten steel pot or a tundish, and the refractory is introduced into the molten steel through the refractory material. A method is employed in which the molten steel is stirred by blowing active gas to adjust the temperature of the molten steel or to make the molten steel components uniform. However, in these breathable refractories, metal and slag infiltrate into the pores of the breathable tissue when no inert gas is passed. For this reason, even if a high back pressure is applied to the refractory when the ventilation of the inert gas is required, poor ventilation of the inert gas and misfire of the inert gas occur. Then, in order to prevent such poor ventilation or misfiring, after using the refractory, oxygen gas is blown to the infiltration layer through which the metal or slag has penetrated to dissolve and remove the metal or slag. It becomes necessary. At the time of this oxygen cleaning, high heat is generated, so that the refractory itself is melted or damaged, and the number of times the refractory is used is reduced, which causes a rise in the cost of the refractory. In addition, since replacement work of refractories occurs frequently, many high-temperature heavy-bar work has been required.

【0003】そして、前記メタル及びスラグの浸潤、熱
衝撃によるスポーリングに伴う剥離損傷の抑制を図るた
めの方法として、例えば特公平7−74091号公報に
は、ジルコニア・ムライトよりなる原料を3〜96重量
%とアルミナ−シリカ系原料が97〜4重量%の配合物
からなるガス吹込み用耐火物を用いる方法が提案されて
いる。また、ポーラスプラグ等の不活性ガス吹込み用耐
火物に適用される通気性のあるポーラスれんが(多孔質
れんが)の製造に際しては、アルミナ質等の骨材が主と
して使用され、これに成形性を付与するための粘土、及
び耐食性を向上させるためのクロミア(Cr2 3 )等
が添加され、さらに、耐浸潤性及び耐スポール性を付与
するためにムライト(3Al2 3 ・2SiO2 )や、
シリカ(SiO 2 )等を添加したものが原料として使用
されてきた。
The infiltration and heat of the metal and slag
The purpose of this study was to reduce spalling damage caused by spalling due to impact.
For example, Japanese Patent Publication No. 7-74091 discloses
Is 3 to 96 weight of raw material consisting of zirconia mullite
% And an alumina-silica-based raw material of 97 to 4% by weight
Using a gas injection refractory consisting of
I have. In addition, it is resistant to blowing inert gas such as porous plugs.
Breathable porous bricks (porous
When manufacturing bricks, aggregates such as alumina are mainly used.
Used to give moldability to this
Chromia (Cr) to improve corrosion and corrosion resistanceTwoOThree)etc
Is added to provide infiltration resistance and spall resistance
Mullite (3AlTwoOThree・ 2SiOTwo)
Silica (SiO Two) Is used as raw material
It has been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
公平7−74091号公報に示されるガス吹込み用耐火
物では以下の〜に示すような問題点があった。 通気性組織における気孔径分布(細孔径分布)の範囲
が広く且つ平均気孔径が大きいために、特に長時間にわ
たる鋳造時にはスラグ、メタル等の浸潤量が多くなる。
このため、浸潤層の酸素洗浄の際の浸潤層の剥離等の要
因により耐用性が低下する。 ジルコニア・ムライト等からなる骨材結合部分の耐火
度が低いために、不活性ガスの吹込み時あるいは酸素洗
浄時にこの部分が損耗し易くなる。 通気性組織の気孔径分布が厳密に制御されていないの
で、特に75μm以下の細孔(気孔)の比率のばらつき
が大きくなって、不活性ガス吹込み時及び酸素洗浄時に
おける熱衝撃の影響を受けて亀裂等の損傷を生じ易い。 供給される不活性ガスの通気流路が一様に形成されて
いないために、通気性が不安定となりガス吹き不良など
のトラブルを生じ易い欠点があった。
However, the refractory for gas injection disclosed in Japanese Patent Publication No. 7-74091 has the following problems. Since the range of the pore size distribution (pore size distribution) in the gas-permeable structure is wide and the average pore size is large, the amount of slag, metal, and the like infiltrated during casting for a long time increases.
For this reason, the durability is reduced due to factors such as peeling of the infiltration layer during oxygen cleaning of the infiltration layer. Since the fire resistance of the aggregate-bonded portion made of zirconia, mullite or the like is low, this portion is easily worn when blowing inert gas or washing with oxygen. Since the pore size distribution of the permeable tissue is not strictly controlled, the variation in the ratio of pores (pores) of 75 μm or less is particularly large, and the influence of the thermal shock at the time of injecting the inert gas and at the time of oxygen washing is reduced. It is susceptible to damage such as cracks. Since the flow path of the supplied inert gas is not formed uniformly, there is a disadvantage that the air permeability becomes unstable and troubles such as poor gas blowing easily occur.

【0005】また、前記したような従来の不活性ガス吹
込み用耐火物の製造方法においては、1600〜175
0℃の範囲の比較的低い焼成温度で焼成するために、骨
材と骨材間を結合する結合組織の融点を低くして原料を
混練、成形して得られる素地の焼結性を高める必要があ
る。このために、焼成して得られる結合組織の機械的強
度及び耐食性が低くなって、不活性ガス吹込み用耐火物
の溶鋼及びスラグに対する損耗量が増加するという問題
があった。また、低融点となる結合組織で形成される不
活性ガス吹込み用耐火物は一般に過焼結し易く、また孤
立した気孔を形成し易いために、気孔率の割に通気性に
寄与する連通気孔の部分が少なく、かつ気孔径分布のば
らつきが大きくなるために、通気不良を招きやすいとい
う欠点があった。本発明はこのような事情に鑑みてなさ
れたもので、通気安定性に優れ、かつ高耐用性の溶融金
属への不活性ガス吹込み用耐火物及びその製造方法を提
供することを目的とする。
Further, in the above-mentioned conventional method for producing a refractory for blowing an inert gas, 1600 to 175
In order to sinter at a relatively low sintering temperature in the range of 0 ° C., it is necessary to lower the melting point of the connective structure connecting the aggregates to improve the sinterability of the base material obtained by kneading and molding the raw materials. There is. For this reason, there was a problem that the mechanical strength and corrosion resistance of the bonding structure obtained by sintering became low, and the amount of wear of the refractory for blowing an inert gas to molten steel and slag increased. In addition, since the refractory for blowing an inert gas formed by a bonding structure having a low melting point generally easily oversinters and easily forms isolated pores, communication that contributes to air permeability in spite of its porosity. Since the number of pores is small and the variation in pore size distribution is large, there is a disadvantage that poor ventilation is likely to occur. The present invention has been made in view of such circumstances, and has as its object to provide a refractory for blowing an inert gas into a molten metal having excellent ventilation stability and high durability, and a method for producing the same. .

