JPH10297978A - Porous refractory for gas blowing and its production - Google Patents

Porous refractory for gas blowing and its production

Info

Publication number
JPH10297978A
JPH10297978A JP9120080A JP12008097A JPH10297978A JP H10297978 A JPH10297978 A JP H10297978A JP 9120080 A JP9120080 A JP 9120080A JP 12008097 A JP12008097 A JP 12008097A JP H10297978 A JPH10297978 A JP H10297978A
Authority
JP
Japan
Prior art keywords
raw material
refractory
silicon
spherical
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9120080A
Other languages
Japanese (ja)
Inventor
Tamotsu Wakita
保 脇田
Tetsuo Fushimi
哲郎 伏見
Kazuo Ito
和男 伊藤
Isao Watanabe
勲 渡辺
Ken Kimura
憲 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9120080A priority Critical patent/JPH10297978A/en
Publication of JPH10297978A publication Critical patent/JPH10297978A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the porous refractory having excellent spalling resistance and excellent corrosion resistance by compounding an inorganic refractory raw material, a carbon raw material, one or more kinds of raw materials selected from Si, Al, silicon carbide and boron carbide, and a thermosetting resin, granulating the composition into spherical granules, calcining the granules, further adding the fine powder of an inorganic refractory raw material, Si, Al, etc., to the calcined granules, kneading the mixture, molding the product, drying the molded product, and subsequently calcining the dried product in a reducing atmosphere. SOLUTION: The inorganic refractory raw material includes alumina, and the carbon raw material includes a pitch. The spherical granules produced by the first granulation treatment have a composition comprising 1-10 wt.% of one or more kinds of raw materials selected from Si, Al, silicon carbide and boron carbide, 5-30 wt.% of carbon, and the remainder of an inorganic refractory raw material, and have a particle diameter of 3-0.3 mm. In the second compounding treatment, the spherical granules of inorganic refractory raw material-carbon raw material are added in an amount of 97-80 wt.%. The calcination temperature in the first and second calcination treatments is about 1000 deg.C. The obtained refractory can surely and stably supply a gas to prevent the generation of non-opened pores.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス吹き込み用ポ
ーラス耐火物及びその製造方法に関するものである。
The present invention relates to a porous refractory for blowing gas and a method for producing the same.

【0002】[0002]

【従来の技術】ガス吹き込み用ポーラス耐火物は、例え
ば、タンディッシュ等の溶融金属排出容器底部に設ける
スライドゲートプレートの上プレート孔径部に装着され
る。ポーラス耐火物を介して溶鋼中にアルゴンガス等の
不活性ガスを吹き込むことにより、溶鋼を撹拌して凝固
を防ぎ不開孔のトラブルを防止するのである。
2. Description of the Related Art A porous refractory for gas injection is mounted on the upper plate hole of a slide gate plate provided at the bottom of a molten metal discharge container such as a tundish. By blowing an inert gas such as an argon gas into the molten steel through the porous refractory, the molten steel is stirred to prevent solidification and prevent troubles of non-opening.

【0003】連続鋳造工程において、取鍋からタンディ
ッシュに溶鋼を移す初期の段階では、所定のレベルまで
溶鋼が溜まるまで、タンディッシュからの注湯は行わな
い。この際、タンディッシュに設定したスライドゲート
上プレート孔内の溶鋼が凝固し、不開孔のトラブルを生
じることがある。また、操業上の何らかの理由でスライ
ドゲートプレートを閉の状態にした場合も同様である。
In the initial stage of transferring molten steel from a ladle to a tundish in the continuous casting process, pouring from the tundish is not performed until the molten steel has accumulated to a predetermined level. At this time, the molten steel in the slide gate upper plate hole set in the tundish solidifies, which may cause a trouble of non-opening. The same applies to the case where the slide gate plate is closed for some reason in operation.

【0004】このような溶鋼凝固による不開孔のトラブ
ルを防止するために、上プレート孔径部からアルゴン等
の不活性ガスが吹き込まれる。ガスの吹き込み方式とし
ては、上プレート孔径部に装着したポーラス耐火物から
ガスを吹き込む方式と、アルミナ・カーボン等の緻密質
耐火物にレーザー加工によって直径0.1〜1.0mm
の貫通孔をあけ、そこからガスを吹き込む方式がある。
ポーラス耐火物による方式は例えば特公昭49−210
16、貫通孔を設けた耐火物による方式は例えば特公昭
63−52999等に開示されている。
[0004] In order to prevent such a problem of non-opening due to solidification of molten steel, an inert gas such as argon is blown from the upper plate hole diameter portion. As a gas injection method, a method of injecting gas from a porous refractory attached to the upper plate hole diameter portion, and a method of laser processing a dense refractory such as alumina / carbon by laser processing to a diameter of 0.1 to 1.0 mm.
There is a method in which a through hole is made and gas is blown from there.
A method using a porous refractory is described in, for example, Japanese Patent Publication No. 49-210.
16. A method using a refractory having a through hole is disclosed in, for example, Japanese Patent Publication No. 63-52999.

