JPH11197132A - Passive shield type superconducting magnet - Google Patents

Passive shield type superconducting magnet

Info

Publication number
JPH11197132A
JPH11197132A JP10016470A JP1647098A JPH11197132A JP H11197132 A JPH11197132 A JP H11197132A JP 10016470 A JP10016470 A JP 10016470A JP 1647098 A JP1647098 A JP 1647098A JP H11197132 A JPH11197132 A JP H11197132A
Authority
JP
Japan
Prior art keywords
shield plate
magnetic shield
magnetic field
magnetic
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10016470A
Other languages
Japanese (ja)
Inventor
Hiroshi Tazaki
寛 田崎
Chikako Iizuka
千賀子 飯塚
Hirotaka Takeshima
弘隆 竹島
Takeshi Yao
武 八尾
Takao Honna
孝男 本名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP10016470A priority Critical patent/JPH11197132A/en
Publication of JPH11197132A publication Critical patent/JPH11197132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a passive shield type superconducting magnet for generating the static magnetic field of a small leakage magnetic field and high magnetic field uniformity without enlarging the entire device by efficiently arranging a ferromagnetic body for a magnetic shield. SOLUTION: In this magnet, static magnetic field generation sources 2 are arranged in a vertical direction holding an uniform magnetic field area 1 there between and a magnetic shield plate 6 and a yoke 7 for constituting the magnetic shield are arranged around them. The magnetic shield plate 6 and the yoke 7 are magnetically coupled at a junction part 12. On the surface side facing the static magnetic field generation source 2 of the magnetic shield plate 6 near the junction part 12, the ferromagnetic body 10 provided with a bevel slope 11 is attached so as to be in contact with the magnetic shield plate 6 and the yoke 7. In the constitution, a magnetic flux line 14 is passed through a ferromagnetic body piece 10 and the magnetic flux line 14 is distributed at high density near the static magnetic field generation source 2 of the magnetic shield plate 6 as the whole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気共鳴イメージ
ング(以下、MRIという)装置などに使用されるパッ
シブシールド型超電導磁石に係り、特に静磁場発生源の
周囲に配置した磁気シールドの磁路の形状の改善を図
り、磁気シールドをコンパクトにしたパッシブシールド
型超電導磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive shield type superconducting magnet used for a magnetic resonance imaging (hereinafter, referred to as "MRI") apparatus, and more particularly to a magnetic shield of a magnetic shield arranged around a static magnetic field generating source. The present invention relates to a passive shield type superconducting magnet whose shape is improved and whose magnetic shield is made compact.

【0002】[0002]

【従来の技術】超電導磁石は、様々な分野で使用されて
いるが、汎用超電導磁石として現在最も実用化が進んで
いるのはMRI装置の分野である。MRI装置では、一
定空間(撮影領域)内に一定強度の均一磁場を作り、各
種コイル(傾斜磁場コイル−MRIに際し、スピンの位
置情報を得るために傾斜磁場を与える;高周波(RF)
コイル−被検体に高周波磁場を照射し、原子核を励起す
ると共に、被検体で発生した核磁気共鳴(NMR)信号
を受信する;等)を用い、前記撮影領域に挿入された被
検体からのNMR情報を収集し、被検体の任意の位置,
任意の方向の断面図を再構成するものである。一般に、
MRI装置は均一磁場の方向により、水平磁場方式のも
のと、垂直磁場方式のものに分類される。
2. Description of the Related Art Superconducting magnets are used in various fields, but the most practical use of general-purpose superconducting magnets is in the field of MRI apparatuses. In an MRI apparatus, a uniform magnetic field of a constant strength is created in a fixed space (imaging region), and various coils (gradient magnetic field coils—provide a gradient magnetic field to obtain spin position information in MRI; radio frequency (RF)
Coil—irradiates the subject with a high-frequency magnetic field to excite atomic nuclei and receive a nuclear magnetic resonance (NMR) signal generated in the subject; etc.) and perform NMR from the subject inserted into the imaging region. Collects information,
It is for reconstructing a sectional view in an arbitrary direction. In general,
The MRI apparatus is classified into a horizontal magnetic field type and a vertical magnetic field type according to the direction of the uniform magnetic field.

【0003】医用MRI装置では、従来超電導磁石を使
用したものとしては、水平磁場方式のものが一般的であ
った。しかし、近年永久磁石を用いた、均一磁場が垂直
方向である開放型永久磁石方式MRI装置が実用化さ
れ、その開放性ゆえに広く全世界に価値が認識されるよ
うになった。そこで、現在では、超電導磁石を用いたM
RI装置においても、永久磁石では達成できない高い磁
場強度を生成することができる開放型(垂直磁場方式)
MRI装置の開発・実用化に力が注がれている。
[0003] In a medical MRI apparatus, a horizontal magnetic field type is generally used as a conventional one using a superconducting magnet. However, in recent years, an open type permanent magnet type MRI apparatus using a permanent magnet and having a uniform magnetic field in a vertical direction has been put into practical use, and its openness has widely recognized its value worldwide. Therefore, at present, M using superconducting magnets
Open type (vertical magnetic field type) that can generate high magnetic field strength that cannot be achieved with permanent magnets even in RI equipment
A great deal of effort is being put into the development and commercialization of MRI equipment.

【0004】超電導磁石は、通常均一磁場領域(MRI
装置での撮影領域)に均一磁場を発生させる静磁場発生
源と、その周囲に配置されて装置外部への磁場漏洩を防
ぐための磁気シールドとから構成されている。垂直磁場
方式の超電導磁石の一例を図9に示す。図9において、
均一磁場領域1を挾んで上下に静磁場発生源2が配置さ
れ、この静磁場発生源2により均一磁場領域1に垂直方
向の均一磁場Boが形成されている。静磁場発生源2
は、均一磁場Boを発生する超電導コイル3と、超電導
コイル3を収容し、超電導特性を示す温度まで冷却する
冷却容器4とから成る。上下の冷却容器4は支持体5で
接続されている。
[0004] A superconducting magnet is usually provided in a uniform magnetic field region (MRI).
It comprises a static magnetic field generating source for generating a uniform magnetic field in an imaging region of the apparatus, and a magnetic shield disposed around the source to prevent leakage of the magnetic field to the outside of the apparatus. FIG. 9 shows an example of a vertical magnetic field type superconducting magnet. In FIG.
A static magnetic field generation source 2 is disposed above and below the uniform magnetic field region 1, and a uniform magnetic field Bo in the vertical direction is formed in the uniform magnetic field region 1 by the static magnetic field generation source 2. Static magnetic field source 2
Is composed of a superconducting coil 3 for generating a uniform magnetic field Bo, and a cooling container 4 for accommodating the superconducting coil 3 and cooling to a temperature exhibiting superconducting characteristics. The upper and lower cooling containers 4 are connected by a support 5.