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の溶融金属への不活性ガス吹込み用耐火物は、シリ
カ及びクロミアをそれぞれ1〜5wt%、1〜5wt%
含有し、アルミナ含有量が90〜98wt%である。ア
ルミナ含有量が90wt%より少ないと、耐食性の大幅
な低下を招くと共に、融点が低下して、充分な通気性を
有する通気性組織とすることができない。一方、アルミ
ナ含有量が98wt%を超えると耐スポーリング性が著
しく低下して、酸素洗浄時等の熱衝撃による亀裂発生に
より耐用性を悪化させるので好ましくない。シリカ及び
クロミアの含有量がそれぞれ1wt%より少なくなる
と、焼成の際に必要な融液の量が不足し、焼成して得ら
れる不活性ガス吹込み用耐火物の機械的強度、及び耐ス
ポーリング性等を低下させると共に、クロミア含有量の
不足により充分な耐食性を維持できなくなる。また、シ
リカ及びクロミアの含有量が5wt%を超えると、骨材
間を結合させる結合組織の融点を低下させる要因とな
り、通気性にばらつきを生じる等の弊害を生じるので好
ましくない。
According to the present invention, there is provided a semiconductor device comprising:
The refractory for blowing an inert gas into the molten metal described above contains silica and chromia in an amount of 1 to 5 wt% and 1 to 5 wt%, respectively.
And the alumina content is 90-98 wt%. If the alumina content is less than 90% by weight, the corrosion resistance is greatly reduced, and the melting point is lowered, so that a breathable structure having sufficient permeability cannot be obtained. On the other hand, if the alumina content exceeds 98% by weight, the spalling resistance is remarkably reduced, and the durability is deteriorated due to crack generation due to thermal shock at the time of oxygen washing or the like, which is not preferable. If the contents of silica and chromia are each less than 1 wt%, the amount of melt required for firing becomes insufficient, and the mechanical strength and spalling resistance of the refractory for injecting inert gas obtained by firing. In addition to lowering the chromia content, sufficient corrosion resistance cannot be maintained due to insufficient chromia content. On the other hand, if the content of silica and chromia exceeds 5% by weight, the melting point of the connective tissue that binds the aggregates is reduced, and adverse effects such as variations in air permeability are caused.

【0007】請求項2記載の溶融金属への不活性ガス吹
込み用耐火物は、シリカ及びクロミアをそれぞれ1〜5
wt%、1〜5wt%含有してなるアルミナを主成分と
する通気性組織を有すると共に、該通気性組織の骨材と
なる部分が1800℃以上の高融点成分により結合され
ている。不活性ガス吹込み用耐火物におけるシリカ及び
クロミアの含有量がそれぞれ1wt%より少なくなる
と、焼成の際に必要な融液量が不足し、焼成して得られ
る不活性ガス吹込み用耐火物の機械的強度、及び耐スポ
ーリング性等を低下させると共に、クロミア含有量の不
足により充分な耐食性を維持できなくなる。また、シリ
カ及びクロミアの含有量が5wt%を超えると、通気性
組織における結合組織の融点を低下させる要因となり、
通気性にばらつきを生じる等の弊害を生じるので好まし
くない。不活性ガス吹込み用耐火物の骨材を結合する高
融点成分の融点が1800℃より低いと、結合部分の耐
熱性、及び機械的強度が低下するので好ましくない。こ
こで、高融点成分の融点の上限値を特に規定していない
が、アルミナ−シリカ−クロミア系における最高溶融温
度が上限となるのは明らかである。
The refractory for injecting an inert gas into a molten metal according to the present invention is characterized in that silica and chromia are 1 to 5 respectively.
It has a gas-permeable structure mainly composed of alumina containing 1% to 5% by weight of alumina and a portion of the gas-permeable structure serving as an aggregate is bonded by a high melting point component of 1800 ° C. or more. If the content of silica and chromia in the refractory for injecting inert gas is less than 1% by weight, respectively, the amount of melt required for sintering is insufficient, and the refractory for injecting inert gas obtained by sintering is insufficient. The mechanical strength, spalling resistance and the like are reduced, and sufficient corrosion resistance cannot be maintained due to the shortage of chromia content. Further, when the content of silica and chromia exceeds 5 wt%, it becomes a factor to lower the melting point of the connective tissue in the breathable tissue,
It is not preferable because it causes adverse effects such as variations in air permeability. If the melting point of the high melting point component that binds the aggregate of the refractory for injecting inert gas is lower than 1800 ° C., the heat resistance and mechanical strength of the bonded portion are undesirably reduced. Here, although the upper limit of the melting point of the high melting point component is not particularly specified, it is clear that the highest melting temperature in the alumina-silica-chromia system is the upper limit.

【0008】請求項3記載の溶融金属への不活性ガス吹
込み用耐火物は、請求項1又は2記載の溶融金属への不
活性ガス吹込み用耐火物において、前記不活性ガス吹込
み用耐火物の気孔径分布において、75μm以下の気孔
の比率が25〜50%である。75μm以下である気孔
の比率が25%(容量パーセント)より低くなると、熱
応力による歪みを緩和する能力が低下し、不活性ガス吹
込み用耐火物の通気性組織にスポーリングを生じて、損
傷し易くなるので好ましくない。逆に、前記気孔の比率
が50%を超えると、機械的強度の急激な低下をきたす
と共に、メタルあるいはスラグの浸潤量が大きくなる。
A refractory for blowing an inert gas into a molten metal according to claim 3 is the refractory for blowing an inert gas into a molten metal according to claim 1 or 2, wherein In the pore size distribution of the refractory, the proportion of pores of 75 μm or less is 25 to 50%. When the ratio of pores having a diameter of 75 μm or less is lower than 25% (volume percent), the ability to alleviate distortion due to thermal stress decreases, and spalling occurs in the breathable structure of the refractory for injecting inert gas, resulting in damage. It is not preferable because it becomes easy to perform. Conversely, if the ratio of the pores exceeds 50%, the mechanical strength sharply decreases and the amount of metal or slag infiltration increases.

【0009】請求項4記載の溶融金属への不活性ガス吹
込み用耐火物の製造方法は、アルミナ、シリカ及びクロ
ミアを含む耐火材料を成形加工後、1800〜1860
℃の温度で焼成する。1800℃より低い温度で焼成し
た場合には、充分な機械的強度、及び適正な気孔径分布
を有する通気性組織を形成する不活性ガス吹込み用耐火
物の通気性組織を製造することが困難になる。逆に18
60℃を超える温度で焼成すると、全体組織の緻密化が
進行するために、所定量の通気率を維持することができ
ず、また、耐スポール性も低下させる要因になる。
According to a fourth aspect of the present invention, there is provided a method for producing a refractory for injecting an inert gas into a molten metal, comprising forming a refractory material containing alumina, silica and chromia from 1800 to 1860.
Firing at a temperature of ° C. When calcined at a temperature lower than 1800 ° C., it is difficult to produce a gas-permeable structure of a refractory for injecting inert gas, which forms a gas-permeable structure having sufficient mechanical strength and an appropriate pore size distribution. become. Conversely 18
When firing at a temperature exceeding 60 ° C., the densification of the entire structure proceeds, so that a predetermined amount of air permeability cannot be maintained and the spall resistance is also reduced.