【0005】[0005]

【発明が解決しようとする課題】前記ポーラス耐火物の
材質は高アルミナ質が一般的であり、アルミナ骨材粒子
にシリカ、アルミナ、粘土、酸化クロム等の微粉を配合
し、有機バインダーを加え、混練、成形、乾燥後、大気
雰囲気下1500℃以上の高温で焼成して製造される。
The material of the porous refractory is generally high alumina. A fine powder of silica, alumina, clay, chromium oxide or the like is mixed with alumina aggregate particles, and an organic binder is added. After kneading, molding, and drying, it is manufactured by firing at a high temperature of 1500 ° C. or more in an air atmosphere.

【0006】しかし、このようにして製造されるポーラ
ス耐火物は、粒子同士の接触点が少ないため強度が低
く、更に高アルミナ質のため熱膨張率が高く耐スポール
性に難点があった。このため、受鋼時の熱衝撃によって
亀裂が発生し、そこから溶鋼が侵入してガス吹き不良を
招くことがあった。
However, the porous refractory produced in this manner has a low strength due to a small number of contact points between particles, and has a high coefficient of thermal expansion due to a high alumina material, and has a problem in spall resistance. For this reason, cracks were generated by the thermal shock at the time of receiving the steel, and molten steel penetrated therefrom, which sometimes led to poor gas blowing.

【0007】また、多孔質体であるため、溶鋼が容易に
浸潤してガス吹き作業に問題が生じる不具合もあった。
このような溶鋼の浸潤を抑制するには、酸化クロムの添
加が有効である。しかし、酸化クロムを多量に添加する
と、使用後品の廃棄処理に問題が生じる。
In addition, since it is a porous body, there is also a problem that molten steel easily infiltrates and causes a problem in gas blowing operation.
In order to suppress such infiltration of molten steel, the addition of chromium oxide is effective. However, when a large amount of chromium oxide is added, there is a problem in disposal of used products.

【0008】前記貫通穴を有する緻密質耐火物は、高ア
ルミナ質あるいはアルミナ・カーボン質が一般的であ
る。例えばアルミナ・カーボン質耐火物の場合、まずア
ルミナ粒子にピッチ、黒鉛、アルミナ微粉、珪素等を配
合し、熱硬化性樹脂を加え、混練、成形、乾燥後、還元
雰囲気下で焼成し緻密質な耐火物を得る。さらに、必要
に応じてタールピッチを含浸して、熱処理を行い、レー
ザー加工機で40〜60程度の貫通孔を穴あけ加工を施
す。
The dense refractory having the through holes is generally made of high alumina or alumina carbon. For example, in the case of an alumina-carbon refractory, pitch, graphite, alumina fine powder, silicon, etc. are first added to alumina particles, a thermosetting resin is added, kneading, molding, drying, and firing in a reducing atmosphere to obtain a dense Obtain refractory. Further, if necessary, a tar pitch is impregnated, heat treatment is performed, and a through hole of about 40 to 60 is formed by a laser processing machine.

【0009】しかし、ポーラス耐火物は孔径内全面から
ガスが供給されるのに対し、貫通孔方式の耐火物ではガ
スが供給されないデッドゾーンが貫通孔間に形成され、
そこで溶鋼が凝固して孔径部が閉塞する場合があった。
また、レーザー加工装置自体が相当に高額であり、更に
一個当たりにかかる加工コストも高く、ポーラス耐火物
に比べコストが高いという問題もあった。
However, while gas is supplied to the entire surface of the porous refractory within the hole diameter, a dead zone in which gas is not supplied to the through-hole type refractory is formed between the through-holes.
Therefore, there were cases where the molten steel solidified and the hole diameter portion was blocked.
Further, there is a problem that the laser processing apparatus itself is considerably expensive, the processing cost per unit is high, and the cost is higher than that of the porous refractory.

【0010】このような従来技術の課題を解決し、優れ
た耐スポール性と耐食性を兼ね備え、ガスを安定供給し
て不開孔の発生を確実に防止できると共に、酸化クロム
を含まず廃棄処理の問題がないガス吹き込み用ポーラス
耐火物及びその製造方法を提供することが本発明の目的
である。
[0010] In order to solve the problems of the prior art, it has excellent spall resistance and corrosion resistance, can stably supply gas, and can reliably prevent the generation of non-opening. It is an object of the present invention to provide a porous gas refractory for gas injection and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本願第1発明は、アルミ
ナのような無機耐火性原料と、ピッチのようなカーボン
原料と、珪素、アルミニウム、炭化珪素及び炭化硼素か
ら選んだ少なくとも一種以上の原料とを配合し、これに
熱硬化性樹脂を加えて球形又は球形に近い形状に造粒
し、これを還元雰囲気で焼成して球状粒子の骨材とし、
この球状粒子骨材にアルミナのような無機耐火性原料の
微粉と、珪素、アルミニウム、炭化珪素及び炭化硼素か
ら選ばれた少なくとも一種以上の原料とを添加し、さら
に熱硬化性樹脂を加えて混練、成形、乾燥後、還元雰囲
気で焼成することを特徴とするガス吹き込み用ポーラス
耐火物の製造方法を要旨としている。
The first invention of the present application is directed to an inorganic refractory raw material such as alumina, a carbon raw material such as pitch, and at least one raw material selected from silicon, aluminum, silicon carbide and boron carbide. And adding a thermosetting resin to the mixture, granulating the mixture into a spherical or nearly spherical shape, and firing this in a reducing atmosphere to form aggregates of spherical particles,
Fine powder of an inorganic refractory raw material such as alumina and at least one or more raw materials selected from silicon, aluminum, silicon carbide and boron carbide are added to the spherical particle aggregate, and a thermosetting resin is further added and kneaded. A method for producing a porous refractory for gas injection, comprising forming, drying, and firing in a reducing atmosphere.