【0005】磁気シールドは、静磁場発生源2の上下外
側にほぼ水平に配置された磁気シールド板6と、上下の
磁気シールド板6を支持し、磁気的に接続するヨーク7
とから成る。磁気シールド板6とヨーク5の材質はいず
れも鉄などの強磁性体である。静磁場発生源2と磁気シ
ールド板6とヨーク7とは磁気回路を構成し、磁気シー
ルドの外側への磁場の漏洩を低減させている。図9に示
すように静磁場発生源2の周囲に磁気シールドを配置し
た構造の超電導磁石はパッシブシールド型超電導磁石と
呼ばれている。
The magnetic shield comprises a magnetic shield plate 6 disposed substantially horizontally above and below the static magnetic field generating source 2 and a yoke 7 for supporting and magnetically connecting the upper and lower magnetic shield plates 6.
Consisting of The materials of the magnetic shield plate 6 and the yoke 5 are both ferromagnetic materials such as iron. The static magnetic field generation source 2, the magnetic shield plate 6, and the yoke 7 constitute a magnetic circuit, and reduce the leakage of the magnetic field to the outside of the magnetic shield. As shown in FIG. 9, a superconducting magnet having a structure in which a magnetic shield is arranged around the static magnetic field generation source 2 is called a passive shield type superconducting magnet.

【0006】垂直磁場方式のパッシブシールド型超電導
磁石では、均一磁場BOの方向が上下方向(垂直方向)
であるため、漏洩磁場の磁場強度は上下方向で高くなっ
ている。更に、MRI装置用としてこの磁石をビル内に
設置する場合、上下方向には他の部屋が存在するため、
上下方向についての漏洩磁場の許容値は厳しい値に制限
されている。これに対し水平磁場方式のものでは、水平
方向に漏洩磁場強度の高い部分が多く分布するが、一般
にビル内の部屋では横方向(水平方向)が長いため、横
方向についての漏洩磁場の許容値は、上下方向のものほ
ど厳しくない。このような理由から、垂直磁場方式のパ
ッシブシールド型超電導磁石では、上下方向の漏洩磁場
を低減するために、磁気シールド板6を厚くしたり、漏
洩磁場の高い部分に強磁性体から成る積み上げ部8を配
置したりしている。
[0006] In the passive shield type superconducting magnet of the vertical magnetic field type, the direction of the uniform magnetic field B O is up and down (vertical direction).
Therefore, the magnetic field strength of the leakage magnetic field is higher in the vertical direction. Furthermore, when this magnet is installed in a building for an MRI apparatus, since other rooms exist in the vertical direction,
The allowable value of the stray magnetic field in the vertical direction is limited to a strict value. On the other hand, in the horizontal magnetic field method, many parts with high leakage magnetic field strength are distributed in the horizontal direction, but since the horizontal direction (horizontal direction) is generally long in a room in a building, the allowable value of the leakage magnetic field in the horizontal direction is large. Are not as strict as those in the vertical direction. For this reason, in the passive shield type superconducting magnet of the vertical magnetic field type, in order to reduce the leakage magnetic field in the vertical direction, the thickness of the magnetic shield plate 6 is increased, or a stacked portion made of a ferromagnetic material is used in a portion where the leakage magnetic field is high. 8 are arranged.

【0007】[0007]

【発明が解決しようとする課題】しかし、室内の天井の
高さの制限や装置のデザイン上の観点などから、超電導
磁石に多量の強磁性体を積み上げることは好ましくな
い。そのため、MRI装置などに用いられる超電導磁石
としては、装置をできるだけコンパクトにし、磁場漏洩
の少ない、高均一度の静磁場を発生する磁石が求められ
ている。従って、本発明では、磁気シールドを構成する
磁気シールド板とヨークについて、強磁性体を効率良く
配置することにより、装置全体の大きさを大型化するこ
となく、漏洩磁場が小さく、磁場均一度の高い静磁場を
発生するパッシブシールド型超電導磁石を提供すること
を目的とする。
However, it is not preferable to stack a large amount of ferromagnetic material on the superconducting magnet from the viewpoint of the ceiling height in the room and the design of the apparatus. Therefore, as a superconducting magnet used in an MRI apparatus or the like, a magnet which makes the apparatus as compact as possible, has a small magnetic field leakage, and generates a highly uniform static magnetic field is required. Therefore, in the present invention, by efficiently arranging the ferromagnetic material for the magnetic shield plate and the yoke constituting the magnetic shield, the leakage magnetic field is small and the uniformity of the magnetic field is reduced without increasing the size of the entire device. An object of the present invention is to provide a passive shield type superconducting magnet which generates a high static magnetic field.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明のパッシブシールド型超電導磁石は、上下方
向に対向して配置された1組の超電導コイルと、それぞ
れの超電導コイルを収納し冷却する冷却容器とから成る
静磁場発生源を有し、該静磁場発生源の上下外側に強磁
性体から成る磁気シールド板を配置し、上下の該磁気シ
ールド板の間を1本以上の強磁性体から成るヨークにて
結合して、前記静磁場発生源と共に磁気回路を構成する
パッシブシールド型超電導磁石において、前記磁気シー
ルド板の前記冷却容器に対向する側の面が、前記磁気シ
ールド板と前記ヨークとの接合部近傍にて、前記冷却容
器側に接近するような笠型の傾斜面を有する(請求項
1)。
In order to achieve the above object, a passive shield type superconducting magnet of the present invention accommodates a pair of superconducting coils arranged vertically facing each other, and accommodates each superconducting coil for cooling. A static magnetic field generating source comprising a cooling container having a magnetic field, and a magnetic shield plate made of a ferromagnetic material disposed above and below the static magnetic field generating source. In the passive shield type superconducting magnet which forms a magnetic circuit together with the static magnetic field generation source, the surface of the magnetic shield plate facing the cooling vessel is the magnetic shield plate and the yoke. In the vicinity of the junction, there is a hat-shaped inclined surface approaching the cooling vessel side (claim 1).

【0009】この構成では、磁気シールド板の静磁場発
生源(冷却容器)に対向する面側に、静磁場発生源を覆
うような笠型の傾斜面を設けたことにより、磁気シール
ド板とヨークとの接合部の近傍における磁束線の磁路が
広くなり、磁束線が接合部のみならず、笠型の傾斜面の
近傍も通るようになるために、磁気シールド板における
磁束密度は、従来品と比べ、静磁場発生源に近い側で高
くなり、遠い側で低くなる。その結果、磁気シールド板
の上下外側での漏洩磁場強度が小さくなるので、磁場シ
ールド板の上下外側への強磁性体の積み上げなどは不要
となり、装置全体の高さを低くすることができる。
In this configuration, a shade-shaped inclined surface that covers the static magnetic field generation source is provided on the surface of the magnetic shield plate facing the static magnetic field generation source (cooling vessel), so that the magnetic shield plate and the yoke are provided. The magnetic path of the magnetic flux lines in the vicinity of the junction with the magnetic field becomes wider and the magnetic flux lines pass not only in the junction but also in the vicinity of the shaded inclined surface. As compared with, it is higher on the side closer to the static magnetic field generation source and lower on the far side. As a result, the strength of the leakage magnetic field at the upper and lower sides of the magnetic shield plate is reduced, so that it is not necessary to stack ferromagnetic substances on the upper and lower sides of the magnetic shield plate, and the height of the entire apparatus can be reduced.