【0010】請求項5記載の溶融金属への不活性ガス吹
込み用耐火物の製造方法は、請求項4記載の溶融金属へ
の不活性ガス吹込み用耐火物の製造方法において、前記
耐火材料中における前記シリカ及び前記クロミアの含有
量がそれぞれ1〜5wt%、1〜5wt%である。耐火
材料中のシリカ及びクロミアの含有量がそれぞれ1wt
%より少なくなると、焼成の際に必要な融液の量が不足
し、焼成して得られる不活性ガス吹込み用耐火物の通気
性組織の機械的強度、及び耐スポーリング性等を低下さ
せ、またクロミア含有量の不足により充分な耐食性を維
持できなくなる。また、前記シリカ及びクロミアの含有
量が5wt%を超えると、通気性組織における結合組織
の融点を低下させる要因となり、通気性にばらつきを生
じる。
According to a fifth aspect of the present invention, there is provided a method for producing a refractory for injecting an inert gas into a molten metal. The content of the silica and the chromia therein is 1 to 5 wt% and 1 to 5 wt%, respectively. The content of silica and chromia in the refractory material is 1wt each
%, The amount of melt required for firing is insufficient, and the mechanical strength and spalling resistance of the breathable structure of the refractory for injecting inert gas obtained by firing are reduced. In addition, sufficient corrosion resistance cannot be maintained due to insufficient chromia content. On the other hand, when the content of the silica and the chromia exceeds 5% by weight, it becomes a factor of lowering the melting point of the connective tissue in the air-permeable tissue, and the air permeability varies.

【0011】請求項6記載の溶融金属への不活性ガス吹
込み用耐火物の製造方法は、請求項4又は5記載の溶融
金属への不活性ガス吹込み用耐火物の製造方法におい
て、前記耐火材料の原料の一部として、コランダム及び
シリカを用いる。請求項7記載の溶融金属への不活性ガ
ス吹込み用耐火物の製造方法は、請求項6記載の溶融金
属への不活性ガス吹込み用耐火物の製造方法において、
前記コランダムの形状は球状である。耐火材料中のコラ
ンダムの形状を球状とすることにより、気孔径分布にお
けるばらつきを抑制することができると共に、所定の通
気量を維持させることができる。
The method for producing a refractory for blowing an inert gas into a molten metal according to claim 6 is the method for producing a refractory for blowing an inert gas into a molten metal according to claim 4 or 5. Corundum and silica are used as a part of the material of the refractory material. The method for producing a refractory for blowing an inert gas into a molten metal according to claim 7 is a method for producing a refractory for blowing an inert gas into a molten metal according to claim 6,
The corundum has a spherical shape. By making the shape of the corundum in the refractory material spherical, variation in the pore size distribution can be suppressed, and a predetermined airflow can be maintained.

【0012】[0012]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに図1は本発明の一実施の形態
に係る溶融金属への不活性ガス吹込み用耐火物を適用す
る連続鋳造設備の説明図、図2(a)、(b)はそれぞ
れ溶鋼鍋用ポーラスプラグ、タンディッシュ用ポーラス
プラグの側断面図、図3は通気組織の概念説明図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is an explanatory view of a continuous casting facility for applying a refractory for injecting an inert gas into a molten metal according to one embodiment of the present invention, and FIGS. FIG. 3 is a side sectional view of a porous plug and a tundish porous plug, and FIG. 3 is a conceptual explanatory view of a ventilation tissue.

【0013】まず、本発明の一実施の形態に係る溶融金
属への不活性ガス吹込み用耐火物を適用する連続鋳造設
備10について説明する。図1に示すように、連続鋳造
設備10は溶融金属の一例である溶鋼11を保持する溶
鋼鍋12と、溶鋼鍋12の底部に配置される不活性ガス
吹込み用耐火物の一例である溶鋼鍋用ポーラスプラグ1
6と、ロングノズル19と、溶鋼鍋12の下方に配置さ
れるタンディッシュ13と、タンディッシュ13の底部
に配置される不活性ガス吹込み用耐火物の一例であるタ
ンディッシュ用ポーラスプラグ17と、タンディッシュ
13の底部に取付けられる浸漬ノズル14と、浸漬ノズ
ル14より吐出する溶鋼11が注入される連続鋳造鋳型
15とを有している。溶鋼鍋12の底部にはアルミナカ
ーボン質等からなる筒状のロングノズル19が配置され
ており、ロングノズル19を介して溶鋼11がタンディ
ッシュ13に供給される。また、連続鋳造時等の必要な
時期にアルゴンガス、窒素ガス等の不活性ガスを溶鋼鍋
用ポーラスプラグ16から溶鋼11中に供給して、溶鋼
鍋12に保持する溶鋼11の成分及び温度を均一化させ
ることができる。タンディッシュ13は、アルミナシリ
カ質等の耐火物によって内張りされ、その表面をマグネ
シアコーティング材によって被覆された容器であり、タ
ンディッシュ用ポーラスプラグ17からアルゴン等の不
活性ガスを溶鋼11中に吹き込んで、その保持する溶鋼
11の成分、温度を均一化させる。浸漬ノズル14は、
アルミナカーボン質等を主体とする略管状の耐火物であ
り、下部に設けられた吐出孔20から溶鋼11を連続鋳
造鋳型15に注入するようになっている。そして、図示
しない上ノズル、スライディングノズル、下ノズル、及
び浸漬ノズル14の各流出孔によって構成される管状の
内壁面のいずれかに、不活性ガス吹込み用耐火物の一例
であるポーラスれんが18を必要に応じて配置して、こ
こから不活性ガスを吹き込むことができるようになって
いる。
First, a continuous casting facility 10 for applying a refractory for blowing an inert gas into a molten metal according to an embodiment of the present invention will be described. As shown in FIG. 1, a continuous casting facility 10 is a molten steel pot 12 that holds a molten steel 11 that is an example of a molten metal, and a molten steel that is an example of an inert gas injection refractory disposed at the bottom of the molten steel pot 12. Porous plug for pot 1
6, a long nozzle 19, a tundish 13 disposed below the molten steel pot 12, and a tundish porous plug 17 which is an example of an inert gas injection refractory disposed at the bottom of the tundish 13. A dipping nozzle 14 attached to the bottom of the tundish 13 and a continuous casting mold 15 into which the molten steel 11 discharged from the dipping nozzle 14 is injected. A cylindrical long nozzle 19 made of alumina carbon or the like is disposed at the bottom of the molten steel pot 12, and the molten steel 11 is supplied to the tundish 13 via the long nozzle 19. In addition, an inert gas such as argon gas or nitrogen gas is supplied into the molten steel 11 from the molten steel pot porous plug 16 at a necessary time such as during continuous casting, and the components and temperature of the molten steel 11 held in the molten steel pot 12 are adjusted. It can be made uniform. The tundish 13 is a container lined with a refractory such as alumina silica, and the surface thereof is coated with a magnesia coating material. The tundish 13 is formed by blowing an inert gas such as argon into the molten steel 11 from a porous plug 17 for tundish. The components and temperature of the molten steel 11 to be held are made uniform. The immersion nozzle 14
It is a generally tubular refractory mainly composed of alumina carbon or the like, and is configured to inject molten steel 11 into a continuous casting mold 15 from a discharge hole 20 provided at a lower portion. Then, a porous brick 18 which is an example of a refractory for injecting an inert gas is placed on one of the tubular inner wall surfaces formed by the outflow holes of the upper nozzle, the sliding nozzle, the lower nozzle, and the immersion nozzle 14 (not shown). Arranged as necessary, and an inert gas can be blown from here.