【0012】本願第2発明は、アルミナのような無機耐
火性原料と、ピッチのようなカーボン原料と、珪素、ア
ルミニウム、炭化珪素及び炭化硼素から選んだ少なくと
も一種以上の原料からなる球状粒子骨材を用い、これに
アルミナのような無機耐火性原料の微粉と、珪素、アル
ミニウム、炭化珪素及び炭化硼素から選んだ少なくとも
一種以上の原料を配合して得たことを特徴とするガス吹
き込み用ポーラス耐火物を要旨としている。
The second invention of the present application is directed to a spherical particle aggregate comprising an inorganic refractory raw material such as alumina, a carbon raw material such as pitch, and at least one raw material selected from silicon, aluminum, silicon carbide and boron carbide. And a fine powder of an inorganic refractory raw material such as alumina, and at least one or more raw materials selected from silicon, aluminum, silicon carbide and boron carbide. The subject is the gist.

【0013】[0013]

【発明の実施の形態】本発明のガス吹き込み用ポーラス
耐火物の製造方法は、アルミナのような無機耐火性原料
と、ピッチのようなカーボン原料と、珪素、アルミニウ
ム、炭化珪素及び炭化硼素から選んだ少なくとも一種以
上の原料とを配合し、これに熱硬化性樹脂を加えて球形
又は球形に近い形状に造粒し、これを還元雰囲気で焼成
して球状粒子の骨材とし、この球状粒子骨材にアルミナ
のような無機耐火性原料の微粉と、珪素、アルミニウ
ム、炭化珪素及び炭化硼素から選ばれた少なくとも一種
以上の原料とを添加し、さらに熱硬化性樹脂を加えて混
練、成形、乾燥後、還元雰囲気で焼成することを特徴と
している。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a porous refractory for gas injection according to the present invention is selected from an inorganic refractory raw material such as alumina, a carbon raw material such as pitch, silicon, aluminum, silicon carbide and boron carbide. At least one or more raw materials are mixed, a thermosetting resin is added thereto, and the mixture is granulated into a spherical shape or a shape close to a spherical shape, which is fired in a reducing atmosphere to obtain an aggregate of spherical particles. Fine powder of an inorganic refractory raw material such as alumina and at least one or more raw materials selected from silicon, aluminum, silicon carbide, and boron carbide are added to the material, and a thermosetting resin is further added, and kneading, molding, and drying are performed. Thereafter, firing in a reducing atmosphere is characterized.

【0014】本発明者達は、廃棄処理に難点がある酸化
クロムを添加せずにポーラス耐火物の耐スポール性を向
上するべく鋭意研究した結果、前述のような無機耐火性
原料・カーボン質で球形あるいは球形に近い形状に造粒
した球状粒子を骨材として用いることが有効であること
を見出した。
The present inventors have conducted intensive studies to improve the spall resistance of a porous refractory without adding chromium oxide, which is difficult to dispose, and as a result, the inorganic refractory raw material and carbon material as described above were used. It has been found that it is effective to use spherical particles granulated into a spherical shape or a shape close to a spherical shape as an aggregate.

【0015】このような骨材を用いることにより、耐ス
ポール性に優れ、安定したガス供給が可能であって、ま
た廃棄処理問題のないガス吹き込み用ポーラス耐火物を
製造することが可能である。
By using such an aggregate, it is possible to produce a porous refractory for gas injection which is excellent in spall resistance, can supply a stable gas, and has no disposal problem.

【0016】骨材として、主に無機耐火性原料、カーボ
ン原料から構成される配合を造粒して得られる球状粒子
を用いる理由は次の通りである。すなわち、無機耐火性
原料・カーボン質の球状粒子を骨材として使用すること
によって、従来のアルミナ骨材のポーラス耐火物と比較
して高熱伝導率及び低熱膨張率にすることができ、耐ス
ポール性を向上できる。また、骨材が炭素含有耐火物の
球状粒子であるため、溶鋼・スラグに濡れ難く溶鋼の浸
潤を抑制することができる。
The reason why spherical particles obtained by granulating a composition mainly composed of an inorganic refractory raw material and a carbon raw material are used as the aggregate is as follows. In other words, by using inorganic refractory raw materials and carbonaceous spherical particles as aggregates, it is possible to obtain a high thermal conductivity and a low coefficient of thermal expansion as compared with conventional alumina aggregate porous refractories, and to achieve a high spall resistance. Can be improved. In addition, since the aggregate is spherical particles of a carbon-containing refractory, the aggregate is hardly wet by molten steel and slag, so that infiltration of molten steel can be suppressed.