【0010】また、本発明のパッシブシールド型超電導
磁石は、上下方向に対向して配置された1組の超電導コ
イルと、それぞれの超電導コイルを収納し冷却する冷却
容器とから成る静磁場発生源を有し、該静磁場発生源の
上下外側に強磁性体から成る磁気シールド板を配置し、
上下の該磁気シールド板の間を1本以上の強磁性体から
成るヨークにて結合して、前記静磁場発生源と共に磁気
回路を構成するパッシブシールド型超電導磁石におい
て、前記磁気シールド板の前記冷却容器に対向する面側
の、前記磁気シールド板と前記ヨークとの接合部の近傍
に、前記接合部の近傍にて前記冷却容器側に接近するよ
うな笠型の傾斜面を有し、前記磁気シールド板と前記ヨ
ークとに接する強磁性体片を取り付けたものである(請
求項2)。
[0010] The passive shield type superconducting magnet of the present invention comprises a static magnetic field generating source comprising a pair of superconducting coils arranged vertically facing each other, and a cooling container for accommodating and cooling each superconducting coil. Having a magnetic shield plate made of a ferromagnetic material above and below the static magnetic field source,
The upper and lower magnetic shield plates are coupled by a yoke made of one or more ferromagnetic materials to form a magnetic circuit together with the static magnetic field generating source. The magnetic shield plate has a shade-shaped inclined surface near the joint between the magnetic shield plate and the yoke on the opposing surface side so as to approach the cooling vessel near the joint. And a ferromagnetic piece in contact with the yoke (claim 2).

【0011】この構成では、磁気シールド板とヨークと
の接合部の近傍の、磁気シールド板の静磁場発生源に対
向する面側に、静磁場発生源を覆うような笠型の傾斜面
を持つ強磁性体片が取り付けられたことにより、磁気シ
ールド板を通る磁束線の密度は、従来品と比べ、静磁場
発生源に近い側で高くなり、遠い側で低くなる。その結
果、請求項1の場合と同様な効果が得られる。
In this configuration, a shade-shaped inclined surface that covers the static magnetic field generation source is provided on the surface of the magnetic shield plate facing the static magnetic field generation source near the joint between the magnetic shield plate and the yoke. Due to the attachment of the ferromagnetic piece, the density of the magnetic flux lines passing through the magnetic shield plate is higher on the side closer to the static magnetic field generation source and lower on the far side as compared with the conventional product. As a result, an effect similar to that of the first aspect is obtained.

【0012】本発明のパッシブシールド型超電導磁石で
は更に、前記笠型の傾斜面は前記磁気シールド板と前記
ヨークとの接合部位の各々に対して少なくとも1個ずつ
設けられており、各々の傾斜面は前記磁気シールド板の
前記冷却容器と対向する面に始点を置き、前記ヨークの
前記冷却容器に対向する内側の面に終点を置く(請求項
3)。
Further, in the passive shield type superconducting magnet of the present invention, at least one of the shaded inclined surfaces is provided for each of the joining portions between the magnetic shield plate and the yoke, and each inclined surface is provided. A start point is set on a surface of the magnetic shield plate facing the cooling container, and an end point is set on an inner surface of the yoke facing the cooling container (Claim 3).

【0013】この構成では、笠型の傾斜面が磁気シール
ド板とヨークとの接合部毎に1個以上設けられており、
その傾斜面が接合部近傍の磁気シールド板とヨークとを
覆うことになるので、各々の接合部における磁束線の磁
路は接合部から笠型の傾斜面の部分まで拡大されたこと
になり、この部分での磁束線の流れは内側へ寄り、外側
の磁束密度は減少する。
In this configuration, one or more hat-shaped inclined surfaces are provided at each joint between the magnetic shield plate and the yoke.
Since the inclined surface covers the magnetic shield plate and the yoke near the joint, the magnetic path of the magnetic flux lines at each joint has been expanded from the joint to the portion of the hat-shaped inclined surface, The flow of the magnetic flux lines in this portion is shifted toward the inside, and the magnetic flux density outside is reduced.

【0014】本発明のパッシブシールド型超電導磁石で
は更に、前記笠型の傾斜面が1個以上の平面を含むもの
である(請求項4)。この構成では、笠型の傾斜面をい
くつかの平面で形成することになるので笠型傾斜面の形
状を磁気シールド板及びヨークを流れる磁束線の流れに
合わせて形成できる。その結果、接合部近傍の磁束線の
流れが改善されると共に、磁路が拡大するので、磁気シ
ールド板などの磁束線の殆ど流れていない、静磁場発生
源から離れた部分の強磁性体を削除することが可能とな
るので、漏洩磁場の低減及び装置全体の小型・軽量化に
寄与する。
[0014] In the passive shield type superconducting magnet of the present invention, the inclined surface of the shade shape includes at least one flat surface. In this configuration, since the hat-shaped inclined surface is formed by several planes, the shape of the hat-shaped inclined surface can be formed according to the flow of the magnetic flux lines flowing through the magnetic shield plate and the yoke. As a result, the flow of the magnetic flux lines near the junction is improved and the magnetic path expands, so the ferromagnetic material away from the static magnetic field source, such as the magnetic shield plate, where the magnetic flux lines hardly flow, can be removed. Since it can be deleted, it contributes to the reduction of the leakage magnetic field and the reduction in size and weight of the entire device.

【0015】本発明のパッシブシールド型超電導磁石で
は更に、前記笠型の傾斜面が曲面を含むものである(請
求項5)。磁気シールド板及びヨークを通る磁束線は、
接合部の近傍では曲線を描いて流れているので、笠型の
傾斜面を曲面を用いて形成することにより、接合部近傍
の磁束線の流れをよりスムーズにすることができると共
に、その部分の磁束線の磁路を拡大することができる。
その結果、請求項4と同様な効果が得られる。
In the passive shield type superconducting magnet of the present invention, the shaded inclined surface includes a curved surface. The magnetic flux lines passing through the magnetic shield plate and the yoke are
Since the flow is drawn in a curved line near the joint, the flow of the magnetic flux lines near the joint can be made smoother by forming the hat-shaped inclined surface using a curved surface, and at that portion, The magnetic path of the magnetic flux lines can be enlarged.
As a result, an effect similar to that of the fourth aspect is obtained.