【0014】ここで、図2(a)(b)はそれぞれ、溶
鋼鍋12及びタンディッシュ13に配置される溶鋼鍋用
ポーラスプラグ16、タンディッシュ用ポーラスプラグ
17の側断面図である。なお、図2(a)、(b)に示
す2種類のポーラスプラグの形式は溶鋼鍋用とタンディ
ッシュ用とでそれぞれ交換可能であり、また何れか一方
のみの形式のポーラスプラグを採用することもできる。
さらに、溶鋼鍋用及びタンディッシュ用となる何れか一
方のポーラスプラグを設けないで連続鋳造を行うことも
できる。略円錐台の形状となる溶鋼鍋用ポーラスプラグ
16は図2(a)に示すように、耐火物部分からなるノ
ズル本体を保持して、不活性ガスを封止するためのメタ
ルケース26と、該メタルケース26の内面側に配置さ
れキャスタブルを鋳込み成形してなる耐火物であるプレ
キャストスリーブ27と、底部にガスプール25の設け
られた不活性ガス吹込み用耐火物の通気性組織21と、
メタルケース26の底部に取付けられる不活性ガスの導
入管28とを有する。一方、タンディッシュ用ポーラス
プラグ17は図2(b)に示すように通気性組織22の
部分がそれぞれ円錐台形状となる上部通気性組織23と
下部通気性組織24との2段に分割配置され、その他の
構成は前記溶鋼鍋用ポーラスプラグ16と同様の構成の
不活性ガス吹込み用耐火物である。このようにタンディ
ッシュ用ポーラスプラグ17においては、通気性組織2
2が2段に分割されているために、タンディッシュ用ポ
ーラスプラグ17の上部通気性組織23が損耗して下部
通気性組織24から離脱したときには、ガス吐出面の面
積及び形状等が飛躍的に変化する。ガス吐出面の状態
は、タンディッシュ13中の溶鋼11等を排出した後、
導入管28からガスを吐出することにより、吐出面が周
囲のプレキャストスリーブ27aよりも冷却されるため
に、その輝度が周囲よりも小さくなることで識別でき
る。そして、その時点でのタンディッシュ用ポーラスプ
ラグ17の残存厚みの状態を視察により容易に把握する
ことができるようになっている。なお、上部通気性組織
23と下部通気性組織24は、同一の組成のものとする
必要はなく、耐浸潤性等が特に問題となる上部通気性組
織23だけに本発明の通気性組織を適用してもよい。
FIGS. 2A and 2B are side sectional views of the molten steel pot porous plug 16 and the tundish porous plug 17 disposed in the molten steel pot 12 and the tundish 13, respectively. Note that the two types of porous plugs shown in FIGS. 2A and 2B can be exchanged for a molten steel pot and a tundish, respectively, and that only one type of porous plug is used. Can also.
Further, continuous casting can be performed without providing any one of the porous plugs for the molten steel pot and the tundish. As shown in FIG. 2 (a), the molten steel pot porous plug 16 having a substantially truncated cone shape holds a nozzle body made of a refractory portion, and a metal case 26 for sealing an inert gas. A precast sleeve 27 which is a refractory which is disposed on the inner surface side of the metal case 26 and is formed by casting a castable; a gas permeable structure 21 of an inert gas blowing refractory provided with a gas pool 25 at the bottom;
An inert gas introduction pipe attached to the bottom of the metal case; On the other hand, as shown in FIG. 2B, the porous plug 17 for tundish is divided and arranged in two stages of an upper permeable tissue 23 and a lower permeable tissue 24 in which the portion of the permeable tissue 22 has a truncated cone shape. The other structure is the same as the structure of the porous plug 16 for molten steel pot. Thus, in the porous plug 17 for tundish, the air permeable tissue 2
Since the upper gas-permeable surface 23 of the porous plug 17 for tundish is worn out and separated from the lower gas-permeable structure 24 because the 2 is divided into two stages, the area and the shape of the gas discharge surface are dramatically increased. Change. After discharging the molten steel 11 and the like in the tundish 13,
By discharging the gas from the introduction pipe 28, the discharge surface is cooled more than the surrounding precast sleeve 27a. The state of the remaining thickness of the porous plug 17 for tundish at that time can be easily grasped by inspection. The upper permeable tissue 23 and the lower permeable tissue 24 do not need to have the same composition, and the permeable tissue of the present invention is applied only to the upper permeable tissue 23 in which infiltration resistance and the like are particularly problematic. May be.

【0015】プレキャストスリーブ27、27aは、ア
ルミナセメント等の水硬性成分を含有しアルミナシリカ
質等を主成分とする耐火キャスタブルを水と共に混練し
て、これらを型枠に流し込んで硬化させることにより成
形する。別法としては、予め成形し加工した通気性組織
21、22をメタルケース26内に配置して通気性組織
21、22とメタルケース26との間に前記混練物を流
し込んで硬化させ、型枠を用いることなくプレキャスト
スリーブ27、27aを形成させることもできる。そし
て、必要によりモルタル等を介して、メタルケース26
とプレキャストスリーブ27、27a及び通気性組織2
1、22とを結合した後、前記メタルケース26の底部
を導入管28と溶接して、メタルケース26、プレキャ
ストスリーブ27、27a、通気性組織21、22のそ
れぞれを一体化させてなる溶鋼鍋用ポーラスプラグ16
及びタンディッシュ用ポーラスプラグ17を構成するこ
とができる。
The precast sleeves 27, 27a are formed by kneading a refractory castable containing a hydraulic component such as alumina cement and mainly composed of alumina siliceous with water, pouring them into a mold and curing them. I do. As another method, the air-permeable tissues 21 and 22 formed and processed in advance are arranged in a metal case 26, and the kneaded material is poured between the air-permeable tissues 21 and 22 and the metal case 26 to be cured, and the mold is formed. It is also possible to form the precast sleeves 27, 27a without using. Then, if necessary, through a mortar or the like, the metal case 26
And precast sleeves 27, 27a and breathable tissue 2
After joining the metal case 1 and the metal case 26, the bottom of the metal case 26 is welded to the introduction pipe 28, and the metal case 26, the precast sleeves 27 and 27a, and the air-permeable structures 21 and 22 are integrated into a molten steel pot. Porous plug 16
In addition, the tundish porous plug 17 can be configured.