【0017】無機耐火性原料・カーボン質の粒子を球形
あるいは球形に近い形状に造粒する理由は次の通りであ
る。従来よりポーラス耐火物で使用されている塊状の電
融アルミナ粒子等の非球状粒子を使用した場合、気孔径
の分布幅が広くなることは周知である。すなわち、充填
が不均一となり易く、溶鋼が容易に浸潤するような比較
的大きな気孔からガス吹きにほとんど寄与しないような
微細な気孔が形成される。これに対し球状粒子を使用し
た場合は、粒子の充填性に優れるため、より均一に充填
を行って、気孔径の分布幅を狭くすることができる。そ
れゆえ、粗大な気孔は形成されず溶鋼の浸潤抑制及びガ
ス流量の確保を共に実現できる。
The reason for granulating the inorganic refractory raw material / carbonaceous particles into a spherical shape or a shape close to a spherical shape is as follows. It is well known that when non-spherical particles, such as massive fused alumina particles, which have conventionally been used in porous refractories, are used, the distribution width of pore diameters becomes wide. That is, the filling is likely to be non-uniform, and fine pores that hardly contribute to gas blowing are formed from relatively large pores that easily infiltrate the molten steel. On the other hand, when spherical particles are used, the particles can be more uniformly filled, so that the particles can be more uniformly filled and the distribution width of the pore diameter can be narrowed. Therefore, coarse pores are not formed and both suppression of infiltration of molten steel and securing of gas flow can be realized.

【0018】本発明で使用する球形あるいは球形に近い
形状の無機耐火性原料・カーボン質の球状粒子は、例え
ば次のようにして製造できる。市販の焼結アルミナ、土
壌黒鉛、珪素の微粉を所定量配合し、これに適量のフェ
ノール樹脂を加え転動造粒機を使用して球形あるいは球
形に近い形状で所定の粒径に造粒し、乾燥後、還元雰囲
気で焼成することによって、アルミナ・カーボン質の球
状粒子を得ることができる。
The spherical or nearly spherical inorganic refractory raw material and carbonaceous spherical particles used in the present invention can be produced, for example, as follows. A predetermined amount of commercially available sintered alumina, soil graphite, and silicon fine powder are blended, and an appropriate amount of phenol resin is added to the mixture, and the mixture is granulated to a predetermined particle size in a spherical or nearly spherical shape using a rolling granulator. After drying, firing is performed in a reducing atmosphere to obtain alumina-carbonaceous spherical particles.

【0019】前述の球形又は球形に近い形状の無機耐火
性原料・カーボン質球状粒子は、カーボン原料5〜30
wt%、珪素、アルミニウム、炭化珪素、炭化硼素から
選ばれる少なくとも一種以上の原料1〜10wt%、残
部がアルミナ等の無機耐火性原料から構成することがで
きる。
The inorganic refractory raw material and carbonaceous spherical particles having a spherical shape or a shape close to a spherical shape are made of carbon raw material 5 to 30.
wt%, at least one or more raw materials selected from silicon, aluminum, silicon carbide, and boron carbide in an amount of 1 to 10 wt%, and the balance can be formed of an inorganic refractory raw material such as alumina.

【0020】カーボン原料は低熱膨張率化、高熱伝導率
化による耐スポール性の向上および溶鋼・スラグに対す
る耐濡れ性を改善する効果があり、その添加量は5〜3
0wt%が好ましい。カーボン原料添加量が5wt%未
満であると耐スポール性向上の効果が十分でなく、反対
に30wt%を超えると球状粒子としての耐食性が低下
する。このような観点から、さらに好ましいカーボン原
料の添加量は10〜20wt%である。
The carbon raw material has the effect of improving the spall resistance by lowering the coefficient of thermal expansion and increasing the thermal conductivity and improving the wet resistance to molten steel and slag.
0 wt% is preferred. If the added amount of the carbon material is less than 5 wt%, the effect of improving the spall resistance is not sufficient, and if it exceeds 30 wt%, the corrosion resistance as spherical particles decreases. From such a viewpoint, the more preferable addition amount of the carbon raw material is 10 to 20 wt%.

【0021】珪素、アルミニウム等の微粉原料は無機耐
火性原料・カーボン質球状粒子の強度向上および酸化に
よる強度等の特性低下を防ぐ効果があり、その添加量は
1〜10wt%が好ましい。これらの微粉原料が1wt
%未満であると粒子強度が低く成形性に問題があり、1
0wt%を超えると球状粒子としての耐食性が低下す
る。このような観点から、さらに好ましい珪素、アルミ
ニウム等の微粉原料の添加量は3〜8wt%である。
Fine powder raw materials such as silicon and aluminum have an effect of improving the strength of inorganic refractory raw materials and carbonaceous spherical particles and preventing deterioration in properties such as strength due to oxidation, and the addition amount thereof is preferably 1 to 10% by weight. These fine powder raw materials are 1wt
%, The particle strength is low and there is a problem in moldability.
If it exceeds 0 wt%, the corrosion resistance as spherical particles will be reduced. From such a viewpoint, the addition amount of the fine powder material such as silicon and aluminum is more preferably 3 to 8 wt%.

【0022】微粉原料の粒径は、前述のような好ましい
特性を確実に得るため、分散性、反応性の点から細かい
方が好ましく、74μm以下に設定するのが望ましい。
さらに好ましくは、44μm以下とする。
The particle size of the fine powder raw material is preferably finer from the viewpoint of dispersibility and reactivity in order to surely obtain the preferable characteristics as described above, and is desirably set to 74 μm or less.
More preferably, it is 44 μm or less.

【0023】使用する無機耐火性原料に特に限定はな
く、アルミナ、マグネシウム、ジルコニア、ムライト、
スピネル、アルミナ・ジルコニア、ジルコニア・ムライ
ト等を用いることができる。これらの原料は、鋼種等の
使用条件および要求される耐食性あるいは耐スポール性
に応じて、適量選択することが可能である。
The inorganic refractory raw material used is not particularly limited, and may be alumina, magnesium, zirconia, mullite,
Spinel, alumina / zirconia, zirconia / mullite, etc. can be used. These raw materials can be selected in an appropriate amount according to the use conditions such as the type of steel and the required corrosion resistance or spall resistance.

【0024】無機耐火性原料・カーボン質の球状粒子の
粒径は3〜0.3mmが好ましく、さらに好ましくは
1.0〜0.5mmとする。粒径が0.3mm未満であ
ると気孔径が小さくなり必要なガス流量を確保すること
が難しく、3mmを超えると粒子の充填で形成される気
孔が大きくなり溶鋼浸潤抑制の効果が低くなり、更に粒
子同士の接触点が少なくなり製品としての強度が低下す
る。
The particle diameter of the inorganic refractory raw material / carbon spherical particles is preferably 3 to 0.3 mm, more preferably 1.0 to 0.5 mm. If the particle size is less than 0.3 mm, the pore diameter becomes small and it is difficult to secure a required gas flow rate.If it exceeds 3 mm, the pores formed by filling the particles become large and the effect of suppressing molten steel infiltration becomes low, Further, the number of contact points between the particles is reduced, and the strength as a product is reduced.

【0025】無機耐火性原料・カーボン質の球状粒子の
添加量は97〜80wt%が好ましく、さらに好ましく
は85〜95wt%とする。97wt%を超えると微粉
部が少なく製品としての十分な強度が得られず、80w
t%未満であると微粉部が多くなり必要なガス流量を確
保することができなくなる。
The addition amount of the inorganic refractory raw material and carbonaceous spherical particles is preferably 97 to 80 wt%, more preferably 85 to 95 wt%. If the content exceeds 97 wt%, the fine powder portion is small, and sufficient strength as a product cannot be obtained.
If it is less than t%, the amount of fine powder increases, and it becomes impossible to secure a necessary gas flow rate.

【0026】本発明のガス吹き込み用ポーラス耐火物
は、アルミナのような無機耐火性原料と、ピッチのよう
なカーボン原料と、珪素、アルミニウム、炭化珪素及び
炭化硼素から選んだ少なくとも一種以上の原料からなる
球状粒子骨材を用い、これにアルミナのような無機耐火
性原料の微粉と、珪素、アルミニウム、炭化珪素及び炭
化硼素から選んだ少なくとも一種以上の原料を配合して
得たことを特徴としている。
The porous refractory for gas injection according to the present invention comprises an inorganic refractory raw material such as alumina, a carbon raw material such as pitch, and at least one raw material selected from silicon, aluminum, silicon carbide and boron carbide. Characterized in that it is obtained by mixing fine powder of an inorganic refractory raw material such as alumina and at least one or more raw materials selected from silicon, aluminum, silicon carbide and boron carbide. .

【0027】[0027]

【実施例】以下、本発明の実施例を具体的に説明する
が、実施例は本発明の実施を容易化あるいは促進化する
ためのものであり、本発明を限定するものではない。
EXAMPLES The present invention will now be described in detail with reference to Examples, but the Examples are intended to facilitate or promote the practice of the present invention, and do not limit the present invention.

【0028】表1〜表3に示す割合でアルミナ微粉、ピ
ッチ、土壌黒鉛、珪素、アルミニウム、炭化珪素を配合
し、これにフェノール樹脂を適量添加し、回転皿形造粒
機で転動造粒して造粒体を得た。これを200℃で乾燥
させ、還元雰囲気下1000℃の温度で焼成し、しかる
後に所定の粒度となるように分級しアルミナ・カーボン
質の球状粒子を得た。
Alumina fine powder, pitch, soil graphite, silicon, aluminum, and silicon carbide were blended at the ratios shown in Tables 1 to 3, and an appropriate amount of phenol resin was added thereto. Thus, a granulated product was obtained. This was dried at 200 ° C., baked at a temperature of 1000 ° C. in a reducing atmosphere, and then classified to a predetermined particle size to obtain alumina-carbon spherical particles.