【0016】本発明のパッシブシールド型超電導磁石で
は更に、前記冷却容器の前記磁気シールド板に対向する
面側の外周部が、対向する前記笠型の傾斜面とほぼ同じ
形状の傾斜面に形成されている(請求項6)。
In the passive shield type superconducting magnet of the present invention, an outer peripheral portion of the cooling container on a surface side facing the magnetic shield plate is formed with an inclined surface having substantially the same shape as the opposed hatched inclined surface. (Claim 6).

【0017】この構成では、冷却容器(静磁場発生源)
の、笠型の傾斜面に対向する部分に、笠型の傾斜面とほ
ぼ同じ形状の傾斜面を設けているので、冷却容器の傾斜
面部分において、その容積を殆ど損うことなく、冷却容
器と笠型の傾斜面との間の間隔を極めて接近させること
が可能となる。この結果、装置全体の高さを低くするこ
とが可能となるので、装置のコンパクト化、軽量化に寄
与する。
In this configuration, the cooling vessel (static magnetic field generating source)
Since the slope facing the hat-shaped inclined surface is provided with an inclined surface having substantially the same shape as the hat-shaped inclined surface, the cooling vessel has almost no loss of capacity at the inclined surface portion of the cooling vessel. It is possible to make the distance between the and the hat-shaped inclined surface extremely close. As a result, the height of the entire apparatus can be reduced, which contributes to the reduction in size and weight of the apparatus.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例を添付図面
に基づいて説明する。図1に、本発明のパッシブシール
ド型超電導磁石の第1の実施例を示す。図1は本実施例
の縦断面図である。図2には、図1の右上部の拡大図を
示す。図1において、本実施例のパッシブシールド型超
電導磁石では、均一磁場領域(MRI装置では撮影領域
となる)1を挾んで上下方向に静磁場発生源2が配置さ
れ、静磁場発生源2の周囲に磁気シールドを構成する磁
気シールド板6とヨーク7が配置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the passive shield type superconducting magnet of the present invention. FIG. 1 is a longitudinal sectional view of this embodiment. FIG. 2 is an enlarged view of the upper right part of FIG. In FIG. 1, in the passive shield type superconducting magnet of the present embodiment, a static magnetic field source 2 is disposed vertically across a uniform magnetic field region (which becomes an imaging region in an MRI apparatus) 1. A magnetic shield plate 6 and a yoke 7 which constitute a magnetic shield are arranged at the center.

【0019】静磁場発生源2は、均一磁場領域1に均一
な垂直磁場を発生させる超電導コイル3と,この超電導
コイル3を収容し、超電導特性を示す温度にまで冷却し
維持する冷却容器4とから成る。超電導コイル3は通常
磁場均一度を高めるために複数個のコイルの組み合わせ
となる。また、冷却容器4は超電導コイル3を浸漬する
冷媒を収容する冷媒容器と,冷媒容器を包含する熱シー
ルドと,熱シールドを包含する真空容器とから成る。上
下の冷却容器4は通常連結管により結合されて、1台の
冷凍機にて冷却されている。静磁場発生源2は上下の磁
気シールド板6に結合体13により支持されている。
The static magnetic field generating source 2 includes a superconducting coil 3 for generating a uniform vertical magnetic field in the uniform magnetic field region 1, a cooling container 4 for accommodating the superconducting coil 3, and cooling and maintaining the superconducting characteristic at a temperature showing superconducting characteristics. Consists of The superconducting coil 3 is usually a combination of a plurality of coils to enhance the uniformity of the magnetic field. Further, the cooling container 4 includes a refrigerant container that stores a refrigerant in which the superconducting coil 3 is immersed, a heat shield that includes the refrigerant container, and a vacuum container that includes the heat shield. The upper and lower cooling containers 4 are usually connected by a connecting pipe, and are cooled by one refrigerator. The static magnetic field generation source 2 is supported by the coupling body 13 on the upper and lower magnetic shield plates 6.

【0020】磁気シールド板6は鉄などの強磁性体から
成る板状体で、静磁場発生源2の上下外側にほぼ平行に
配置され、2本のヨーク7にて支持されている。ヨーク
7は鉄などの強磁性体から成る柱状体で、上下の磁気シ
ールド板6を所定の間隔をとって支持すると共に、接合
部12にて磁気シールド板6と磁気的に結合されてい
る。本発明では、特に磁気シールド板6の冷却容器4に
対向する面側に、磁気シールド板6とヨーク7の両方に
接するように、笠型の傾斜面11を持つ強磁性体片10
が取り付けられている(この笠型の傾斜面11は冷却容
器4に対し笠をかぶせたような配置になっている)。図
2は、この強磁性体片10の取り付け部分の拡大図であ
る。図2において、強磁性体片10は磁気シールド板6
やヨーク7と同様鉄などの強磁性体から成り、3つの面
を持つ。強磁性体片10の3面のうちの冷却容器4に対
向する面は笠型の傾斜面11で、他の面は磁気シールド
板6の冷却容器対向面6A及びヨーク7の内側の面7A
とに接しており、かつそれら両面に接合されている。
The magnetic shield plate 6 is a plate made of a ferromagnetic material such as iron. The magnetic shield plate 6 is disposed substantially parallel to the upper and lower sides of the static magnetic field generation source 2 and is supported by two yokes 7. The yoke 7 is a columnar body made of a ferromagnetic material such as iron. The yoke 7 supports the upper and lower magnetic shield plates 6 at predetermined intervals, and is magnetically coupled to the magnetic shield plate 6 at a joint 12. In the present invention, a ferromagnetic piece 10 having a hat-shaped inclined surface 11 on the surface of the magnetic shield plate 6 facing the cooling vessel 4 so as to be in contact with both the magnetic shield plate 6 and the yoke 7.
(The hat-shaped inclined surface 11 is arranged so as to cover the cooling vessel 4 with a hat). FIG. 2 is an enlarged view of a portion where the ferromagnetic piece 10 is attached. In FIG. 2, a ferromagnetic piece 10 is a magnetic shield plate 6.
The yoke 7 is made of a ferromagnetic material such as iron and has three surfaces. Of the three surfaces of the ferromagnetic piece 10, the surface facing the cooling container 4 is a hat-shaped inclined surface 11, and the other surface is the cooling container facing surface 6A of the magnetic shield plate 6 and the inner surface 7A of the yoke 7.
And are bonded to both sides thereof.