【0016】以下、通気性組織21、22の製造方法に
ついて説明する。まず、所定粒度及び配合割合となるコ
ランダム、酸化クロム、シリカ、ムライト等の主原料を
含む混合物に、りん酸化合物、フェノール樹脂等の無機
質又は有機質の結合材を添加して、これらの混合物を水
と共に混練する。なお、ここで使用するコランダムの形
状は、例えば、直径が1.0〜1.5mmの球形の形状
とすることにより、各球状粒子間に形成される通気性の
気孔(空隙)の大きさ、気孔の分布状態を適正範囲に維
持して、浸潤層の少なく、かつ通気性のばらつきの少な
い通気性組織21、22とすることができる。図3はこ
のような通気性組織21、22の概念図であり、骨材2
9間が1800℃以上の融点を有する高融点成分30に
より結合して、骨材29間の空隙31により通気性の気
孔を形成させている。ここで、前記各主原料の粒度及び
それらの配合割合は、1800〜1860℃の高温焼成
処理後における通気性組織21、22において、1.0
〜1.5mmの粒径となる骨材29と骨材29との間を
繋ぐ結合部分の融点が1800℃以上となるように構成
する。具体的には、各種の配合割合、及び粒度の組み合
わせとなる多数の試験成形体を作成して、該試験成形体
を1800〜1860℃の焼成温度で焼成して、その組
織を光学顕微鏡、又は電子線マイクロアナライザー(E
PMA)等の手段を用いて解析することにより、結合部
分の化学組成を決定して、その化学組成に対応する融点
を平衡状態図等を用いて推定することができる。
Hereinafter, a method for producing the breathable tissues 21 and 22 will be described. First, an inorganic or organic binder such as a phosphate compound and a phenol resin is added to a mixture containing main raw materials such as corundum, chromium oxide, silica, and mullite having a predetermined particle size and a compounding ratio, and the mixture is mixed with water. Knead with. The corundum shape used here is, for example, a spherical shape having a diameter of 1.0 to 1.5 mm, so that the size of air-permeable pores (voids) formed between the respective spherical particles, By maintaining the distribution of pores in an appropriate range, the air-permeable tissues 21 and 22 having a small amount of infiltration layer and a small variation in air permeability can be obtained. FIG. 3 is a conceptual diagram of such air-permeable tissues 21 and 22;
9 are joined by a high melting point component 30 having a melting point of 1800 ° C. or more, and air gaps 31 between the aggregates 29 form air-permeable pores. Here, the particle size of each of the main raw materials and the mixing ratio thereof are 1.0% in the air-permeable structures 21 and 22 after the high-temperature firing treatment at 1800 to 1860 ° C.
It is configured such that the melting point of the joint portion connecting the aggregates 29 having a particle size of about 1.5 mm is 1800 ° C. or more. Specifically, various test proportions, and a number of test compacts having a combination of particle sizes are prepared, and the test compacts are fired at a firing temperature of 1800 to 1860 ° C., and the structure is subjected to an optical microscope, or Electron beam micro analyzer (E
By analyzing using a method such as PMA), the chemical composition of the binding portion can be determined, and the melting point corresponding to the chemical composition can be estimated using an equilibrium diagram or the like.

【0017】次に、前記得られた混練物をプレス成形機
の型枠内に供給して、これを加圧成形することにより通
気性組織21、22用の素地とすることができる。そし
て、この素地を酸化又は還元雰囲気中で1800〜18
90℃範囲の温度で所定時間、例えば1〜10時間保持
して焼結させ、通気性組織21、22の焼成体が得られ
る。このような焼成体に、切断又は研削等の加工を必要
に応じて施して、円錐台、四角錐台、あるいは四角柱等
の所定の形状に仕上げて、最終的に所望の通気特性及び
結合状態を有する通気性組織21、22を得ることがで
きる。
Next, the obtained kneaded material is supplied into a mold of a press molding machine, and is subjected to pressure molding, whereby a base material for the air-permeable tissues 21 and 22 can be obtained. Then, the base is oxidized or reduced in an atmosphere of 1800 to 18
Sintering is performed at a temperature in the range of 90 ° C. for a predetermined period of time, for example, 1 to 10 hours, and sintered bodies of the permeable structures 21 and 22 are obtained. Such a fired body is subjected to processing such as cutting or grinding as necessary, and finished in a predetermined shape such as a truncated cone, a truncated pyramid, or a quadrangular prism, and finally a desired ventilation property and a bonding state. Can be obtained.

【0018】続いて、本発明の実施の形態に係る溶融金
属への不活性ガス吹込み用耐火物を前記連続鋳造設備1
0に適用する鋳造方法について説明する。まず、溶鋼容
量350トンの図示しない転炉から溶鋼鍋12に163
0〜1660℃の溶鋼11を注入する。このとき、溶鋼
鍋12に設けられた図示しないスライディングノズルの
溶鋼流出孔を閉止状態に維持すると共に、溶鋼鍋12の
底部に設けた溶鋼鍋用ポーラスプラグ16からアルゴン
ガスを吹き込んで溶鋼11を撹拌する。このとき、導入
管28から供給されるアルゴンガスの背圧(圧力)は
4.0kgf/cm2 であり、アルゴンガスの供給速度
は400〜1200NL/分、アルゴンガスの吹込み時
間は1ヒート当たり15〜20分である。そして、溶鋼
11を溶鋼鍋12に満たした後、図示しない搬送装置を
用いて溶鋼鍋12を図1に示すように、タンディッシュ
13の上方位置に搬送して、ロングノズル19を溶鋼鍋
12のスライディングノズルに続く底部に取付ける。次
に、スライディングノズルの溶鋼流出孔を開孔して、タ
ンディッシュ13へ溶鋼11を注入する。そして、タン
ディッシュ13内の溶鋼11が所定レベルに到達した時
に、浸漬ノズル14を介して溶鋼11を連続鋳造鋳型1
5に供給して連続鋳造を開始する。この間、必要に応じ
てタンディッシュ用ポーラスプラグ17及び/又はポー
ラスれんが18を介して、アルゴンガスをタンディッシ
ュ13あるいは浸漬ノズル14等を通過する溶鋼11中
に吹き込むこともできる。こうして、溶鋼鍋12中に保
持する溶鋼11が無くなったときに、該溶鋼鍋12を待
機中の別の溶鋼鍋12と入れ替えることにより、継続し
た鋳造、即ち連続鋳造が行われる。
Subsequently, the refractory for injecting an inert gas into the molten metal according to the embodiment of the present invention is used in the continuous casting equipment 1.
The casting method applied to No. 0 will be described. First, 163 from a converter (not shown) having a molten steel capacity of 350 tons is added to the molten steel pot 12.
Inject molten steel 11 at 0 to 1660 ° C. At this time, the molten steel outflow hole of the sliding nozzle (not shown) provided in the molten steel pot 12 is kept closed, and the molten steel 11 is stirred by blowing argon gas from the molten steel pot porous plug 16 provided at the bottom of the molten steel pot 12. I do. At this time, the back pressure (pressure) of the argon gas supplied from the introduction pipe 28 was 4.0 kgf / cm 2 , the supply rate of the argon gas was 400 to 1200 NL / min, and the blowing time of the argon gas was per heat. 15-20 minutes. Then, after filling the molten steel 11 into the molten steel pot 12, the molten steel pot 12 is transported to a position above the tundish 13 as shown in FIG. Attach to the bottom following the sliding nozzle. Next, the molten steel outflow hole of the sliding nozzle is opened, and the molten steel 11 is injected into the tundish 13. Then, when the molten steel 11 in the tundish 13 reaches a predetermined level, the molten steel 11 is fed into the continuous casting mold 1 through the immersion nozzle 14.
5 to start continuous casting. During this time, if necessary, argon gas can be blown into the molten steel 11 passing through the tundish 13 or the immersion nozzle 14 via the tundish porous plug 17 and / or the porous brick 18. In this way, when the molten steel 11 held in the molten steel pot 12 is exhausted, the molten steel pot 12 is replaced with another standby molten steel pot 12, whereby continuous casting, that is, continuous casting is performed.