【0029】このようにして得られた球状粒子を骨材と
し、これに無機耐火性原料、珪素、アルミニウムを添加
し、さらにフェノール樹脂を加え、ウェットパンで混
練、成形し、200℃で乾燥後、還元雰囲気下1000
℃で焼成してポーラス耐火物を得た。
[0029] The spherical particles thus obtained are used as aggregates, to which inorganic refractory raw materials, silicon and aluminum are added, phenol resin is further added, kneaded and molded in a wet pan, and dried at 200 ° C. 1000 under reducing atmosphere
Calcination was carried out at ℃ to obtain a porous refractory.

【0030】ポーラス耐火物から、直径50×高さ50
mmの形状のテストピースを切り出し、見掛気孔率、圧
縮強度、通気率を測定した。
From the porous refractory, a diameter 50 × height 50
A test piece having a shape of mm was cut out, and apparent porosity, compressive strength, and air permeability were measured.

【0031】同様に、角25×130mmの形状のテス
トピースを切り出し、スポーリング試験、侵食試験を行
った。すなわち、誘導炉中で溶融させた溶鋼中に10r
pmで回転させながら所定時間浸漬させた後、試料を切
断し、亀裂の発生状況、被食量および溶鋼・スラグの浸
潤量を比較した。
Similarly, a test piece having a shape of 25 × 130 mm was cut out and subjected to a spalling test and an erosion test. That is, 10r is contained in the molten steel melted in the induction furnace.
After being immersed for a predetermined time while rotating at pm, the sample was cut and the state of crack generation, the amount of corrosion, and the amount of infiltration of molten steel and slag were compared.

【0032】また、実機試験として、リング形状に製造
されたポーラス耐火物を上プレート孔径部に装着し、そ
れを30tonのタンディッシュにセットして、初期開
孔時や操業中においてプレートを閉から開にした場合の
開孔状況を調べた。
In addition, as an actual machine test, a porous refractory manufactured in a ring shape was attached to the upper plate hole diameter portion, and it was set on a 30-ton tundish, and the plate was closed during initial opening and during operation. The state of opening when opened was examined.

【0033】以下、これらの結果を検討する。Hereinafter, these results will be examined.

【0034】先ず、表1を参照して、ポーラス耐火物の
骨材となるアルミナ・カーボン質球状粒子の組成の違い
による物性および実機試験を比較する。実施例1〜5は
本発明の範疇に含まれ、比較例1,2はカーボン原料の
使用量が本発明の範囲外であり、比較例3,4は珪素や
アルミニウム等の原料の使用量が本発明の範囲外であ
る。
First, with reference to Table 1, the physical properties and the actual machine test depending on the composition of the alumina-carbonaceous spherical particles used as the aggregate of the porous refractory are compared. Examples 1 to 5 are included in the scope of the present invention, Comparative Examples 1 and 2 use carbon materials outside the scope of the present invention, and Comparative Examples 3 and 4 use amounts of raw materials such as silicon and aluminum. It is outside the scope of the present invention.

【0035】実機試験の結果、実施例1〜5は初期開孔
時及び鋳造時にSGプレートを一旦閉の状態にした後
も、問題なく開孔することができた。
As a result of the actual machine test, Examples 1 to 5 were able to open holes without any problem even after the SG plate was once closed at the time of initial opening and casting.

【0036】これに対して、比較例1では、受鋼時の熱
衝撃によってポーラス耐火物に亀裂が生じ、そこから溶
鋼が侵入してガス吹き不可となり孔径内部で溶鋼が凝固
し不開孔となった。これは、耐スポール性が不十分なた
めと推定できる。
On the other hand, in Comparative Example 1, cracks were generated in the porous refractory due to the thermal shock at the time of receiving the steel, and molten steel penetrated therefrom so that gas could not be blown out. became. This can be presumed to be due to insufficient spall resistance.

【0037】また、比較例2,4は初期開孔に関しては
問題はなかったが、溶損が大きく溶鋼の流量制御等に問
題が生じたため途中で使用中止となった。これは、ポー
ラス耐火物の耐食性が劣るためと推定できる。
In Comparative Examples 2 and 4, there was no problem with the initial opening, but the use was stopped halfway due to large melt damage and a problem in controlling the flow rate of molten steel. This can be presumed to be due to the poor corrosion resistance of the porous refractory.

【0038】また、比較例3は粒子強度が低く、成形時
に球状粒子がつぶれたため設計通りの製品を得ることが
できず、物性測定および実機試験には至らなかった。
In Comparative Example 3, since the particle strength was low and the spherical particles were crushed at the time of molding, a product as designed could not be obtained.