【0021】図2に示す如く、磁気シールド板6とヨー
ク7の接合部12の内側に強磁性体片10を配置するこ
とにより、磁気シールド板6内での磁束線14の流れが
改善される。その磁束線の流れの改善状況を図3及び図
4にて説明する。図3は、本実施例の超電導磁石の磁束
線分布の例で、図4は従来のパッシブシールド型超電導
磁石の磁束線分布の例である。図4の従来例の場合、上
側の超電導コイル3を発した磁束線14は上側の磁気シ
ールド板6の中央部で左右に分かれ、上側の磁気シール
ド板6を経由した後、上側の接合部12からヨーク7へ
と進んで行く。ヨーク7内を経由した磁束線14は下側
の接合部12,下側の磁気シールド板6,下側の超電導
コイル3,均一磁場領域1を経由して上側の超電導コイ
ル3へ戻る。このとき、磁気シールド板6の中央部で左
右に分かれた磁束線14が左右の接合部12に集中する
ことになるため、上側の磁気シールド板6を進む磁束線
14は磁気シールド板6の外側に近い部分を通る傾向に
ある。このため、磁束線14は磁気シールド板4の上側
に漏洩しやすく、磁気シールド板6の上部に載せた積み
上げ部8などを通ることになり、その結果として、超電
導磁石の高さを高くする必要があった。
As shown in FIG. 2, by disposing the ferromagnetic piece 10 inside the joint 12 between the magnetic shield plate 6 and the yoke 7, the flow of the magnetic flux lines 14 in the magnetic shield plate 6 is improved. . The improvement of the flow of the magnetic flux lines will be described with reference to FIGS. FIG. 3 is an example of a magnetic flux line distribution of the superconducting magnet of the present embodiment, and FIG. 4 is an example of a magnetic flux line distribution of a conventional passive shield type superconducting magnet. In the case of the conventional example shown in FIG. 4, the magnetic flux lines 14 emitted from the upper superconducting coil 3 are divided into right and left parts at the center of the upper magnetic shield plate 6, and after passing through the upper magnetic shield plate 6, the upper joint 12 Go to yoke 7. The magnetic flux lines 14 passing through the yoke 7 return to the upper superconducting coil 3 via the lower joining portion 12, the lower magnetic shield plate 6, the lower superconducting coil 3, and the uniform magnetic field region 1. At this time, the magnetic flux lines 14 divided into right and left at the center of the magnetic shield plate 6 are concentrated on the left and right joints 12, so that the magnetic flux lines 14 traveling on the upper magnetic shield plate 6 are outside the magnetic shield plate 6. Tend to pass through the area close to. For this reason, the magnetic flux lines 14 easily leak to the upper side of the magnetic shield plate 4 and pass through the stacking portion 8 placed on the upper portion of the magnetic shield plate 6. As a result, it is necessary to increase the height of the superconducting magnet. was there.

【0022】これに対し、図3の本実施例の場合には、
上下の接合部12の近傍の冷却容器4と対向する部分
に、笠型傾斜面11を有する強磁性体片10を取り付け
たことにより、上側の超電導コイル3を発して上側の磁
気シールド板6へ向かった磁束線14は、一部は上側の
接合部12を、一部は上側の強磁性体片10を経由し
て、ヨーク7へ進むことになる。その結果、上側の磁気
シールド板6を通る磁束線14は下側へ押しつけられた
ような分布となり、上側の磁気シールド板6の上側部分
の磁束密度は従来の超電導磁石に比べて低くなり、磁気
シールド板6の外側における磁場漏洩も少なくなる。以
上述べたことは、下側の磁気シールド板6においても同
様に起きるので、従来例の如く、超電導磁石の高さを高
くすることなく、漏洩磁場の低減を図ることができる。
On the other hand, in the case of the present embodiment shown in FIG.
By attaching the ferromagnetic piece 10 having the cap-shaped inclined surface 11 to the portion facing the cooling vessel 4 near the upper and lower joints 12, the upper superconducting coil 3 is emitted to the upper magnetic shield plate 6. The magnetic flux line 14 that has been directed to the yoke 7 is partially passed through the upper joint portion 12 and partially passed through the upper ferromagnetic piece 10. As a result, the magnetic flux lines 14 passing through the upper magnetic shield plate 6 have a distribution as if pressed down, the magnetic flux density of the upper portion of the upper magnetic shield plate 6 is lower than that of the conventional superconducting magnet, Magnetic field leakage outside the shield plate 6 is also reduced. Since the above description also occurs in the lower magnetic shield plate 6, the leakage magnetic field can be reduced without increasing the height of the superconducting magnet as in the conventional example.

【0023】強磁性体片10の接合部12の近傍への取
り付けは、ねじによる固定、又は溶接による溶着などに
よって行うことができる。また、この強磁性体片10に
ついては、磁気シールド板6に予め取り付けておいても
よいし、磁気シールド板6と一体加工してもよいし、磁
気シールド板6とヨーク7との組立後に取り付けてもよ
い。
The ferromagnetic piece 10 can be attached to the vicinity of the joint 12 by fixing it with a screw or welding it by welding. The ferromagnetic piece 10 may be attached to the magnetic shield plate 6 in advance, may be integrally processed with the magnetic shield plate 6, or may be attached after the magnetic shield plate 6 and the yoke 7 are assembled. You may.

【0024】本発明のバッシブシールド型超電導磁石の
第2の実施例を図5に示す。本実施例では磁気シールド
板6の冷却容器4に対向する面側に、笠型の傾斜面11
を持つ強磁性体片10を取り付けると共に、冷却容器4
の磁気シールド板6に対向する面側にも、上記笠型の傾
斜面11とほぼ平行な傾斜面15を設けたものである。
このように、冷却容器4に傾斜面15を設け、これを強
磁性体片10の笠型傾斜面11とほぼ平行したことによ
り、冷却容器4と磁気シールド板6との間隔を狭くする
ことができるので、超電導磁石の高さを低くすることが
可能となる。また、超電導磁石の高さを同じにしたとき
には、強磁性体片10を大きくすることができるので、
磁気シールド板6の外側への磁場漏洩を少なくすること
が可能となる。
FIG. 5 shows a second embodiment of the passive shield type superconducting magnet of the present invention. In the present embodiment, a shade-shaped inclined surface 11 is provided on the surface of the magnetic shield plate 6 facing the cooling container 4.
And a cooling container 4
An inclined surface 15 substantially parallel to the hat-shaped inclined surface 11 is also provided on the surface facing the magnetic shield plate 6.
As described above, since the inclined surface 15 is provided on the cooling container 4 and is substantially parallel to the hat-shaped inclined surface 11 of the ferromagnetic piece 10, the interval between the cooling container 4 and the magnetic shield plate 6 can be reduced. Therefore, the height of the superconducting magnet can be reduced. In addition, when the height of the superconducting magnet is the same, the size of the ferromagnetic material piece 10 can be increased.
It is possible to reduce the leakage of the magnetic field to the outside of the magnetic shield plate 6.