【0019】なお、溶鋼鍋12の受鋼から次の受鋼まで
の操作を1ヒートと称する。受鋼前に溶鋼鍋用ポーラス
プラグ16の通気性及び残存厚みの状態を確認しなが
ら、次の受鋼作業が行われる。そして、この通気性及び
残存厚みの確認の際には必要に応じて、溶鋼鍋12の内
面側から溶鋼鍋用ポーラスプラグ16のガス吐出面に酸
素ガスを吹き付けて、付着する地金、あるいはスラグ等
を溶解して取り除き、安全性等のチェックを行って残存
厚みが少ない場合にこれを廃棄して、新しい溶鋼鍋用ポ
ーラスプラグ16と交換する作業が行われる。このよう
に溶鋼鍋用ポーラスプラグの再使用回数が耐用性の尺度
となる。また、前記浸潤層の厚み等が少なくて酸素洗浄
時間が短いほど、溶鋼鍋用ポーラスプラグに与える損傷
の程度を少なくでき、結果的に耐用性を向上させること
ができる。
The operation from receiving the molten steel in the ladle 12 to receiving the next steel is called one heat. The next steel receiving operation is performed while checking the air permeability and the remaining thickness of the molten steel pot porous plug 16 before receiving the steel. When checking the air permeability and the remaining thickness, if necessary, oxygen gas is blown from the inner surface side of the molten steel pot 12 to the gas discharge surface of the porous plug 16 for the molten steel pot, so that the metal or slag adhering thereto is adhered. Are melted and removed, safety and the like are checked, and when the remaining thickness is small, this is discarded and replaced with a new molten steel pot porous plug 16. Thus, the number of reuses of the molten steel pot porous plug is a measure of durability. In addition, as the thickness of the infiltration layer is smaller and the oxygen cleaning time is shorter, the degree of damage given to the molten steel pot porous plug can be reduced, and as a result, the durability can be improved.

【0020】ここで、表1に示す実施例は、通気性組織
21を有した不活性ガス吹込み用耐火物の諸元と、その
連続鋳造の使用結果とを示している。実施例は、コラン
ダム、シリカ、ムライト、及び酸化クロム等を含む耐火
原料の割合と粒度とを調整して、全体の化学組成におけ
るアルミナ(Al2 3 )、シリカ(SiO2 )、クロ
ミア(Cr2 3 )の含有率をそれぞれ、93.0wt
%、4.0wt%、3.0wt%にしたものである。こ
のように、シリカ及びクロミアの含有量をそれぞれ1〜
5wt%、1〜5wt%の範囲として、かつ、アルミナ
含有量を90〜98wt%の範囲とする組成物を混練成
形して、これを焼成した場合には、使用中におけるメタ
ル及びスラグの浸潤に対する抵抗性の高い耐火物組織が
得られ、しかも、高融点であるので通気性の気孔が確保
される。そして、本実施例においてはこのような耐火材
料を含む成形体を通常の焼成温度の範囲(1600〜1
750℃)よりも高い焼成温度1840℃で焼成して通
気性組織21を得る。この得られる通気性組織21にお
ける骨材結合部の融点は1820℃であり、気孔径分布
における75μm以下の気孔の比率は30%、通気性組
織21の通気率は1.8cm3 /cmH2O ・cm2 ・s
ecである。
Here, the examples shown in Table 1 show the specifications of the refractory for blowing an inert gas having the air permeable structure 21 and the results of using the continuous casting. In the examples, the proportion and the particle size of the refractory raw materials including corundum, silica, mullite, chromium oxide and the like were adjusted to obtain alumina (Al 2 O 3 ), silica (SiO 2 ), chromia (Cr 2 O 3 ) was 93.0 wt.
%, 4.0 wt%, and 3.0 wt%. Thus, the contents of silica and chromia are each 1 to
In the case where a composition having a range of 5 wt% and a range of 1 to 5 wt% and an alumina content of a range of 90 to 98 wt% is kneaded and molded, and then calcined, the infiltration of metal and slag during use is suppressed. A highly resistant refractory structure is obtained, and since it has a high melting point, air-permeable pores are secured. In the present embodiment, the molded body containing such a refractory material is placed in a normal firing temperature range (1600-1.
By firing at a firing temperature of 1840 ° C. higher than 750 ° C.), an air-permeable structure 21 is obtained. The melting point of the aggregate-bonded portion in the obtained permeable tissue 21 is 1820 ° C., the ratio of pores having a size of 75 μm or less in the pore size distribution is 30%, and the permeability of the permeable tissue 21 is 1.8 cm 3 / cmH 2 O.・ Cm 2・ s
ec.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、表1の使用結果は、同一性状の通気
性組織21を有する溶鋼鍋用ポーラスプラグ16を多数
適用して各データを求め、その平均値を表示したもので
ある。この間のガス吹き不発トラブルの頻度は0%、再
使用回数は5回、1回当たりの酸素洗浄時間は3分、使
用後のスラグ浸潤層の厚みは2.0mmであった。これ
は、使用原料中に低融点となる成分が少なく、しかも製
造時の焼成温度を特定の高温域に設定しているので、骨
材間の結合組織の耐熱性が高められると共に、気孔径分
布が適正範囲に制御されて、通気安定性、耐スラグ浸潤
性及び耐メタル浸潤性が向上するためである。因みに表
1の従来例に示す不活性ガス吹込み用耐火物を同一の条
件下で使用した場合における、ガス吹き不発トラブルの
頻度は1%、再使用回数は3.5回、1回当たりの酸素
洗浄時間は5分、使用後のスラグ浸潤層の厚みは5.0
mmであり、前記実施例に較べて格段に劣る結果である
ことが分かる。
The results of use in Table 1 are obtained by applying a number of molten steel pot porous plugs 16 having the same air-permeable structure 21 to obtain respective data, and displaying the average value. During this time, the frequency of gas blowing misfires was 0%, the number of reuse times was 5, the oxygen cleaning time per time was 3 minutes, and the thickness of the slag infiltration layer after use was 2.0 mm. This is because the raw materials used contain few components that have a low melting point, and the firing temperature during production is set to a specific high temperature range, so that the heat resistance of the connective structure between the aggregates is increased and the pore size distribution is increased. Is controlled to be within an appropriate range, and the ventilation stability, the slag infiltration resistance, and the metal infiltration resistance are improved. Incidentally, when the refractories for blowing inert gas shown in the conventional example of Table 1 were used under the same conditions, the frequency of the gas blowing misfire trouble was 1%, and the number of reusing times was 3.5 times, and the number of times of reusing was 3.5 times. The oxygen cleaning time is 5 minutes, and the thickness of the slag infiltration layer after use is 5.0.
mm, which is a very poor result as compared with the embodiment.