【0039】次に、表2を参照して、ポーラス耐火物に
おけるアルミナ・カーボン質球状粒子の粒径の違いによ
る物性及び実機試験の結果を検討する。実施例6,7は
本発明の範疇に含まれ、比較例5,6は本発明の範囲外
である。
Next, with reference to Table 2, the physical properties of the porous refractory due to the difference in the diameter of the spherical particles of alumina and carbonaceous materials and the results of actual machine tests will be examined. Examples 6 and 7 are included in the scope of the present invention, and Comparative Examples 5 and 6 are outside the scope of the present invention.

【0040】実施例6,7では良好な結果が得られたの
に対し、比較例5ではガス流量が基準に達していないた
め実機試験には至らなかった。
In Examples 6 and 7, good results were obtained, whereas in Comparative Example 5, the gas flow did not reach the standard, so that no actual machine test was performed.

【0041】比較例6は溶鋼の浸潤が大きくSGプレー
トを一旦開にした状態の時にガス吹きができず溶鋼が孔
径内部で凝固し不開孔となった。
In Comparative Example 6, gas infiltration was not possible when the SG plate was once opened because the infiltration of the molten steel was large, and the molten steel solidified inside the hole diameter and became unopened.

【0042】最後に、表3を参照して、ポーラス耐火物
におけるアルミナ・カーボン質球状粒子の添加量の違い
による物性及び実機試験の結果を検討する。実施例8〜
10は本発明の範疇に含まれ、比較例7,8は本発明の
範囲外である。
Finally, with reference to Table 3, the physical properties of the porous refractory due to the difference in the amount of the alumina-carbon spherical particles added thereto and the results of the actual machine test will be examined. Example 8-
10 is included in the category of the present invention, and Comparative Examples 7 and 8 are out of the scope of the present invention.

【0043】実施例8〜10では良好な結果が得られた
のに対し、比較例7は強度不足により耐スポール性が低
いため、熱衝撃によってポーラス耐火物に亀裂が生じ、
そこから溶鋼が侵入しガス吹き不可となり孔径内部で溶
鋼が凝固し不開孔となった。
While good results were obtained in Examples 8 to 10, Comparative Example 7 had low spall resistance due to insufficient strength, and cracks were generated in the porous refractory due to thermal shock.
From there, the molten steel entered and gas blowing became impossible, and the molten steel solidified inside the hole diameter to form unopened holes.

【0044】比較例8はガス流量が基準に達していない
ため実機試験には至らなかった。
In Comparative Example 8, since the gas flow rate did not reach the standard, the actual machine test was not completed.

【0045】[0045]

【発明の効果】本発明のガス吹き込み用ポーラス耐火物
は、優れた耐スポール性と耐食性を兼ね備えており、ガ
スを安定供給することによって不開孔の発生を確実に防
止できると共に、酸化クロムを含んでいないため廃棄処
理の問題が生じない。
The porous refractory for gas injection according to the present invention has both excellent spall resistance and corrosion resistance. By stably supplying the gas, it is possible to reliably prevent the generation of unopened holes and to reduce chromium oxide. Since it is not included, there is no problem of disposal.

【0046】実施例では上プレートに装着されるリング
状のガス吹き込み用耐火物に関して説明したが、本発明
の耐火物はポーラス上ノズルのポーラス部等にも適用す
ることが可能である。
Although the embodiment has been described with respect to the ring-shaped refractory for gas injection mounted on the upper plate, the refractory of the present invention can be applied to a porous portion of a porous upper nozzle or the like.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 勲 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 (72)発明者 木村 憲 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isao Watanabe 1st Minamito, Ogakie-cho, Kariya-shi, Aichi Pref. Toshiba Cellular Co., Ltd. Lamix Corporation Kariya Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナのような無機耐火性原料と、ピ
ッチのようなカーボン原料と、珪素、アルミニウム、炭
化珪素及び炭化硼素から選んだ少なくとも一種以上の原
料とを配合し、これに熱硬化性樹脂を加えて球形又は球
形に近い形状に造粒し、これを還元雰囲気で焼成して球
状粒子の骨材とし、この球状粒子骨材にアルミナのよう
な無機耐火性原料の微粉と、珪素、アルミニウム、炭化
珪素及び炭化硼素から選ばれた少なくとも一種以上の原
料とを添加し、さらに熱硬化性樹脂を加えて混練、成
形、乾燥後、還元雰囲気で焼成することを特徴とするガ
ス吹き込み用ポーラス耐火物の製造方法。
An inorganic refractory raw material such as alumina, a carbon raw material such as pitch, and at least one or more raw materials selected from silicon, aluminum, silicon carbide and boron carbide are blended with a thermosetting raw material. A resin is added and granulated into a spherical shape or a shape close to a spherical shape, which is baked in a reducing atmosphere to obtain an aggregate of spherical particles.The fine particles of an inorganic refractory raw material such as alumina, silicon, At least one or more raw materials selected from aluminum, silicon carbide, and boron carbide are added, and a thermosetting resin is further added, kneaded, molded, dried, and then fired in a reducing atmosphere. How to make refractories.
【請求項2】 前記球形又は球形に近い形状に造粒され
た球状粒子が、珪素、アルミニウム、炭化珪素及び炭化
硼素から選んだ少なくとも一種以上の原料1〜10wt
%、カーボン5〜30wt%、残部が無機耐火性原料か
らなる組成を有することを特徴とする請求項1に記載の
ガス吹き込み用ポーラス耐火物の製造方法。
2. The method according to claim 1, wherein the spherical particles formed into a spherical shape or a shape close to a spherical shape include at least one raw material selected from silicon, aluminum, silicon carbide and boron carbide in an amount of 1 to 10 wt.
2. The method for producing a porous refractory for gas injection according to claim 1, wherein the composition has a composition comprising 5% by weight of carbon, 5 to 30% by weight of carbon, and the balance being an inorganic refractory raw material.
【請求項3】 前記球形又は球形に近い形状に造粒され
た球状粒子の粒径が3〜0.3mmであることを特徴と
する請求項1又は2に記載のガス吹き込み用ポーラス耐
火物の製造方法。
3. The porous refractory for gas injection according to claim 1, wherein the spherical particles formed into a spherical shape or a shape close to a spherical shape have a particle diameter of 3 to 0.3 mm. Production method.
【請求項4】 前記球形又は球形に近い形状に造粒され
た球状粒子の添加量が97〜80wt%であることを特
徴とする請求項1〜3のいずれか1項に記載のガス吹き
込み用ポーラス耐火物の製造方法。
4. The gas injection device according to claim 1, wherein an addition amount of the spherical particles formed into a spherical shape or a shape close to a spherical shape is 97 to 80 wt%. Manufacturing method of porous refractory.
【請求項5】 アルミナのような無機耐火性原料と、ピ
ッチのようなカーボン原料と、珪素、アルミニウム、炭
化珪素及び炭化硼素から選んだ少なくとも一種以上の原
料からなる球状粒子骨材を用い、これにアルミナのよう
な無機耐火性原料の微粉と、珪素、アルミニウム、炭化
珪素及び炭化硼素から選んだ少なくとも一種以上の原料
を配合して得たことを特徴とするガス吹き込み用ポーラ
ス耐火物。
5. A spherical particle aggregate comprising an inorganic refractory raw material such as alumina, a carbon raw material such as pitch, and at least one raw material selected from silicon, aluminum, silicon carbide and boron carbide. A porous refractory for gas injection, characterized by mixing fine powder of an inorganic refractory raw material such as alumina and at least one or more raw materials selected from silicon, aluminum, silicon carbide and boron carbide.
JP9120080A 1997-04-24 1997-04-24 Porous refractory for gas blowing and its production Pending JPH10297978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9120080A JPH10297978A (en) 1997-04-24 1997-04-24 Porous refractory for gas blowing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9120080A JPH10297978A (en) 1997-04-24 1997-04-24 Porous refractory for gas blowing and its production

Publications (1)

Publication Number Publication Date
JPH10297978A true JPH10297978A (en) 1998-11-10

Family

ID=14777417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9120080A Pending JPH10297978A (en) 1997-04-24 1997-04-24 Porous refractory for gas blowing and its production

Country Status (1)

Country Link
JP (1) JPH10297978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539003A (en) * 2011-07-11 2013-10-17 エスゲーエル カーボン ソシエタス ヨーロピア Composite refractory for lining of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539003A (en) * 2011-07-11 2013-10-17 エスゲーエル カーボン ソシエタス ヨーロピア Composite refractory for lining of blast furnace

Similar Documents

Publication Publication Date Title
US5885520A (en) Apparatus for discharging molten metal in a casting device and method of use
JP5166302B2 (en) Continuous casting nozzle
JP4431111B2 (en) Continuous casting nozzle
JPH10297978A (en) Porous refractory for gas blowing and its production
JP4456443B2 (en) Pitch-containing difficult adhesion continuous casting nozzle
JPS6046168B2 (en) Molded body for gas injection
AU732774B2 (en) Ceramic compositions
JPH0223502B2 (en)
JPH0952169A (en) Refractory for tuyere of molten steel container
JP3751135B2 (en) Indefinite refractory
JP3774557B2 (en) Refractory for injecting inert gas into molten metal and method for producing the same
KR20000076559A (en) Magnesia-spinel refractory and method of producing the same
JP3536886B2 (en) Method for producing porous refractory for gas-blown porous plug
JPH11292624A (en) Porous refractory
JPH0867558A (en) Refractory for molten metal for nozzle or the like
JPS63157746A (en) Submerged nozzle for continuous casting
JPS6362475B2 (en)
JPH0541590B2 (en)
JP2001059113A (en) Gas permeable refractory
JPH0952168A (en) Porous plug
JPH10280029A (en) Refractory for blowing gas and manufacture thereof
JPH03197369A (en) High alumina casting material
JP2006239756A (en) Continuous casting nozzle and continuous casting method
JPH09278546A (en) Amorphous casting refractory for vessel lining used for melted metal and its cast product
JPS5911548B2 (en) Immersion nozzle for continuous casting