【0025】また、磁気シールド板6に上記の強磁性体
片10を取り付けることにより、磁気シールド板6の形
状を改善することができる。その一例を図6に示す。図
6は第2の実施例の上面図である。磁気シールド板6の
外形は、中央の円形の頂部20と頂部20より幅の狭い
端面部21と,頂部20と端面部21をつなぐ傾斜部1
6と側面部22と,上記の冷却容器対向面6A(図示の
磁気シールド板6の裏面側)とから成る。頂部20は冷
却容器4の直径よりも大きな直径の円形をしており、冷
却容器4を覆い、静磁場発生源2の発する磁場の磁場遮
蔽をしている。端面部21は平面で、頂部20から端面
部21までの幅は直線的に狭くなり、デザイン的に好ま
しい形状を作っている。傾斜部16は磁気シールド板6
の外側両端部を、斜めにカットして強磁性体を削除した
結果作られた部分であり、デザイン上好ましい形状を与
えると共に、強磁性体の重量軽減にも寄与する。これ
は、磁気シールド板6の冷却容器4に対向する面側に強
磁性体片10を取り付けたことにより、磁気シールド板
6の外側両端部の磁束密度が大幅に低減したために可能
になったものである。
The shape of the magnetic shield plate 6 can be improved by attaching the ferromagnetic piece 10 to the magnetic shield plate 6. An example is shown in FIG. FIG. 6 is a top view of the second embodiment. The outer shape of the magnetic shield plate 6 includes a central circular top 20, an end face 21 narrower than the top 20, and an inclined section 1 connecting the top 20 and the end face 21.
6, the side surface portion 22, and the above-described cooling vessel facing surface 6A (the back side of the illustrated magnetic shield plate 6). The top 20 has a circular shape with a diameter larger than the diameter of the cooling container 4, covers the cooling container 4, and shields the magnetic field generated by the static magnetic field generation source 2. The end face portion 21 is a flat surface, and the width from the top portion 20 to the end face portion 21 is linearly narrowed, thereby forming a preferable shape in terms of design. The inclined portion 16 is a magnetic shield plate 6
Are formed as a result of removing the ferromagnetic material by diagonally cutting both outer end portions of the ferromagnetic material, thereby providing a preferable shape in design and also contributing to weight reduction of the ferromagnetic material. This is made possible by attaching the ferromagnetic piece 10 to the surface of the magnetic shield plate 6 facing the cooling container 4, thereby greatly reducing the magnetic flux density at both outer ends of the magnetic shield plate 6. It is.

【0026】本発明のパッシブシールド型超電導磁石の
第3の実施例を図7に示す。本実施例では第2の実施例
における強磁性体片10の笠型傾斜面11及び冷却容器
4の傾斜面15の形状を変えたものである。図7におい
て、強磁性体片10の笠型傾斜面11Aは2個の直線的
な傾斜面で構成されている。笠型傾斜面11Aは2個の
直線的な傾斜面により凹面となるように作られ、この凹
面はこの部分における磁束線14の流れに近い形をして
いるので、強磁性体の量を効率的に使用していることに
なる。また、冷却容器4の傾斜面15Aも2個の直線的
な傾斜面で構成されている。この傾斜面15Aは凸面を
形成しており、2個の傾斜面の各々は対向する笠型傾斜
面11Aの2個の傾斜面と傾斜を合わせてある。このた
め、冷却容器4と強磁性体片10との間隔を狭めること
が可能である。また、冷却容器4の傾斜面15Aが凸面
であることから、冷却容器4の内容積が大きくなるの
で、超電導コイル3の配列上の場所的制限も緩和され
る。また、本実施例では、各傾斜面を2個の傾斜面で構
成したが、傾斜面の数は2個に限定されず、3個以上で
も良いことは言うまでもない。
FIG. 7 shows a third embodiment of the passive shield type superconducting magnet of the present invention. In this embodiment, the shapes of the hat-shaped inclined surface 11 of the ferromagnetic piece 10 and the inclined surface 15 of the cooling vessel 4 in the second embodiment are changed. In FIG. 7, the hat-shaped inclined surface 11A of the ferromagnetic piece 10 is constituted by two linear inclined surfaces. The hat-shaped inclined surface 11A is formed so as to be concave by two linear inclined surfaces, and the concave surface has a shape close to the flow of the magnetic flux lines 14 in this portion. You are using it. Further, the inclined surface 15A of the cooling container 4 is also constituted by two linear inclined surfaces. The inclined surface 15A forms a convex surface, and each of the two inclined surfaces is aligned with the two inclined surfaces of the opposing hat-shaped inclined surface 11A. Therefore, the distance between the cooling container 4 and the ferromagnetic piece 10 can be reduced. In addition, since the inclined surface 15A of the cooling container 4 is a convex surface, the internal volume of the cooling container 4 is increased, so that the positional restriction on the arrangement of the superconducting coils 3 is eased. Further, in the present embodiment, each inclined surface is constituted by two inclined surfaces, but it is needless to say that the number of inclined surfaces is not limited to two and may be three or more.

【0027】本発明のパッシブシールド型超電導磁石の
第4の実施例を図8に示す。本実施例では第2の実施例
における強磁性体片10の笠型傾斜面11及び冷却容器
4の傾斜面15の形状を曲面にしたものである。図8に
おいて、強磁性体片10の笠型傾斜面11Bは円弧状の
傾斜面で、凹面となるように作られている。また、冷却
容器4の傾斜面15Bは円弧状の傾斜面で、凸面となる
ように形成されている。本実施例の場合、笠型傾斜面1
1Bが凹面,冷却容器4の傾斜面15Bが凸面に形成さ
れていることにより、第3の実施例と同様な効果が得ら
れる。また、本実施例では、曲面として円弧状面を用い
たが、これに限定されず、他の曲面、例えば楕円形面や
放物線面などでも良い。
FIG. 8 shows a fourth embodiment of the passive shield type superconducting magnet of the present invention. In this embodiment, the shapes of the hat-shaped inclined surface 11 of the ferromagnetic piece 10 and the inclined surface 15 of the cooling vessel 4 in the second embodiment are curved. In FIG. 8, the cap-shaped inclined surface 11B of the ferromagnetic piece 10 is an arc-shaped inclined surface and is formed to be concave. The inclined surface 15B of the cooling container 4 is an arc-shaped inclined surface and is formed so as to be convex. In the case of this embodiment, the shade-shaped inclined surface 1
1B is formed as a concave surface, and the inclined surface 15B of the cooling container 4 is formed as a convex surface, so that the same effect as in the third embodiment can be obtained. Further, in the present embodiment, an arc-shaped surface is used as a curved surface, but the present invention is not limited to this, and another curved surface such as an elliptical surface or a parabolic surface may be used.

【0028】上記の実施例では、ヨーク7の本数が2本
の場合について説明して来たが、2本以外の場合例え
ば、1本の場合や3本以上の場合にも、同様な効果が期
待できる。また、磁気シールド板6とヨーク7とが接合
する接合部12,又はヨーク5の位置については、静磁
場発生源2の左右両側にある場合について例示したが、
これに限定されず、ヨーク5などが均一磁場領域1に対
し後側に配置された開放型の超電導磁石などにおいても
同様な効果が得られる。
In the above embodiment, the case where the number of the yokes 7 is two has been described. However, when the number of the yokes 7 is other than two, for example, when the number of the yokes 7 is one or three or more, the same effect is obtained. Can be expected. In addition, the position of the joining portion 12 or the yoke 5 where the magnetic shield plate 6 and the yoke 7 are joined is illustrated on the case where the yoke 5 is located on the left and right sides of the static magnetic field generation source 2.
The present invention is not limited to this, and the same effect can be obtained in an open type superconducting magnet in which the yoke 5 and the like are disposed behind the uniform magnetic field region 1.