【0023】以上、本発明の実施の形態を説明したが、
本発明はこのような実施の形態に限定されるものではな
く、要旨を逸脱しない条件の変更等は全て本発明の適用
範囲である。例えば、本実施の形態においては、連続鋳
造に使用する溶鋼鍋の溶鋼鍋用ポーラスプラグに不活性
ガス吹込み用耐火物を適用する例を中心に説明したが、
溶鋼鍋あるいは連続鋳造の場合に限らず、本発明の不活
性ガス吹込み用耐火物は溶鋼中に不活性ガスを吹き込ん
で脱炭処理等を行う際にも適用することが可能である。
The embodiment of the present invention has been described above.
The present invention is not limited to such an embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, in the present embodiment, description has been made mainly of an example in which an inert gas injection refractory is applied to a molten steel pot porous plug of a molten steel pot used for continuous casting.
The refractory for blowing an inert gas of the present invention is not limited to the case of the molten steel pot or the continuous casting, and can be applied to the case where the inert gas is blown into the molten steel to perform a decarburizing treatment or the like.

【0024】[0024]

【発明の効果】請求項1及びこれに従属する請求項3記
載の溶融金属への不活性ガス吹込み用耐火物において
は、シリカ、クロミア及びアルミナの含有量をそれぞれ
特定比率にしているので、使用中におけるメタル及びス
ラグ等の浸潤に対する抵抗性を維持すると共に、通気安
定性に優れた不活性ガス吹込み用耐火物を提供すること
ができる。請求項2及びこれに従属する請求項3記載の
溶融金属への不活性ガス吹込み用耐火物においては、シ
リカ及びクロミアをそれぞれ特定量含有してなるアルミ
ナを主成分とする通気性組織を有するので、使用中にお
けるメタル及びスラグ等の浸潤に対する抵抗性を維持す
ることができる。さらに、耐火物の骨材となる部分が1
800℃以上の高融点成分により結合されているので、
通気性を所定のレベルに安定して維持することができる
と共に、耐用性を向上できる。特に、請求項3記載の溶
融金属への不活性ガス吹込み用耐火物においては、不活
性ガス吹込み用耐火物の気孔径分布を特定範囲にしてい
るので、不活性ガス吹込み用耐火物に吹き込まれる不活
性ガスの通気特性にばらつきがなく、安定的に操業を行
うことができる。
In the refractory for blowing an inert gas into a molten metal according to the first and third aspects of the present invention, the contents of silica, chromia and alumina are set to specific ratios. It is possible to provide a refractory for blowing an inert gas, which has excellent resistance to infiltration of metal and slag during use and has excellent ventilation stability. The refractory for injecting an inert gas into a molten metal according to the second and third aspects has a gas-permeable structure mainly composed of alumina containing specific amounts of silica and chromia, respectively. Therefore, resistance to infiltration of metal and slag during use can be maintained. Furthermore, the portion that becomes the refractory aggregate is 1
Because it is bound by a high melting point component of 800 ° C or more,
The air permeability can be stably maintained at a predetermined level, and the durability can be improved. In particular, in the refractory for injecting an inert gas into a molten metal according to claim 3, since the pore size distribution of the refractory for injecting the inert gas is in a specific range, the refractory for injecting the inert gas into the molten metal. The operation can be stably performed without variation in the ventilation characteristics of the inert gas blown into the air.

【0025】請求項4〜7記載の溶融金属への不活性ガ
ス吹込み用耐火物の製造方法においては、アルミナ、シ
リカ及びクロミアを含む耐火材料を成形加工後、180
0〜1860℃の温度で焼成するので、高融点成分で骨
材間が結合された通気性組織を得ることができ、高耐用
性の不活性ガス吹込み用耐火物の通気性組織を製造でき
る。特に、請求項5記載の溶融金属への不活性ガス吹込
み用耐火物の製造方法においては、耐火材料中における
シリカ及びクロミアの含有量をそれぞれ特定範囲にして
いるので、適正な通気量を保持した通気性組織が得られ
ると共に、メタルあるいはスラグ等の組織中への耐浸潤
性に優れた不活性ガス吹込み用耐火物の通気性組織の製
造が可能である。請求項6及び7記載の溶融金属への不
活性ガス吹込み用耐火物の製造方法においては、耐火材
料の原料の一部として、コランダム及びシリカを用いる
ので、耐食性に優れたコランダムを骨材とする通気性組
織を形成でき、さらに耐用性の高い不活性ガス吹込み用
耐火物の通気性組織を製造できる。請求項7記載の溶融
金属への不活性ガス吹込み用耐火物の製造方法において
は、コランダムの形状は球状であるので、通気性のばら
つきの少ない不活性ガス吹込み用耐火物の通気性組織の
製造が容易にできる。
According to a fourth aspect of the present invention, there is provided a method for producing a refractory for injecting an inert gas into a molten metal.
Since it is fired at a temperature of 0 to 1860 ° C., it is possible to obtain a breathable structure in which the aggregates are bonded with a high melting point component, and it is possible to produce a breathable structure of a highly durable refractory for blowing an inert gas. . In particular, in the method for producing a refractory for injecting an inert gas into a molten metal according to claim 5, since the content of silica and chromia in the refractory material is in a specific range, an appropriate ventilation rate is maintained. In addition to obtaining a permeable structure, a permeable structure of a refractory for injecting an inert gas with excellent resistance to infiltration into a structure such as metal or slag can be produced. In the method for producing a refractory for blowing an inert gas into a molten metal according to claims 6 and 7, since corundum and silica are used as a part of the raw material of the refractory material, corundum having excellent corrosion resistance is used as an aggregate. Thus, a breathable structure of a highly durable refractory for blowing inert gas can be produced. In the method for producing a refractory for injecting an inert gas into a molten metal according to claim 7, since the corundum has a spherical shape, the breathable structure of the refractory for injecting an inert gas with little variation in permeability is provided. Can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る溶融金属への不活
性ガス吹込み用耐火物を適用する連続鋳造設備の説明図
である。
FIG. 1 is an explanatory view of a continuous casting facility for applying a refractory for blowing an inert gas into a molten metal according to an embodiment of the present invention.

【図2】(a)、(b)はそれぞれ溶鋼鍋用ポーラスプ
ラグ、タンディッシュ用ポーラスプラグの側断面図であ
る。
FIGS. 2A and 2B are side sectional views of a porous plug for a molten steel pot and a porous plug for a tundish, respectively.

【図3】通気性組織の概念説明図である。FIG. 3 is a conceptual explanatory view of a breathable tissue.