【0029】[0029]

【発明の効果】以上説明した如く、本発明によれば、磁
気シールド板とヨークとの接合部の近傍の、磁気シール
ド板の静磁場発生源に対向する面側に、笠型の傾斜面を
持つ強磁性体片が取り付けられたことにより、磁気シー
ルド板を通る磁束線が接合部のみならず、強磁性体片も
通るようになるので、磁気シールド板を通る磁束線の密
度は静磁場発生源に対向する面側で高くなる。その結
果、磁気シールド板の上下外側の磁場漏洩が少なくな
り、磁気シールド板の外側に強磁性体を積み上げること
などが必要なくなるので、超電導磁石の高さを低くする
ことができ、装置全体をコンパクト化することができ
る。
As described above, according to the present invention, a shade-shaped inclined surface is provided on the surface of the magnetic shield plate facing the static magnetic field generation source near the joint between the magnetic shield plate and the yoke. Since the magnetic flux lines passing through the magnetic shield plate pass not only at the joint but also through the ferromagnetic pieces, the density of the magnetic flux lines passing through the magnetic shield plate is reduced by the generation of the static magnetic field. It is higher on the side facing the source. As a result, the magnetic field leakage above and below the magnetic shield plate is reduced, and it is not necessary to stack a ferromagnetic substance outside the magnetic shield plate, so that the height of the superconducting magnet can be reduced, and the entire device is compact. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパッシブシールド型超電導磁石の第1
の実施例。
FIG. 1 shows a first embodiment of the passive shield type superconducting magnet of the present invention.
Example.

【図2】図1の右上部の拡大図。FIG. 2 is an enlarged view of the upper right part of FIG.

【図3】本発明の第1の実施例の磁束線分布の例。FIG. 3 is an example of a magnetic flux line distribution according to the first embodiment of the present invention.

【図4】従来のパッシブシールド型超電導磁石の磁束線
分布の例。
FIG. 4 is an example of a magnetic flux line distribution of a conventional passive shield type superconducting magnet.

【図5】本発明のパッシブシールド型超電導磁石の第2
の実施例。
FIG. 5 shows a second embodiment of the passive shield type superconducting magnet of the present invention.
Example.

【図6】第2の実施例の上面図。FIG. 6 is a top view of the second embodiment.

【図7】本発明のパッシブシールド型超電導磁石の第3
の実施例。
FIG. 7 shows a third embodiment of the passive shield type superconducting magnet of the present invention.
Example.

【図8】本発明のパッシブシールド型超電導磁石の第4
の実施例。
FIG. 8 shows a fourth embodiment of the passive shield type superconducting magnet of the present invention.
Example.

【図9】従来の垂直磁場方式の超電導磁石の一例。FIG. 9 shows an example of a conventional vertical magnetic field type superconducting magnet.

【符号の説明】[Explanation of symbols]

1 均一磁場領域(撮影領域) 2 静磁場発生源 3 超電導コイル 4 冷却容器 6 磁気シールド板 6A 冷却容器対向面 7 ヨーク 7A 内側面 8 積み上げ部 10 強磁性体片 11,11A,11B 笠型傾斜面 12 接合部 13 結合体 14 磁束線 15,15A,15B 冷却容器傾斜面 16 磁気シールド板傾斜面 20 頂部 21 端面部 22 側面部 DESCRIPTION OF SYMBOLS 1 Uniform magnetic field area (imaging area) 2 Static magnetic field generation source 3 Superconducting coil 4 Cooling vessel 6 Magnetic shield plate 6A Cooling vessel facing surface 7 Yoke 7A Inner side face 8 Stacking part 10 Ferromagnetic piece 11, 11A, 11B Shaded slope DESCRIPTION OF SYMBOLS 12 Joining part 13 Coupling body 14 Magnetic flux line 15, 15A, 15B Cooling vessel inclined surface 16 Magnetic shield plate inclined surface 20 Top 21 End surface 22 Side surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八尾 武 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 (72)発明者 本名 孝男 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Yao 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Medical Co., Ltd. (72) Inventor Takao Honma 1-1-1 Uchikanda, Chiyoda-ku, Tokyo No. Within Hitachi Medical Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 上下方向に対向して配置された1組の超
電導コイルと、それぞれの超電導コイルを収納し冷却す
る冷却容器とから成る静磁場発生源を有し、該静磁場発
生源の上下外側に強磁性体から成る磁気シールド板を配
置し、上下の該磁気シールド板の間を1本以上の強磁性
体から成るヨークにて結合して、前記静磁場発生源と共
に磁気回路を構成するパッシブシールド型超電導磁石に
おいて、前記磁気シールド板の前記冷却容器に対向する
側の面が、前記磁気シールド板と前記ヨークとの接合部
の近傍にて、前記冷却容器側に接近するような笠型の傾
斜面を有することを特徴とするパッシブシールド型超電
導磁石。
1. A static magnetic field generating source comprising: a set of superconducting coils arranged to face each other in a vertical direction; and a cooling container for accommodating and cooling each superconducting coil. A magnetic shield plate made of a ferromagnetic material is disposed on the outside, and the upper and lower magnetic shield plates are connected by a yoke made of one or more ferromagnetic materials to form a magnetic circuit together with the static magnetic field source. In the superconducting magnet of the type, the surface of the magnetic shield plate facing the cooling vessel has a hat-shaped slope near the junction between the magnetic shield plate and the yoke so as to approach the cooling vessel side. A passively shielded superconducting magnet having a surface.
【請求項2】 上下方向に対向して配置された1組の超
電導コイルと、それぞれの超電導コイルを収納し冷却す
る冷却容器とから成る静磁場発生源を有し、該静磁場発
生源の上下外側に強磁性体から成る磁気シールド板を配
置し、上下の該磁気シールド板の間を1本以上の強磁性
体から成るヨークにて結合して、前記静磁場発生源と共
に磁気回路を構成するパッシブシールド型超電導磁石に
おいて、前記磁気シールド板の前記冷却容器に対向する
面側の、前記磁気シールド板と前記ヨークとの接合部の
近傍に、前記接合部の近傍にて前記冷却容器側に接近す
るような笠型の傾斜面を有し、前記磁気シールド板と前
記ヨークとに接する強磁性体片を取り付けたことを特徴
とするパッシブシールド型超電導磁石。
2. A static magnetic field generating source comprising a pair of superconducting coils disposed to face each other in a vertical direction, and a cooling container for accommodating and cooling each superconducting coil. A magnetic shield plate made of a ferromagnetic material is disposed on the outside, and the upper and lower magnetic shield plates are connected by a yoke made of one or more ferromagnetic materials to form a magnetic circuit together with the static magnetic field source. In the superconducting magnet of the type, the magnetic shield plate approaches the cooling container side near the joint between the magnetic shield plate and the yoke on the surface side facing the cooling container, near the joint. A passively-shielded superconducting magnet, having a hat-shaped inclined surface, and having a ferromagnetic piece in contact with the magnetic shield plate and the yoke.
【請求項3】 請求項1及び2記載のパッシブシールド
型超電導磁石において、前記笠型の傾斜面は前記磁気シ
ールド板と前記ヨークとの接合部位の各々に対して少な
くとも1個ずつ設けられており、各々の傾斜面は前記磁
気シールド板の前記冷却容器と対向する面に始点を置
き、前記ヨークの前記冷却容器に対向する内側の面に終
点を置くことを特徴とするパッシブシールド型超電導磁
石。
3. The passive-shielding superconducting magnet according to claim 1, wherein at least one of the hat-shaped inclined surfaces is provided for each of the joint portions between the magnetic shield plate and the yoke. A passive shield type superconducting magnet, wherein each inclined surface has a starting point on a surface of the magnetic shield plate facing the cooling container and an ending point on an inner surface of the yoke facing the cooling container.
【請求項4】 請求項1乃至3記載の超電導磁石におい
て、前記笠型の傾斜面が、1個以上の平面を含むことを
特徴とするパッシブシールド型超電導磁石。
4. A superconducting magnet according to claim 1, wherein said hat-shaped inclined surface includes at least one flat surface.
【請求項5】 請求項1乃至4記載のパッシブシールド
型超電導磁石において、前記笠型の傾斜面が曲面を含む
ことを特徴とするパッシブシールド型超電導磁石。
5. The passive-shielded superconducting magnet according to claim 1, wherein the inclined surface of the shade shape includes a curved surface.
【請求項6】 請求項1乃至5記載のパッシブシールド
型超電導磁石において、前記冷却容器の前記磁気シール
ド板に対向する面側の外周部が、対向する前記笠型の傾
斜面とほぼ同じ形状の傾斜面に形成されていることを特
徴とするパッシブシールド型超電導磁石。
6. The passive shield type superconducting magnet according to claim 1, wherein an outer peripheral portion of the cooling container on a surface side facing the magnetic shield plate has substantially the same shape as the facing hatched inclined surface. A passive shield type superconducting magnet characterized by being formed on an inclined surface.
JP10016470A 1998-01-13 1998-01-13 Passive shield type superconducting magnet Pending JPH11197132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10016470A JPH11197132A (en) 1998-01-13 1998-01-13 Passive shield type superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10016470A JPH11197132A (en) 1998-01-13 1998-01-13 Passive shield type superconducting magnet

Publications (1)

Publication Number Publication Date
JPH11197132A true JPH11197132A (en) 1999-07-27

Family

ID=11917160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10016470A Pending JPH11197132A (en) 1998-01-13 1998-01-13 Passive shield type superconducting magnet

Country Status (1)

Country Link
JP (1) JPH11197132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074243A1 (en) * 2000-04-03 2001-10-11 Hitachi Medical Corporation Superconducting magnet and magnetic resonance imaging apparatus comprising it
EP1180695A2 (en) * 2000-08-09 2002-02-20 Sumitomo Special Metals Co., Ltd. MRI magnet with shielding magnets
US6504373B2 (en) 2000-02-10 2003-01-07 Hitachi Medical Corporation Magnetic resonance imaging apparatus
US6799366B2 (en) 2000-11-14 2004-10-05 Hitachi Medical Corporation Magnetic resonance imaging apparatus assembly method
CN114156040A (en) * 2021-11-05 2022-03-08 北京大学 Uniform magnetic field generating device of strong magnetic field low-leakage positive and negative electron magnetic spectrometer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504373B2 (en) 2000-02-10 2003-01-07 Hitachi Medical Corporation Magnetic resonance imaging apparatus
WO2001074243A1 (en) * 2000-04-03 2001-10-11 Hitachi Medical Corporation Superconducting magnet and magnetic resonance imaging apparatus comprising it
EP1180695A2 (en) * 2000-08-09 2002-02-20 Sumitomo Special Metals Co., Ltd. MRI magnet with shielding magnets
EP1180695A3 (en) * 2000-08-09 2002-06-26 Sumitomo Special Metals Co., Ltd. MRI magnet with shielding magnets
US6642826B1 (en) 2000-08-09 2003-11-04 Sumitomo Special Metals Co., Ltd. Magnetic field generator and assembling method thereof
US6781495B2 (en) 2000-08-09 2004-08-24 Neomax Co., Ltd. Magnetic field generator and assembling method thereof
US6799366B2 (en) 2000-11-14 2004-10-05 Hitachi Medical Corporation Magnetic resonance imaging apparatus assembly method
CN114156040A (en) * 2021-11-05 2022-03-08 北京大学 Uniform magnetic field generating device of strong magnetic field low-leakage positive and negative electron magnetic spectrometer
CN114156040B (en) * 2021-11-05 2022-06-14 北京大学 Uniform magnetic field generating device of strong magnetic field low-leakage positive and negative electron magnetic spectrometer

Similar Documents

Publication Publication Date Title
JP3654463B2 (en) Magnetic resonance imaging system
US6842002B2 (en) C-shaped magnetic resonance imaging system
JPS63241905A (en) Magnetic field generating equipment
US5162771A (en) Highly efficient yoked permanent magnet
US7112966B2 (en) Magnetic resonance imaging apparatus
JPH11197132A (en) Passive shield type superconducting magnet
US7049920B2 (en) Open magnet device and magnetic resonance imaging apparatus comprising it
US6456074B1 (en) Quiet gradient coil
JP3934312B2 (en) Magnetic resonance imaging system
US6392518B1 (en) Open unipolar magnetic structure
US5278534A (en) Magnetic structure having a mirror
JP3747981B2 (en) Magnetic resonance imaging system
JP2005512646A (en) Gradient coil arrangement structure
JP2002052004A (en) Magnetic resonance imaging apparatus
JP2005095479A (en) Magnetic resonance imaging apparatus and the receiving coil thereof
EP1324064B1 (en) High field open magnetic resonance magnet with reduced vibration
JP2726857B2 (en) Magnetic field generator for MRI
JPH10135027A (en) Superconducting magnet device
JP2001137212A (en) Static magnetic field generating apparatus and magnetic resonance imaging apparatus using the same
JP2002093616A (en) Open-type superconducting magnet device and magnetic resonance imaging equipment using the same
JPH0510334Y2 (en)
JP2003061931A (en) Static magnetic field generating device and magnetic resonance imaging apparatus using same
EP1300688B1 (en) A superconducting magnet particularly for MRI imaging apparati
CN114504312A (en) Magnetic resonance imaging apparatus
JP2000300534A (en) Magnetic resonance imaging apparatus