【符号の説明】[Explanation of symbols]

10 連続鋳造設備 11 溶鋼(溶
融金属) 12 溶鋼鍋 13 タンディ
ッシュ 14 浸漬ノズル 15 連続鋳造
鋳型 16 溶鋼鍋用ポーラスプラグ(不活性ガス吹込み用耐
火物) 17 タンディッシュ用ポーラスプラグ(不活性ガス吹
込み用耐火物) 18 ポーラスれんが(不活性ガス吹込み用耐火物) 19 ロングノズル 20 吐出孔 21 通気性組織 22 通気性組
織 23 上部通気性組織 24 下部通気
性組織 25 ガスプール 26 メタルケ
ース 27 プレキャストスリーブ 27a プレキ
ャストスリーブ 28 導入管 29 骨材 30 高融点成分 31 空隙
Reference Signs List 10 continuous casting equipment 11 molten steel (molten metal) 12 molten steel pot 13 tundish 14 immersion nozzle 15 continuous casting mold 16 porous plug for molten steel pot (refractory for blowing inert gas) 17 porous plug for tundish (inert gas blowing) 18 porous brick (refractory for blowing inert gas) 19 long nozzle 20 discharge hole 21 air-permeable tissue 22 air-permeable tissue 23 upper air-permeable tissue 24 lower air-permeable tissue 25 gas pool 26 metal case 27 precast Sleeve 27a Precast sleeve 28 Inlet tube 29 Aggregate 30 High melting point component 31 Void

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリカ及びクロミアをそれぞれ1〜5w
t%、1〜5wt%含有し、アルミナ含有量が90〜9
8wt%であることを特徴とする溶融金属への不活性ガ
ス吹込み用耐火物。
1. Silica and chromia are each 1-5 watts
t%, 1-5 wt%, alumina content 90-9
A refractory for blowing inert gas into molten metal, characterized in that the content is 8 wt%.
【請求項2】 シリカ及びクロミアをそれぞれ1〜5w
t%、1〜5wt%含有してなるアルミナを主成分とす
る通気性組織を有すると共に、該通気性組織の骨材とな
る部分が1800℃以上の高融点成分により結合されて
いることを特徴とする溶融金属への不活性ガス吹込み用
耐火物。
2. Silica and chromia are each contained in an amount of 1 to 5 watts.
It has a gas-permeable structure mainly composed of alumina containing 1% to 5% by weight of t%, and a portion of the gas-permeable structure serving as an aggregate is bonded by a high melting point component of 1800 ° C. or more. Refractory for blowing inert gas into molten metal.
【請求項3】 前記不活性ガス吹込み用耐火物の気孔径
分布において、75μm以下の気孔の比率が25〜50
%であることを特徴とする請求項1又は2記載の溶融金
属への不活性ガス吹込み用耐火物。
3. In the pore size distribution of the refractory for injecting inert gas, the ratio of pores of 75 μm or less is 25 to 50.
%. The refractory for blowing an inert gas into a molten metal according to claim 1 or 2.
【請求項4】 アルミナ、シリカ及びクロミアを含む耐
火材料を成形加工後、1800〜1860℃の温度で焼
成することを特徴とする溶融金属への不活性ガス吹込み
用耐火物の製造方法。
4. A method for producing a refractory for blowing an inert gas into a molten metal, comprising forming a refractory material containing alumina, silica, and chromia, followed by firing at a temperature of 1800 to 1860 ° C.
【請求項5】 前記耐火材料中における前記シリカ及び
前記クロミアの含有量がそれぞれ1〜5wt%、1〜5
wt%であることを特徴とする請求項4記載の溶融金属
への不活性ガス吹込み用耐火物の製造方法。
5. The content of the silica and the chromia in the refractory material is 1 to 5 wt% and 1 to 5 wt%, respectively.
The method for producing a refractory for blowing an inert gas into a molten metal according to claim 4, wherein the content is wt%.
【請求項6】 前記耐火材料の原料の一部として、コラ
ンダム及びシリカを用いることを特徴とする請求項4又
は5記載の溶融金属への不活性ガス吹込み用耐火物の製
造方法。
6. The method for producing a refractory for blowing an inert gas into a molten metal according to claim 4, wherein corundum and silica are used as a part of the material of the refractory material.
【請求項7】 前記コランダムの形状は球状であること
を特徴とする請求項6記載の溶融金属への不活性ガス吹
込み用耐火物の製造方法。
7. The method according to claim 6, wherein the corundum has a spherical shape.
JP36936897A 1997-12-30 1997-12-30 Refractory for injecting inert gas into molten metal and method for producing the same Expired - Fee Related JP3774557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36936897A JP3774557B2 (en) 1997-12-30 1997-12-30 Refractory for injecting inert gas into molten metal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36936897A JP3774557B2 (en) 1997-12-30 1997-12-30 Refractory for injecting inert gas into molten metal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11199315A true JPH11199315A (en) 1999-07-27
JP3774557B2 JP3774557B2 (en) 2006-05-17

Family

ID=18494244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36936897A Expired - Fee Related JP3774557B2 (en) 1997-12-30 1997-12-30 Refractory for injecting inert gas into molten metal and method for producing the same

Country Status (1)

Country Link
JP (1) JP3774557B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159612B1 (en) * 2010-03-30 2012-06-27 현대제철 주식회사 Mortar for forming submerged entry nozzle assembly and method for forming submerged entry nozzle assembly using the same
CN114478057A (en) * 2021-12-30 2022-05-13 广西富川正辉机械有限公司 Ventilation block for system bottom blowing inert gas for refining high-purity high-carbon high-chromium-manganese 13 high-manganese steel material, preparation process and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159612B1 (en) * 2010-03-30 2012-06-27 현대제철 주식회사 Mortar for forming submerged entry nozzle assembly and method for forming submerged entry nozzle assembly using the same
CN114478057A (en) * 2021-12-30 2022-05-13 广西富川正辉机械有限公司 Ventilation block for system bottom blowing inert gas for refining high-purity high-carbon high-chromium-manganese 13 high-manganese steel material, preparation process and application thereof
CN114478057B (en) * 2021-12-30 2022-11-11 广西富川正辉机械有限公司 Ventilation block for system bottom blowing inert gas for refining high-purity high-carbon high-chromium-manganese 13 high-manganese steel material, preparation process and application thereof

Also Published As

Publication number Publication date
JP3774557B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP7218300B2 (en) Porous refractory material, its use and manufacture
US6322729B2 (en) Method of forming monolithic ceramic gas diffuser
Dudczig et al. Application of oxide coatings for improved steel filtration with the aid of a metal casting simulator
WO2010013686A1 (en) Refractory for nozzle used in continuous casting and nozzle for continuous casting
JP3430360B2 (en) Porous plug for gas injection
JPH11199315A (en) Refractory for blowing inert gas in melted metal and its production
CN103813990B (en) Feeder channel for molten glass
JP2010167481A (en) Nozzle for continuous casting
JPS6015592B2 (en) Highly corrosion resistant and highly airtight packing material
JP5354495B2 (en) Immersion nozzle for continuous casting of steel
JP2008055452A (en) Hardly adherent nozzle for continuous casting
JPH1024351A (en) Nozzle for continuous casting for steel
KR101672470B1 (en) Refractory for slag dart, slag dart including the same and manufacturing method of slag dart
JPH028635B2 (en)
JP4291619B2 (en) Method for forming a refractory lining layer
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
JPH02121759A (en) Porous refractory for blowing gas and manufacture thereof
RU2226451C1 (en) Builtup refractory product
JP2001030047A (en) Immersion nozzle having sliding surface
JPH10128507A (en) Nozzle for continuous casting of steel
JPS623796B2 (en)
JPH10297978A (en) Porous refractory for gas blowing and its production
JPH11211360A (en) Induction furnace with multilayer-lined structure wherein shaped material coated with low melting-point ceramics material is allocated at outer layer of lining material
JP6241461B2 (en) Manufacturing method of immersion nozzle for continuous casting
JPH0952168A (en) Porous plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees