JP2005095479A - Magnetic resonance imaging apparatus and the receiving coil thereof - Google Patents

Magnetic resonance imaging apparatus and the receiving coil thereof Download PDF

Info

Publication number
JP2005095479A
JP2005095479A JP2003335029A JP2003335029A JP2005095479A JP 2005095479 A JP2005095479 A JP 2005095479A JP 2003335029 A JP2003335029 A JP 2003335029A JP 2003335029 A JP2003335029 A JP 2003335029A JP 2005095479 A JP2005095479 A JP 2005095479A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
static magnetic
sound insulation
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003335029A
Other languages
Japanese (ja)
Other versions
JP4245146B2 (en
Inventor
Kenji Sakakibara
健二 榊原
Yoshihide Wadayama
芳英 和田山
Hirotaka Takeshima
弘隆 竹島
Takeshi Yao
武 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003335029A priority Critical patent/JP4245146B2/en
Publication of JP2005095479A publication Critical patent/JP2005095479A/en
Application granted granted Critical
Publication of JP4245146B2 publication Critical patent/JP4245146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable the arrangement of a sound insulation member having a simple and space-saving structure for reducing noise of an inclined magnetic field coil in the MRI apparatus. <P>SOLUTION: A sound insulation cover for covering a surrounding area of the inclined magnetic field coil is constituted with different members composed of more than at least two kinds of density for some parts of the surface. Alternatively, an enclosed space storing the inclined magnetic field coil is formed in the MRI apparatus, and a vacuum tank is arranged with the sound insulation member for maintaining vacuum inside the static magnetic field generating part of the inclined magnetic field coil as a wall surface at the static magnetic field generating space of the enclosed space. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気共鳴イメージング(以下、MRIと称する)装置に係わり、特に傾斜磁場コイルの駆動に伴い発生する騒音を低減する技術に関する。   The present invention relates to a magnetic resonance imaging (hereinafter referred to as “MRI”) apparatus, and more particularly to a technique for reducing noise generated when a gradient coil is driven.

一般にMRI装置は、撮像空間に均一な静磁場を発生させる静磁場発生手段、さらに前記静磁場に重ねて線形な傾斜磁場を発生させる傾斜磁場コイル、高周波電磁場を送信・受信するRFコイルを備えている。撮像時には、所望のパルスシーケンスに従い、均一な静磁場中に置かれた被検体に、X,Y,Z軸方向に線形傾斜磁場が重ねられ、被検体の原子スピンがラーモア周波数の高周波で磁気的に励起される。この励起に伴い、磁気共鳴(MR)信号が検出され、被検体の例えば2次元断層像が再構成される。   In general, an MRI apparatus includes a static magnetic field generating means for generating a uniform static magnetic field in an imaging space, a gradient magnetic field coil for generating a linear gradient magnetic field superimposed on the static magnetic field, and an RF coil for transmitting and receiving a high-frequency electromagnetic field. Yes. During imaging, a linear gradient magnetic field is superimposed on the subject placed in a uniform static magnetic field in the X, Y, and Z directions according to the desired pulse sequence, and the subject's atomic spin is magnetic at a high frequency of the Larmor frequency. Excited. Along with this excitation, a magnetic resonance (MR) signal is detected, and a two-dimensional tomographic image of the subject is reconstructed.

このようなMRI装置において、近年、イメージングに要する時間を短縮化するニーズが高まっており、これに応えるべく、高速SE法や高速EPI法などの傾斜磁場パルスの高速印加・反転を伴うパルスシーケンスが実用化されている。
しかし、傾斜磁場コイルにパルス電流を流すと、ローレンツ力が作用し、傾斜磁場コイルは機械的歪みを生して振動し騒音を発生する。しかも傾斜磁場パルスをより高速に印加・反転するほど前述の振動と騒音は増大する。つまり、撮影の高速化に伴って、傾斜磁場コイルから発生する騒音も増大することになる。この騒音は、撮像空間内に横になっている被検体に非常な不快感・不安感を与える。
In recent years, there is a growing need for shortening the time required for imaging in such an MRI apparatus. It has been put into practical use.
However, when a pulse current is applied to the gradient magnetic field coil, Lorentz force acts, and the gradient magnetic field coil vibrates due to mechanical distortion and generates noise. Moreover, the vibration and noise increase as the gradient magnetic field pulse is applied and reversed at a higher speed. In other words, the noise generated from the gradient magnetic field coil increases as the imaging speed increases. This noise gives a very uncomfortable feeling to the subject lying in the imaging space.

このため、前述の振動や騒音を軽減するための技術がいくつか提案がされている。
例えば、 [特許文献1]では、水平磁場方式のMRI装置において、傾斜磁場コイルを静磁場発生源とは非結合あるいは略非結合の状態で保持し、支持体を介して、静磁場発生源の設置床面と異なる設置床面に剛結合し、傾斜磁場コイル及び支持体の少なくとも一部を真空空間内に保持する。この構成により、傾斜磁場コイルから傾斜磁場コイル用支持手段を通って磁石などに固体伝搬する振動を著しく減少させ、かつ傾斜磁場コイルから空気伝搬する振動を遮断して、ガントリ全体としての騒音(振動)を抑制している。
For this reason, several techniques for reducing the aforementioned vibration and noise have been proposed.
For example, in [Patent Document 1], in a horizontal magnetic field type MRI apparatus, a gradient magnetic field coil is held in an uncoupled or substantially uncoupled state from a static magnetic field generation source, and the static magnetic field generation source is It is rigidly coupled to an installation floor surface different from the installation floor surface, and holds at least a part of the gradient coil and the support in the vacuum space. With this configuration, the vibration that propagates solidly from the gradient coil to the magnet through the gradient coil support means is remarkably reduced, and the vibration that propagates air from the gradient coil is cut off. ).

あるいは、 [特許文献2]では、傾斜磁場コイルを静磁場発生源に剛結合し、かつ傾斜磁場コイルを非磁性・非導電性の遮音カバーにより覆い、遮音カバーと静磁場発生源とで構成された密閉空間に傾斜磁場コイルを封入する。この構成により、傾斜磁場コイルから生じる音波が密閉空間内を構成する部材で反射して密閉空間外部への放射を減少させて、騒音を低減している。   Alternatively, in [Patent Document 2], a gradient magnetic field coil is rigidly coupled to a static magnetic field generation source, and the gradient magnetic field coil is covered with a nonmagnetic / nonconductive sound insulation cover, and is constituted by a sound insulation cover and a static magnetic field generation source. A gradient coil is enclosed in a closed space. With this configuration, sound waves generated from the gradient magnetic field coils are reflected by the members constituting the sealed space to reduce radiation to the outside of the sealed space, thereby reducing noise.

あるいは、[特許文献1]、[特許文献3]や[特許文献4]は真空の遮音性を利用する技術で、[特許文献3]では排気可能な空間の真空ハウジングの少なくとも一つの部分を静磁場発生源の少なくとも一部分により、また傾斜磁場コイルの少なくとも一部により形成している。また[特許文献4]は予め真空排気したプラスチック製の真空パック材で傾斜磁場コイルを覆っている。これらの構成により、気体伝播による振動を外部構造体に伝達させないで騒音を低減している。
特開平10-118043号公報 特開2001-299719号公報 特開2001-104285号公報 特開2003-70765号公報
Alternatively, [Patent Document 1], [Patent Document 3] and [Patent Document 4] are technologies that utilize vacuum sound insulation, and [Patent Document 3] statically evacuates at least one part of a vacuum housing in a space that can be evacuated. It is formed by at least part of the magnetic field source and at least part of the gradient coil. In [Patent Document 4], the gradient magnetic field coil is covered with a plastic vacuum packing material that has been evacuated in advance. With these configurations, noise is reduced without transmitting vibration due to gas propagation to the external structure.
Japanese Patent Laid-Open No. 10-118043 JP 2001-299719 A Japanese Patent Laid-Open No. 2001-104285 JP 2003-70765 A

[特許文献1]では、傾斜磁場コイルの支持体を介し、固体伝播の振動を剛結合した設置床面に伝え、設置床面の質量効果により低減させているので、支持体体や設置床面を設けるための空間が必要となり、装置が大型になってしまう欠点がある。また、傾斜磁場コイルからの空気伝播の振動を低減するために、真空空間を設けているので、この真空空間を保持するために技術的困難を伴い、真空容器が変形しやすいなどの問題がある。   In [Patent Document 1], the vibration of solid propagation is transmitted to the rigidly installed installation floor via the support of the gradient coil, and is reduced by the mass effect of the installation floor. There is a disadvantage that a space for providing the device is required and the apparatus becomes large. Further, since a vacuum space is provided in order to reduce vibration of air propagation from the gradient magnetic field coil, there are technical difficulties in maintaining this vacuum space, and there is a problem that the vacuum vessel is easily deformed. .

また、[特許文献2]では、傾斜磁場コイルを静磁場発生手段に剛結合で固定し、固定支持部材を最小化し、また、遮音カバーのみで密閉空間を作り、遮音構造を簡素化することで、第1の公知例の課題を克服している。しかし、第2の公知例では、傾斜磁場コイルの線形特性を保持するために、傾斜磁場コイルを覆う遮蔽材のうち、撮像空間に面する遮音カバーとして非磁性・非導電性材料を選択せざるを得ない。非磁性・非導電性材料としては、ガラス、GFRP(ガラス繊維補強樹脂)、FRP(繊維補強樹脂)などがあげられるが、いずれも密度が1〜2.5×103[kg/m3]であって亜鉛・銅・鉛など非磁性金属の密度9〜11×103[kg/m3]には及ばない。したがって、後述する(1)式から非磁性・非導電性材料の遮音材は非磁性金属の遮音材よりも遮音性能が低下することが理解できる。このため、[特許文献2]では、遮音性能を向上させるために遮音カバーの板厚を増やす必要がある。しかし、板厚を増やすことは、撮像空間を狭めることにつながり、撮像空間の被検者に閉塞感・圧迫感を与えることになってしまう。   In [Patent Document 2], the gradient magnetic field coil is fixed to the static magnetic field generating means by rigid coupling, the fixed support member is minimized, the sealed space is formed only by the sound insulation cover, and the sound insulation structure is simplified. The problem of the first known example is overcome. However, in the second known example, in order to maintain the linear characteristics of the gradient coil, a non-magnetic / non-conductive material must be selected as a sound insulation cover facing the imaging space among the shielding materials covering the gradient coil. I do not get. Nonmagnetic and nonconductive materials include glass, GFRP (glass fiber reinforced resin), FRP (fiber reinforced resin), etc., all of which have a density of 1 to 2.5 × 103 [kg / m3] and zinc・ The density of non-magnetic metals such as copper and lead is less than 9 to 11 × 103 [kg / m3]. Therefore, it can be understood from the equation (1) described later that the sound insulation performance of the nonmagnetic / nonconductive material is lower than that of the nonmagnetic metal. For this reason, in [Patent Document 2], it is necessary to increase the thickness of the sound insulation cover in order to improve the sound insulation performance. However, increasing the plate thickness leads to narrowing of the imaging space, and gives a sense of blockage and pressure to the subject in the imaging space.

また、[特許文献2]では、傾斜磁場コイルを静磁場発生手段に剛固定している。このとき、静磁場発生手段が、鉄の磁気シールドなど重量物を含んだ構成になっている場合は、十分に質量効果による振動低減効果を期待できる。しかし、近年では、磁石の軽量化と高磁場化に伴い、磁気シールドを有さないアクティブシールドタイプの超電導磁石が増えてきている。これらの超電導磁石では、真空容器が超電導コイルを囲う構成であり、[特許文献2]のように真空容器に傾斜磁場コイルを剛固定すると、真空容器に傾斜磁場コイルの振動が伝播する。しかし軽量の真空容器では質量効果による振動低減効果が不十分となり、騒音を発してしまう。   In [Patent Document 2], the gradient magnetic field coil is rigidly fixed to the static magnetic field generating means. At this time, if the static magnetic field generating means includes a heavy object such as an iron magnetic shield, it is possible to sufficiently expect the vibration reduction effect due to the mass effect. In recent years, however, active shield type superconducting magnets that do not have a magnetic shield have increased with the reduction in weight and magnetic field of magnets. In these superconducting magnets, the vacuum vessel surrounds the superconducting coil. When the gradient magnetic field coil is rigidly fixed to the vacuum vessel as in [Patent Document 2], the vibration of the gradient magnetic field coil propagates to the vacuum vessel. However, a lightweight vacuum vessel is insufficient in the vibration reduction effect due to the mass effect and generates noise.

また、[特許文献1]では、傾斜磁場コイルを真空雰囲気中等に密閉配置する必要があるため、その気密構造は複雑であり、特にコイル通電用の電流リードや冷却配管等の引き出しにはハーメチックシールを用いるなど組立て構造も複雑となる。加えて装置を組立てた後に真空排気が常時必要であり、医療機関等の据付場所にて傾斜磁場コイルを脱着する場合には、特に作業が煩雑となる。またオープン型のMRI装置の場合には、傾斜磁場コイルが平板状であることが多く、その周囲を真空雰囲気にすると、周辺構造部材の圧力変形が大きくなりやすく、磁場性能にも悪影響を及ぼしてしまう。[特許文献3]でも真空排気が常時必要である。[特許文献4]におけるオープン型MRI装置の例では、傾斜磁場コイルを収容する容器の上下の両面と周囲の面を含む全面に真空パックを配置し、かつその外周を真空パックよりも変形しにくい強化プライスチックで補強しているため、傾斜磁場コイルを収容する容器が厚くなる。その副作用として撮影空間を狭めてしまい、被検者に閉塞感・圧迫感を与えることになってしまう。
そこで本発明の目的は、上記課題を解決するためになされたものであり、簡素かつ省スペースな構造を持つ遮音部材を傾斜磁場コイルを覆うように配置して、傾斜磁場コイルの騒音を低減することである。
In [Patent Document 1], since the gradient magnetic field coil needs to be hermetically arranged in a vacuum atmosphere or the like, its hermetic structure is complicated, and hermetic seals are particularly used for drawing out current leads for coil energization and cooling pipes. The assembly structure becomes complicated, such as by using the In addition, evacuation is always necessary after the device is assembled, and the work is particularly complicated when the gradient magnetic field coil is attached and detached at the installation site of a medical institution or the like. In addition, in the case of an open type MRI apparatus, the gradient magnetic field coil is often a flat plate, and if the surroundings are in a vacuum atmosphere, the pressure deformation of the surrounding structural members tends to be large, which adversely affects the magnetic field performance. End up. [Patent Document 3] always requires evacuation. In the example of the open-type MRI apparatus in [Patent Document 4], the vacuum pack is arranged on the entire surface including the upper and lower surfaces and the peripheral surface of the container accommodating the gradient magnetic field coil, and the outer periphery thereof is less likely to be deformed than the vacuum pack. Since it is reinforced with reinforced price ticks, the container for accommodating the gradient coil becomes thick. As a side effect, the imaging space is narrowed, giving the subject a feeling of obstruction and pressure.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, and a noise insulation member having a simple and space-saving structure is arranged so as to cover the gradient magnetic field coil, thereby reducing the noise of the gradient magnetic field coil. That is.

上記課題を解決するために、本発明は以下のように構成される。
第1の実施態様によれば、均一静磁場空間を有する静磁場発生手段と、前記静磁場発生手段の前記静磁場領域面側に配置された傾斜磁場コイルと、前記傾斜磁場コイルの周囲を密閉する遮音カバーを有してなる磁気共鳴イメージング装置において、
前記遮音カバーのある面が密度の異なる少なくとも2種類以上の部材にて形成される。
In order to solve the above problems, the present invention is configured as follows.
According to the first embodiment, the static magnetic field generating means having a uniform static magnetic field space, the gradient magnetic field coil disposed on the static magnetic field region surface side of the static magnetic field generating means, and the periphery of the gradient magnetic field coil are sealed In a magnetic resonance imaging apparatus having a sound insulation cover that
The surface with the sound insulation cover is formed of at least two kinds of members having different densities.

また、第2の実施態様によれば、第1の実施態様のMRI装置において、対向面側に配置される前記遮音カバーが、非磁性かつ非導電性からなる第1の材料で形成された平板状の部材に、前記第1の材料とは密度の異なる第2の材料からなる部材を点在させる。この第2の材料を好ましくは金属とする。   Further, according to the second embodiment, in the MRI apparatus of the first embodiment, the sound insulating cover disposed on the facing surface side is a flat plate formed of a first material that is nonmagnetic and nonconductive. A member made of a second material having a density different from that of the first material is interspersed in the shaped member. This second material is preferably a metal.

また、第3の実施態様によれば、第2の実施態様のMRI装置において、対向面側に配置される遮音カバーが複合金属材料からなる。   According to the third embodiment, in the MRI apparatus of the second embodiment, the sound insulation cover disposed on the facing surface side is made of the composite metal material.

また、第4の実施態様によれば、第1の実施態様のMRI装置において、前記静磁場発生手段の一部を、前記傾斜磁場コイルを密閉する構造の一部とする。   According to the fourth embodiment, in the MRI apparatus according to the first embodiment, a part of the static magnetic field generating means is part of a structure for sealing the gradient magnetic field coil.

また、第5の実施態様によれば、第1の実施態様のMRI装置において、前記傾斜磁場コイルが前記静磁場発生手段に結合固定されており、前記静磁場発生手段の外周部に錘を取り付ける。   Further, according to the fifth embodiment, in the MRI apparatus of the first embodiment, the gradient magnetic field coil is coupled and fixed to the static magnetic field generating means, and a weight is attached to the outer periphery of the static magnetic field generating means .

また、第6の実施態様によれば、第1の実施態様のMRI装置において、前記RFコイルが遮音カバーの一部であり、 該RFコイルの表面上に錘を取り付ける。
また、第7の実施態様によれば、第1の実施態様のMRI装置において、静磁場発生手段が静磁場領域を挟んで対向する。
According to the sixth embodiment, in the MRI apparatus of the first embodiment, the RF coil is a part of a sound insulation cover, and a weight is attached on the surface of the RF coil.
Further, according to the seventh embodiment, in the MRI apparatus of the first embodiment, the static magnetic field generating means oppose each other across the static magnetic field region.

以上の第1〜第7の実施態様のMRI装置によれば、簡素かつ省スペースな構造を保ちながら遮音部材の質量を増加させて傾斜磁場コイルを覆うことによって、その質量効果により傾斜磁場コイルの騒音を低減することができる。   According to the MRI apparatus of the first to seventh embodiments described above, by covering the gradient coil by increasing the mass of the sound insulation member while maintaining a simple and space-saving structure, the mass effect of the gradient coil can be increased. Noise can be reduced.

上記実施態様は、遮音カバーに錘を点在させることによりその質量を増して遮音カバーの遮音効果を高めるものである。本発明にはさらに、傾斜磁場コイルを覆うように真空槽を有する遮音部材を配置し、真空の遮音効果を利用して傾斜磁場コイルからの騒音を遮断する以下の構成も有する。   In the above embodiment, the weight of the sound insulation cover is increased by interspersing weights on the sound insulation cover to increase the sound insulation effect of the sound insulation cover. The present invention further includes the following configuration in which a sound insulation member having a vacuum chamber is disposed so as to cover the gradient magnetic field coil, and noise from the gradient magnetic field coil is blocked using the sound insulation effect of vacuum.

第8の実施態様によれば、均一静磁場空間を挟んで対向配置され対向面がほぼ平坦な一対の静磁場発生手段と、前記静静磁場発生手段の前記均一静磁場空間側に前記均一静磁場空間を挟んで対向配置された一対のほぼ平坦な形状を有する傾斜磁場コイル及びRFコイルを有してなる磁気共鳴イメージング装置において、
前記静磁場発生手段の前記静磁場空間側に前記傾斜磁場コイルを収容する密閉空間を形成し、
前記密閉空間の静磁場発生手段側面を前記静磁場発生手段の壁面とし、前記傾斜磁場コイルの前記静磁場空間側に少なくとも一部に内部を真空に保持された遮音部材を配置する。
According to the eighth embodiment, a pair of static magnetic field generating means arranged opposite to each other across the uniform static magnetic field space and having a substantially flat facing surface, and the uniform static magnetic field space side of the static static magnetic field generating means on the uniform static magnetic field space side. In a magnetic resonance imaging apparatus having a pair of gradient magnetic field coils and RF coils having a substantially flat shape arranged opposite to each other across a magnetic field space,
Forming a sealed space for accommodating the gradient coil on the static magnetic field space side of the static magnetic field generating means;
A side surface of the static magnetic field generating means in the sealed space is used as a wall surface of the static magnetic field generating means, and a sound insulating member having an internal vacuum maintained at least partially on the static magnetic field space side of the gradient coil.

また、第9の実施態様によれば、第8の実施態様のMRI装置において、前記遮音部材は平坦な形状を有する真空槽でその内部が真空に封止された構造を有し、装置の組立て及び運転時において真空排気を不要とする。   Further, according to the ninth embodiment, in the MRI apparatus of the eighth embodiment, the sound insulating member has a structure in which a vacuum tank having a flat shape is sealed in a vacuum, and the assembly of the apparatus is performed. And evacuation is unnecessary during operation.

また、第10の実施態様によれば、第9の実施態様のMRI装置において、前記平坦な形状の真空槽は、前記傾斜磁場コイルの対向面側の表面に配置される。   According to the tenth embodiment, in the MRI apparatus of the ninth embodiment, the flat vacuum chamber is arranged on the surface on the opposite surface side of the gradient coil.

また、第11の実施態様によれば、第9の実施態様のMRI装置において、前記平坦な形状の真空槽は、前記RFコイルの反対向面側の表面に設ける。   According to the eleventh embodiment, in the MRI apparatus of the ninth embodiment, the flat vacuum chamber is provided on the surface of the RF coil on the side opposite to the surface.

また、第12の実施態様によれば、第9の実施態様のMRI装置において、前記平坦な形状の真空槽は、2枚のガラス板の周囲が接着されその間隙内が真空封止された構造とする。   Further, according to the twelfth embodiment, in the MRI apparatus of the ninth embodiment, the flat vacuum chamber has a structure in which the periphery of two glass plates is bonded and the gap is vacuum sealed And

また、第13の実施態様によれば、第9の実施態様のMRI装置において、前記平坦な形状の真空槽の外形を円板状とする。   According to the thirteenth embodiment, in the MRI apparatus of the ninth embodiment, the outer shape of the flat vacuum chamber is a disk shape.

また、第14の実施態様によれば、第9の実施態様のMRI装置において、前記平坦な形状の真空槽の外形が矩形状であり、円板状のRFコイル又は傾斜磁場コイルに取り付けられる。   According to the fourteenth embodiment, in the MRI apparatus of the ninth embodiment, the outer shape of the flat vacuum chamber is rectangular and is attached to a disk-shaped RF coil or gradient magnetic field coil.

また、第15の実施態様によれば、第9の実施態様のMRI装置において、前記RFコイルの撮影空間側に、前記平坦な形状の真空槽を配置する。   According to the fifteenth embodiment, in the MRI apparatus of the ninth embodiment, the flat vacuum chamber is arranged on the radiographic space side of the RF coil.

また、第16の実施態様によれば、第9の実施態様のMRI装置において、前記傾斜磁場コイル又は前記RFコイルの両面に、前記平坦な形状の真空槽を配置する。   According to the sixteenth embodiment, in the MRI apparatus of the ninth embodiment, the flat vacuum chamber is arranged on both surfaces of the gradient magnetic field coil or the RF coil.

以上の第8〜第16の実施態様のMRI装置によれば、内部を真空に保持された簡素かつ省スペースな構造を持つ遮音部材を傾斜磁場コイルを覆うように配置することにより、傾斜磁場コイルの膜振動が空気伝播して生じる装置構造物からの騒音を低減することができる。   According to the MRI apparatus of the above eighth to sixteenth embodiments, the gradient magnetic field coil is provided by arranging the sound insulation member having a simple and space-saving structure in which the inside is maintained in a vacuum so as to cover the gradient magnetic field coil. It is possible to reduce noise from the device structure that is generated by air propagation of the membrane vibration.

本発明によれば、簡素かつ省スペースな構造を持つ遮音部材を傾斜磁場コイルを覆うように配置することにより、傾斜磁場コイルの騒音を低減させることができる。   According to the present invention, the noise of the gradient coil can be reduced by arranging the sound insulation member having a simple and space-saving structure so as to cover the gradient coil.

以下、本発明の実施形態を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
はじめに、本発明に係るMRI装置の概略を説明する。図1に、MRI装置の一実施形態である垂直磁場方式のMRI装置の基本的な構成を示す。図1は、静磁場発生源1と傾斜磁場コイル(以下、GCと称する)2とRFコイル12と遮音カバー3の配置を示した断面図である。静磁場発生源として、超電導コイルを用いた超電導磁石を採用した例について説明するが、永久磁石や常電導コイルを用いた常電導磁石を静磁場発生源とすることが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.
First, an outline of the MRI apparatus according to the present invention will be described. FIG. 1 shows a basic configuration of a vertical magnetic field type MRI apparatus which is an embodiment of the MRI apparatus. FIG. 1 is a cross-sectional view showing an arrangement of a static magnetic field generation source 1, a gradient magnetic field coil (hereinafter referred to as GC) 2, an RF coil 12, and a sound insulation cover 3. An example in which a superconducting magnet using a superconducting coil is adopted as a static magnetic field generation source will be described. However, a normal conducting magnet using a permanent magnet or a normal conducting coil can be used as a static magnetic field generation source.

図1において、MRI装置は、均一静磁場領域7(撮像空間)を挟んで上下方向に対向して配置された一対の静磁場発生源1と、静磁場発生源1を所定の間隔をとって支持する2本の支柱8と、静磁場発生源1の内側に対向して配置された一対のRFコイル12及びGC2を具備する。   In FIG. 1, the MRI apparatus has a pair of a static magnetic field generation source 1 and a static magnetic field generation source 1 that are arranged to face each other in the vertical direction across a uniform static magnetic field region 7 (imaging space), with a predetermined interval. Two supporting columns 8 to be supported and a pair of RF coils 12 and GC2 disposed to face the inside of the static magnetic field generating source 1 are provided.

静磁場発生源1は、均一静磁場領域7に垂直方向の静磁場を発生させるための超電導コイル群9と、超電導コイル群9を所定の超電導特性が得られる温度に冷却保持するためのクライオ容器10とから成る。クライオ容器10は超電導コイル群9を浸す液体ヘリウムなどの冷媒を収容する冷媒容器(図示せず)と、冷媒容器を内包し、熱の輻射を防ぐための熱シールド(図示せず)と、最も外部にあり、熱シールドを含めて超電導磁石全体を内包し、熱の対流を防ぐための真空容器(図示せず)などで構成される。そして、静磁場発生源1の対向面11、すなわちクライオ容器10の対向面11はほぼ平行になっている。   The static magnetic field generation source 1 includes a superconducting coil group 9 for generating a vertical static magnetic field in the uniform static magnetic field region 7, and a cryocontainer for cooling and holding the superconducting coil group 9 at a temperature at which predetermined superconducting characteristics can be obtained. It consists of ten. The cryocontainer 10 includes a refrigerant container (not shown) that contains a refrigerant such as liquid helium that immerses the superconducting coil group 9, a heat shield (not shown) that contains the refrigerant container and prevents heat radiation, It is outside and includes the entire superconducting magnet including the heat shield, and is composed of a vacuum vessel (not shown) for preventing heat convection. The opposing surface 11 of the static magnetic field generation source 1, that is, the opposing surface 11 of the cryocontainer 10 is substantially parallel.

超電導コイル群9は円柱状のクライオ容器10に内包されて、超電導磁石の中央の均一静磁場領域7を挟んで上下対称に設置されており、上下のクライオ容器10はその間にある支柱8によって所定の距離を維持して保持されている。この支柱8は、機械的に上下のクライオ容器10を支える働きをしているが、必要によっては上下のクライオ容器10内の冷媒容器を熱的に接続させる働きを持たせてもよい。また、支柱8の本数も図1の2本に限定される必要はなく、例えば4本や1本が可能である。   The superconducting coil group 9 is enclosed in a cylindrical cryocontainer 10 and is installed vertically symmetrically across the uniform static magnetic field region 7 in the center of the superconducting magnet. The upper and lower cryocontainers 10 are predetermined by the support 8 between them. The distance is maintained and maintained. The support 8 functions to mechanically support the upper and lower cryocontainers 10, but may have a function of thermally connecting the refrigerant containers in the upper and lower cryocontainers 10 as necessary. Further, the number of support columns 8 is not necessarily limited to the two shown in FIG. 1, and can be four or one, for example.

上記のように超電導コイル9を内包するクライオ容器10から成る一対の上記静磁場発生源1が、支柱8により支持されかつ上下に対向して配置される。そして、傾斜磁場を発生させるほぼ平坦なGC2と高周波磁場を発生するほぼ平坦なRFコイル12が両静磁場発生源1の間に形成される均一静磁場領域7の中心面に対し上下対称に、かつ、静磁場発生源1の均一静磁場空間7側の表面上に配置される。これらの配置順序は、中心面から順に遮音カバー3、RFコイル12、GC2、静磁場発生源1となる。そして図1では、GC2を遮音カバー3で覆う(図1ではRFコイル12を含めて覆っている)ことでGC2を密閉空間の内部に閉じこめて騒音を低減している。   As described above, a pair of the static magnetic field generation sources 1 composed of the cryocontainer 10 containing the superconducting coil 9 is supported by the support column 8 and arranged so as to face each other in the vertical direction. Then, a substantially flat GC2 that generates a gradient magnetic field and a substantially flat RF coil 12 that generates a high-frequency magnetic field are vertically symmetrical with respect to the center plane of a uniform static magnetic field region 7 formed between both static magnetic field generation sources 1. And it arrange | positions on the surface by the side of the uniform static magnetic field space 7 of the static magnetic field generation source 1. FIG. These arrangement orders are the sound insulation cover 3, the RF coil 12, GC2, and the static magnetic field generation source 1 in order from the center plane. In FIG. 1, GC2 is covered with a sound insulation cover 3 (in FIG. 1, including the RF coil 12), thereby confining the GC2 within the sealed space to reduce noise.

RFコイル12は、被検体に高周波磁場を印加して核磁気共鳴(以下、NMR称する)現象を誘起し、その後、被検体から放出されるNMR信号を別のRFコイル又は同一のRFコイル12により検出する。NMR信号の検出の際には、GC2により被検体に傾斜磁場を印加して検出されるNMR信号に位置情報を付与する。得られたNMR信号から画像を再構成して表示する。   The RF coil 12 applies a high-frequency magnetic field to the subject to induce a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon, and then transmits an NMR signal emitted from the subject by another RF coil or the same RF coil 12. To detect. When detecting the NMR signal, position information is given to the NMR signal detected by applying a gradient magnetic field to the subject by the GC 2. An image is reconstructed from the obtained NMR signal and displayed.

次に、上記MRI装置に本発明を適用した第1の実施形態を説明する。この実施形態は、GCを静磁場発生源1に剛固定し、GCの周囲を覆う遮音カバー3に錘を点在させてその質量(重量)を増して遮音カバー3の遮音効果を高めるものであり、その第1構成例の概略断面図を図2に示す。この第1構成例では、GCを静磁場発生源1に剛固定して、静磁場発生源1の質量効果によりGCの振動を減衰させる。そのため、静磁場発生源1はその質量効果によりGCの振動を減衰できるだけの質量があることが望ましい。さらに、GCの周囲を覆うようにして錘を点在させた遮音カバーを配置する。   Next, a first embodiment in which the present invention is applied to the MRI apparatus will be described. In this embodiment, the GC is rigidly fixed to the static magnetic field generation source 1, and a weight is scattered on the sound insulation cover 3 covering the periphery of the GC to increase its mass (weight), thereby enhancing the sound insulation effect of the sound insulation cover 3. FIG. 2 shows a schematic sectional view of the first configuration example. In this first configuration example, the GC is rigidly fixed to the static magnetic field generation source 1, and the vibration of the GC is attenuated by the mass effect of the static magnetic field generation source 1. Therefore, it is desirable that the static magnetic field generation source 1 has a mass that can attenuate the vibration of the GC due to its mass effect. In addition, a sound insulation cover with dotted weights is arranged so as to cover the periphery of the GC.

一般に、遮音材の遮音性能を表す透過損失TL[dB]は、以下の(1)式で表される。
TL=18・log(f・ρ・t)−44 (1)
ここで、f:音の周波数[Hz]、ρ:遮蔽材の材料密度[kg/m3]、t:遮蔽材の厚さ[m]である。したがって、(1)式から遮蔽材としては、密度が大きく厚さが厚いほど遮音性能が高くなり、質量効果は(ρ・t)が大きいほど良いことが理解できる。つまり、遮音カバーに錘を点在させてその質量を増すことは遮音性能の向上に貢献する。
In general, the transmission loss TL [dB] representing the sound insulation performance of the sound insulation material is represented by the following equation (1).
TL = 18 ・ log (f ・ ρ ・ t) −44 (1)
Here, f: frequency of sound [Hz], ρ: material density of the shielding material [kg / m 3], and t: thickness of the shielding material [m]. Therefore, from formula (1), it can be understood that as the shielding material, the higher the density and thickness, the higher the sound insulation performance, and the higher the mass effect, the better (ρ · t). That is, increasing the mass of the sound insulation cover by interspersing weights contributes to the improvement of the sound insulation performance.

GCの対向面側に配置する錘付き遮音カバーの構成例を図3に示す。ベースとなる平板状の遮音部材4としては非磁性・非金属性の部材を使用する。例えば、板ガラス、FRP(ガラス繊維樹脂)が適している。一方、錘部材5としてはベースの部材より密度が十分大きい部材を使用する。例えば、亜鉛・銅・鉛や真鍮(亜鉛・銅)などの非磁性金属・非磁性合金の部材が適している。   FIG. 3 shows a configuration example of a sound insulation cover with a weight disposed on the opposite surface side of the GC. A non-magnetic and non-metallic member is used as the flat plate-like sound insulating member 4 as a base. For example, plate glass and FRP (glass fiber resin) are suitable. On the other hand, as the weight member 5, a member having a sufficiently higher density than the base member is used. For example, a nonmagnetic metal / nonmagnetic alloy member such as zinc / copper / lead or brass (zinc / copper) is suitable.

錘部材の固定は緩みの生じないことが望ましい。例えば、ベースの遮音部材に貫通穴を設け、貫通穴にねじを切り、錘部材をねじとして締め付けてもよい。さらに、貫通穴にボルト締結や接着材を使用するなどして緩みの生じない様に固定することもできる。あるいは、貫通穴とせずに、ベースの遮音部材に設けた凹み又はベースの遮音部材の表面上に接着剤などで貼り付ける構成としてもよい。   It is desirable that the weight member is not loosened. For example, a through hole may be provided in the sound insulating member of the base, a screw may be cut in the through hole, and the weight member may be tightened as a screw. Furthermore, it can be fixed so as not to loosen by using bolt fastening or an adhesive material in the through hole. Or it is good also as a structure stuck on the surface of the dent provided in the sound insulation member of a base, or the sound insulation member of a base, without making it a through-hole.

この構成例の一例として、ベースの遮音部材として板ガラス(密度:約2[g/cm3])、錘部材として銅(密度:約8[g/cm3])を使用した場合を説明する。板ガラスと銅の比を2:1とした錘付き遮音カバー材とすると、板ガラス単体で作成した遮音カバー材と比較して、厚さが一定で重量を2倍にすることができる。従って、前述の(1)式より、この錘付き遮音カバー材では、板ガラス単体で作成した遮音カバー材より厚さが同じでも、6dBだけ遮音性能が優れていることがわかる。言い換えれば、半分の板厚でも同じ遮音性能を得ることができる。さらにこの構成により、撮像空間をより広げることができるので、被検者の安心感を増す効果も得られる効果がある。   As an example of this configuration example, a case where plate glass (density: about 2 [g / cm3]) is used as the sound insulation member of the base and copper (density: about 8 [g / cm3]) is used as the weight member will be described. When a sound insulation cover material with a weight with a ratio of plate glass to copper of 2: 1 is used, the thickness is constant and the weight can be doubled compared to a sound insulation cover material made of a single plate glass. Therefore, from the above-mentioned formula (1), it is understood that the sound insulation cover material with a weight is superior in sound insulation performance by 6 dB even though the thickness is the same as that of the sound insulation cover material made of a single plate glass. In other words, the same sound insulation performance can be obtained even with half the plate thickness. Furthermore, since this configuration can further expand the imaging space, there is an effect that an effect of increasing the sense of security of the subject can be obtained.

次に、この第1の実施形態に基づく第2構成例を説明する。この第2構成例は、静磁場発生源である超電導磁石の対向面側に凹部20を設け、その凹部20にGC2およびRFコイル12を収納して錘付き遮音カバーで覆う構成で、その概略断面図を図4示す。GC2とRFコイル12は、超電導磁石にそれぞれGC支持体21とRFコイル支持体22を介して固定される。このとき、一般に遮音カバーは高い周波数帯域ほど遮音性能が高いため、GC2とRFコイル12は超電導磁石に剛に固定されることが望ましい。錘付き遮音カバー3は、GC2とRFコイル12の対向面にのみに配置する。   Next, a second configuration example based on the first embodiment will be described. In this second configuration example, a concave portion 20 is provided on the facing surface side of the superconducting magnet that is a static magnetic field generation source, and the GC2 and the RF coil 12 are housed in the concave portion 20 and covered with a sound insulation cover with a weight. The figure is shown in FIG. The GC2 and the RF coil 12 are fixed to the superconducting magnet via the GC support 21 and the RF coil support 22, respectively. At this time, since the sound insulation cover generally has a higher sound insulation performance in a higher frequency band, it is desirable that the GC2 and the RF coil 12 be rigidly fixed to the superconducting magnet. The sound insulation cover 3 with the weight is disposed only on the facing surface of the GC 2 and the RF coil 12.

一方、GC2の側面ならびに背面では、超電導磁石の凹部20の内面を遮音カバーとして利用する。一般に、超電導磁石では超電導コイルを収納するためにステンレス製のクライオ容器10を使用する。遮音性能を向上させるために、超電導磁石の凹部20内面(ステンレス)の板厚を増やしてもよい。   On the other hand, on the side surface and back surface of the GC2, the inner surface of the recess 20 of the superconducting magnet is used as a sound insulation cover. In general, a superconducting magnet uses a stainless cryocontainer 10 for housing a superconducting coil. In order to improve the sound insulation performance, the thickness of the inner surface (stainless steel) of the recess 20 of the superconducting magnet may be increased.

また、超電導磁石の凹部20の全面又は一部を、クライオ容器10の材料(ステンレス)より密度の大きい部材を使用して構成すれば、凹部20の肉厚を薄くしてその空間を広げても遮音効果を維持・向上することができるので、GC2およびRFコイル12の収納スペース、または配線スペースを確保することができる。   Further, if the entire surface or a part of the recess 20 of the superconducting magnet is configured using a member having a density higher than that of the material of the cryocontainer 10 (stainless steel), the thickness of the recess 20 can be reduced to widen the space. Since the sound insulation effect can be maintained and improved, a storage space for the GC2 and the RF coil 12 or a wiring space can be secured.

クライオ容器凹部20に貫通穴を使用したボルト締結やねじ部材の使用により錘部材の固定が容易でない場合は、凹部20の内面上に錘部材を接着固定してもよい。   If it is not easy to fix the weight member by bolt fastening using a through hole in the cryo container recess 20 or the use of a screw member, the weight member may be bonded and fixed on the inner surface of the recess 20.

次に、第1の実施形態に基づく第3構成例を説明する。この第3構成例は、超電導磁石のクライオ容器表面上に錘を点在させた構成で、その概略断面図を図5に示す。この構成例における錘部材5として例えばステンレス・鉛などが適している。GC2をクライオ容器10に剛固定した場合、GC2の振動がGC支持体21を介してクライオ容器10に伝わる。クライオ容器10に伝わったこの振動は、錘部材5を付加されて質量が増したクライオ容器10を含む超電導磁石の質量効果により減衰するが、減衰しきらない場合もある。また、超電導磁石の構造(形状・重量)に応じた特異な振動モードを有して振動する場合もある。これらの場合に、予め計算機シミュレーションなどを用いた振動解析を実施し、クライオ容器10上で振動の腹となる位置に錘を配置することにより、クライオ容器10表面の振動の節(ふし)点を増やすことと同様の効果が得られる。これにより、クライオ容器10に伝わった振動を減衰させることができる。この構成により、ある周波数帯域の振動・騒音に対し、質量効果に加えて更に振動・騒音の抑制を得ることができる。
クライオ容器表面上に貫通穴を使用したボルト締結やねじ部材使用により錘部材の固定が容易でない場合は、クライオ容器表面上に錘部材を接着固定しても良い。
Next, a third configuration example based on the first embodiment will be described. This third configuration example is a configuration in which weights are scattered on the surface of a cryocontainer of a superconducting magnet, and a schematic sectional view thereof is shown in FIG. For example, stainless steel or lead is suitable as the weight member 5 in this configuration example. When GC2 is rigidly fixed to the cryocontainer 10, the vibration of GC2 is transmitted to the cryocontainer 10 via the GC support 21. The vibration transmitted to the cryocontainer 10 is attenuated by the mass effect of the superconducting magnet including the cryocontainer 10 to which the mass is increased by adding the weight member 5, but may not be completely attenuated. Further, there is a case where it vibrates with a unique vibration mode corresponding to the structure (shape / weight) of the superconducting magnet. In these cases, vibration analysis using a computer simulation or the like is performed in advance, and a weight is placed on the cryocontainer 10 at a position where the antinodes of vibrations. The same effect as increasing can be obtained. Thereby, the vibration transmitted to the cryocontainer 10 can be attenuated. With this configuration, vibration and noise can be further suppressed with respect to vibration and noise in a certain frequency band in addition to the mass effect.
If it is not easy to fix the weight member by fastening bolts using screw holes or using screw members on the cryocontainer surface, the weight member may be adhered and fixed on the cryocontainer surface.

次に、第1の実施形態に基づく第4構成例を説明する。この第4構成例は、RFコイルと錘付き遮音カバーを一体化させた構成で、図6にその概略断面図を示す。RFコイル12と錘付き遮音カバー3は、ボルト締結や接着剤などを用いて振動により分離しない様に一体化した構造とする。また、図7に遮音カバー(RFコイル12を含む)3の固定方法の例を示す。遮音カバー3の一部を兼ねるクライオ容器凹部20の端部に段差23を設けておく。この段差23部分を利用し、ボルト24締結又は接着剤などにより錘付き遮音カバー3を固定し、クライオ容器凹部20を、隙間・ガタがないようにしっかり密閉する。さらに、接合面を鉛テープなどにより密閉してもよい。また、錘付き遮音カバー3と固定部材の接合部分に、ゴムなどのダンピング材を使用してもよい。ダンピング材の使用により、GC2からクライオ容器10に伝搬した振動を、錘付き遮音カバー3に伝わるのを抑制する効果を得ることができる。   Next, a fourth configuration example based on the first embodiment will be described. This fourth configuration example is a configuration in which an RF coil and a sound insulation cover with a weight are integrated, and FIG. 6 shows a schematic cross-sectional view thereof. The RF coil 12 and the sound insulation cover 3 with a weight are integrated so as not to be separated by vibration using bolt fastening or an adhesive. FIG. 7 shows an example of a method for fixing the sound insulation cover (including the RF coil 12) 3. A step 23 is provided at the end of the cryocontainer recess 20 that also serves as a part of the sound insulation cover 3. Using this step 23 portion, the sound insulation cover 3 with a weight is fixed by fastening bolts 24 or an adhesive or the like, and the cryocontainer recess 20 is tightly sealed so that there is no gap or play. Furthermore, the joint surface may be sealed with lead tape or the like. In addition, a damping material such as rubber may be used at the joint between the soundproof cover 3 with the weight and the fixing member. By using the damping material, it is possible to obtain an effect of suppressing the vibration transmitted from the GC 2 to the cryocontainer 10 from being transmitted to the soundproof cover 3 with the weight.

次に、第1の実施形態に基づく第5構成例を説明する。この第5構成例は、遮音カバーとして金属複合樹脂材を使用した構成例で、その概略断面図を図8に示す。この構成例では、微細な金属紛を混ぜた樹脂を遮音カバー3に含浸させた含浸構造とすることで、錘部材の固定に関してガタのない構成とすることができる。また、錘部材をより微細に点在させることができるので、GCの線形特性を悪化させる渦電流などの影響を最小限にすることができる。ただし、高周波電磁波はその周波数が高いほど金属に吸収されやすいので、金属複合樹脂はRFコイル12が送受信する高周波電磁波に影響がないものを選択する。金属粉として例えば、鉄,銅,鉛が適している。また、樹脂をガラスにすれば金属ガラスでも同様の効果は得られる。   Next, a fifth configuration example based on the first embodiment will be described. This fifth configuration example is a configuration example using a metal composite resin material as a sound insulation cover, and a schematic sectional view thereof is shown in FIG. In this configuration example, by adopting an impregnation structure in which the sound insulation cover 3 is impregnated with a resin mixed with fine metal powder, the weight member can be fixed without looseness. Further, since the weight members can be scattered more finely, the influence of eddy currents and the like that deteriorate the linear characteristics of the GC can be minimized. However, since the higher frequency electromagnetic wave is more easily absorbed by the metal, the metal composite resin is selected so as not to affect the high frequency electromagnetic wave transmitted and received by the RF coil 12. For example, iron, copper, or lead is suitable as the metal powder. In addition, if the resin is made of glass, the same effect can be obtained with metal glass.

以上は、本発明の内、遮音カバーに錘部材を点在させることによりその質量を増して遮音カバーの遮音効果を高める第1の実施形態を説明した。この第1の実施形態においては、垂直磁場方式のMRI装置を例にして説明したが、トンネル型の水平磁場方式に対しても同様に適用することが出来る。   The first embodiment of the present invention has been described so far by increasing the mass of the sound insulation cover by increasing the mass by interspersing the weight insulation member with the sound insulation cover. In the first embodiment, the vertical magnetic field type MRI apparatus has been described as an example, but the present invention can be similarly applied to a tunnel type horizontal magnetic field method.

次に、真空槽を有する遮音部材をGCを覆うように配置し、真空の遮音効果を利用してGCからの騒音を遮断する本発明の第2の実施形態について説明する。   Next, a second embodiment of the present invention will be described in which a sound insulating member having a vacuum chamber is disposed so as to cover the GC, and the noise from the GC is blocked using the sound insulating effect of the vacuum.

最初に本実施形態に基づく第6構成例を説明する。この第6構成例は、平板状の真空槽53をRFコイル12に接して配置した構成で、その真空槽53に関連した領域の概略断面図を図9に示す。GC2は静磁場発生源1の表面にボルト51によって固定される。また平板状の真空槽53は、RFコイル12の静磁場発生源側表面上にRFコイル12に接して取り付けられる。例えば、RFコイル12のベース(基板)を兼用する構造として、両者を接着接合することができる。そして、固定ボルト52を介して静磁場発生源1に固定される。   First, a sixth configuration example based on this embodiment will be described. In this sixth configuration example, a flat vacuum chamber 53 is arranged in contact with the RF coil 12, and a schematic cross-sectional view of a region related to the vacuum chamber 53 is shown in FIG. GC2 is fixed to the surface of the static magnetic field generation source 1 by bolts 51. The flat vacuum chamber 53 is attached on the surface of the RF coil 12 on the static magnetic field generation source side so as to be in contact with the RF coil 12. For example, as a structure that also serves as the base (substrate) of the RF coil 12, both can be bonded and bonded. Then, it is fixed to the static magnetic field generation source 1 via the fixing bolt 52.

この構成例では、真空槽53とRFコイル12を固定するボルト52は、GC2の内部を貫通しているが、GC2と固定ボル52の間には間隙が設けられて、GC2の振動がボルト52を経由して真空槽53やRFコイル12に伝播しにくい構造としている。また、GC2の騒音を外部に漏洩させないためには、図9に示すように静磁場発生源1の凹部の内部にGC2が密封されるような構造で配置することが好ましい。   In this configuration example, the bolt 52 that fixes the vacuum chamber 53 and the RF coil 12 passes through the inside of the GC 2, but a gap is provided between the GC 2 and the fixing bolt 52, and the vibration of the GC 2 causes the bolt 52 to vibrate. The structure is difficult to propagate to the vacuum chamber 53 and the RF coil 12 via the. Further, in order to prevent the noise of GC2 from leaking to the outside, it is preferable to arrange the GC2 so as to be sealed inside the recess of the static magnetic field generation source 1 as shown in FIG.

図10に平板状の真空槽53の断面構造を示す。この真空槽53は、2枚のガラス54をその間に狭い隙間を設けた状態で互いに平行に固定して構成される。周囲は真空シール55で封止されており、2枚のガラスで挟まれた内部の間隙を排気することで真空雰囲気とする。なお、排気口はガラス面の端部にあるが排気後は封止される。そのため、内部を常時排気する必要がなくなり、運転コストを極めて低減することができる。また傾斜磁場コイル周辺が真空雰囲気に接しないため、傾斜磁場コイルとそれを収容する周囲の構造においては真空圧力に耐えうる構造部材を必要としない。そのため傾斜磁場コイルを真空中に配置する構成と比較して、傾斜磁場コイルとその周辺の製造コストを低減することができる。   FIG. 10 shows a cross-sectional structure of the flat vacuum chamber 53. The vacuum chamber 53 is configured by fixing two glasses 54 in parallel with each other with a narrow gap therebetween. The surroundings are sealed with a vacuum seal 55, and a vacuum atmosphere is created by exhausting the internal gap between the two pieces of glass. In addition, although an exhaust port exists in the edge part of a glass surface, it seals after exhausting. Therefore, it is not necessary to always exhaust the inside, and the operating cost can be greatly reduced. Further, since the periphery of the gradient magnetic field coil is not in contact with the vacuum atmosphere, the gradient magnetic field coil and the surrounding structure for housing it do not require a structural member that can withstand the vacuum pressure. Therefore, compared with the structure which arrange | positions a gradient magnetic field coil in a vacuum, the manufacturing cost of a gradient magnetic field coil and its periphery can be reduced.

ここで内部を真空状態にすると大気圧によりガラスには間隙をつぶす方向に大気圧が作用するため、間隙には変形防止のスペーサ56を配置する。本構成例では、例えば、ガラスは厚さを2mmで、間隙を0.5mmとし、内部に直径φ0.5mmのナイロン線を設置することができる。   Here, when the inside is in a vacuum state, atmospheric pressure acts in the direction of crushing the gap due to atmospheric pressure, and therefore a spacer 56 for preventing deformation is disposed in the gap. In this configuration example, for example, the glass has a thickness of 2 mm, a gap of 0.5 mm, and a nylon wire having a diameter of 0.5 mm can be placed inside.

さらに本構成例の付加的な効果として、GC2の発熱は平板状の真空槽53で断熱されるため、RFコイル12部への熱影響が従来と比較して小さくなる。また、真空槽53をガラス板で構成することにより、RFコイル12のベース(基板)の材料であるガラス繊維強化プラスチックと比べて剛性が高くなり、結果としてRFコイル12の振動や被検者が載置されたテーブルの荷重負荷によるRFコイル12の変形も小さくなる。   Further, as an additional effect of this configuration example, the heat generation of GC2 is insulated by the flat vacuum chamber 53, so that the thermal influence on the RF coil 12 portion becomes smaller than in the conventional case. Also, by constructing the vacuum chamber 53 with a glass plate, the rigidity is higher than the glass fiber reinforced plastic that is the material of the base (substrate) of the RF coil 12, and as a result, the vibration of the RF coil 12 and the examinee The deformation of the RF coil 12 due to the load on the placed table is also reduced.

次に、第2の実施形態に基づく第7構成例を説明する。この第7構成例は、第6構成例と同様の基本配置であるが、GC2を静磁場発生源1の容器壁上に直接固定しないで、吸振材60を介して容器壁上に固定し、加えて、静磁場発生源1の容器壁と真空槽53を直接接触させずに吸振材61を間に挟んで接触させ、静磁場発生源1の凹部20に密閉空間を形成してGC2を内部に収容する構成例であり、図11にその概略断面図を示す。GC2の振動がRFコイル12へ固体伝播する経路に吸振材60,61が配置されたため、真空槽53の遮音効果に加えて、その静音効果は図9の第6構成例よりも優れている。   Next, a seventh configuration example based on the second embodiment will be described. This seventh configuration example has the same basic arrangement as the sixth configuration example, but the GC2 is not directly fixed on the container wall of the static magnetic field generation source 1, but is fixed on the container wall via the vibration absorbing material 60, In addition, the container wall of the static magnetic field generation source 1 and the vacuum chamber 53 are not in direct contact with each other with the vibration absorbing material 61 interposed therebetween, and a sealed space is formed in the concave portion 20 of the static magnetic field generation source 1 so that the GC 2 FIG. 11 is a schematic cross-sectional view showing a configuration example housed in the housing. Since the vibration absorbing materials 60 and 61 are arranged in the path through which the vibration of the GC 2 propagates to the RF coil 12, in addition to the sound insulation effect of the vacuum chamber 53, the silent effect is superior to the sixth configuration example of FIG.

次に、第2の実施形態に基づく第8構成例を説明する。この第8構成例は、第6構成例とは静磁場発生源1の容器構造が異なり、静磁場発生源1にGC2等を収容する凹部が無く、撮影空間側の表面が平面状となる静磁場発生源1に平板状の真空槽53を配置する構成例で、図12にその概略断面図を示す。   Next, an eighth configuration example based on the second embodiment will be described. The eighth configuration example is different from the sixth configuration example in the container structure of the static magnetic field generation source 1, and the static magnetic field generation source 1 has no recess for accommodating GC2 and the like, and the surface on the imaging space side is flat. FIG. 12 shows a schematic cross-sectional view of a configuration example in which a flat vacuum chamber 53 is disposed in the magnetic field generation source 1.

上述のごとくGC2が密封されるような構造でない場合、RFコイル12に平板状のガラス真空槽53を取り付けるだけでは遮音効果は小さい。そこで、図12に示すように真空槽53と静磁場発生源1との間隙に、吸音材71等を用いて間隙を埋めることで密閉された空間を形成してGC2を内部に収容する。これにより、密閉空間が形成されて、吸振材71を用いることによって静磁場発生源1の振動がRFコイル12と真空槽53に固体伝播することを低減できる。他は第6構成例と同じである。   If the GC2 is not sealed as described above, the sound insulation effect is small by simply attaching the flat glass vacuum chamber 53 to the RF coil 12. Therefore, as shown in FIG. 12, a closed space is formed in the gap between the vacuum chamber 53 and the static magnetic field generation source 1 by using the sound absorbing material 71 or the like to accommodate the GC 2 therein. Thereby, a sealed space is formed, and the use of the vibration absorbing material 71 can reduce the vibration of the static magnetic field generating source 1 from being propagated to the RF coil 12 and the vacuum chamber 53 as a solid. Others are the same as the sixth configuration example.

次に、第2の実施形態に基づく第9構成例を説明する。この第9構成例は、真空槽の形状が円形以外の例えば矩形の場合の構成例で、その上面図を図13に示す。上記構成例6〜8において平板状の真空槽53の形状は静磁場発生源1やRFコイル12の形状に適合した円形状の平板であるが、本構成例の様に矩形状の平板真空槽53を使用することも可能である。これにより、RFコイル12の全面を覆うことはできなくなるが、真空槽53で覆われた部分においては遮音効果を発揮できる。   Next, a ninth configuration example based on the second embodiment will be described. This ninth configuration example is a configuration example when the shape of the vacuum chamber is a rectangle other than a circle, for example, and a top view thereof is shown in FIG. In the above configuration examples 6 to 8, the shape of the flat vacuum chamber 53 is a circular flat plate adapted to the shape of the static magnetic field generation source 1 and the RF coil 12, but as in this configuration example, a rectangular flat plate vacuum chamber It is also possible to use 53. As a result, the entire surface of the RF coil 12 cannot be covered, but a sound insulation effect can be exhibited in the portion covered with the vacuum chamber 53.

例えば、図14のごとくRFコイル12の裏面の広い面積を覆うように真空槽53を配置することで、その効果は小さくなるものの静音化は実現できる。また、矩形の真空槽53であれば、一般に市販されている真空断熱ガラスを使用することもでき、本発明を簡単に適用できる。   For example, as shown in FIG. 14, by disposing the vacuum chamber 53 so as to cover a large area on the back surface of the RF coil 12, the effect is reduced, but noise reduction can be realized. Moreover, if it is the rectangular vacuum chamber 53, the vacuum heat insulation glass generally marketed can also be used and this invention can be applied easily.

また、図15には、上記第9構成例において傾斜磁場コイルの配線引出し部の概略図を示す。上記第9構成例で説明したように、RFコイル12の全面を真空槽53で被う制限はないため、部分的に真空槽53がない領域を設けることができ、そこにケーブル類の外部引出し部55を容易に設けることができる。なお、これらケーブル類は、撮影空間側ではなく、静磁場発生源1の内部を通過してその外部へ引き出すことも可能である。   FIG. 15 is a schematic view of the wiring lead portion of the gradient magnetic field coil in the ninth configuration example. As explained in the ninth configuration example, since there is no restriction that the entire surface of the RF coil 12 is covered with the vacuum chamber 53, a region where the vacuum chamber 53 is not partially provided can be provided. The part 55 can be easily provided. Note that these cables can be drawn out of the static magnetic field generation source 1 through the inside of the static magnetic field generation source 1 instead of the imaging space side.

次に、第2の実施形態に基づく第10構成例を説明する。この第10構成例は、平板状の真空槽53をGC2の表面に配置した構成例で、その概略断面図を図16に示す。この場合には真空槽53自身が振動するため、その遮音効果は小さいが、GC2の膜振動の外部伝播を低減することができること、加えてGC2表面の曲げ剛性を大きくできるため、GC2単独での騒音を低減することができる。   Next, a tenth configuration example based on the second embodiment will be described. This tenth configuration example is a configuration example in which a flat vacuum chamber 53 is arranged on the surface of GC2, and a schematic sectional view thereof is shown in FIG. In this case, since the vacuum chamber 53 itself vibrates, its sound insulation effect is small, but the external propagation of the membrane vibration of GC2 can be reduced, and in addition, the bending rigidity of the GC2 surface can be increased. Noise can be reduced.

次に、第2の実施形態に基づく第11構成例を説明する。この第11構成例は、平板状の真空槽53をRFコイル12の表面に配置した構成例で、その概略断面図を図17に示す。この構成例でも遮音効果を発揮することができる。   Next, an eleventh configuration example based on the second embodiment will be described. This eleventh configuration example is a configuration example in which a flat vacuum chamber 53 is arranged on the surface of the RF coil 12, and a schematic sectional view thereof is shown in FIG. This configuration example can also exhibit a sound insulation effect.

以上の第2の実施形態の説明において、真空槽53をGC2又はRFコイル12の片側のみに配置した例を説明したが、GC2又はRFコイル12のいずれか一方又は両側の面に配置してもよい。   In the above description of the second embodiment, the example in which the vacuum chamber 53 is disposed only on one side of the GC2 or the RF coil 12 has been described, but the vacuum chamber 53 may be disposed on one or both surfaces of the GC2 or the RF coil 12. Good.

本発明にかかるMRI装置の概略断面を示す図。The figure which shows the schematic cross section of the MRI apparatus concerning this invention. 本発明の第1の実施形態における第1構成例の概略断面を示す図。傾斜磁場コイルを静磁場発生源に剛固定し錘付き遮音カバーで覆う様子を示す。FIG. 2 is a diagram showing a schematic cross section of a first configuration example according to the first embodiment of the present invention. A state in which the gradient magnetic field coil is rigidly fixed to a static magnetic field generation source and covered with a sound insulation cover with a weight is shown. 本発明の第1の実施形態における傾斜磁場コイルの対向面に配置する錘付き遮音カバーを示す図。The figure which shows the sound-insulation cover with a weight arrange | positioned in the opposing surface of the gradient magnetic field coil in the 1st Embodiment of this invention. 本発明の第1の実施形態における第2構成例の概略断面を示す図。静磁場発生源の凹部にGCを収納した様子を示す。FIG. 3 is a diagram showing a schematic cross section of a second configuration example according to the first embodiment of the present invention. The state where the GC is housed in the recess of the static magnetic field generation source is shown. 本発明の第1の実施形態における第3構成例の概略断面を示す図。超電導磁石のクライオ容器表面に錘部材を点在させた様子を示す。FIG. 5 is a diagram showing a schematic cross section of a third configuration example according to the first embodiment of the present invention. A mode that the weight member was scattered on the cryocontainer surface of a superconducting magnet is shown. 本発明の第1の実施形態における第4構成例の概略断面を示す図。RFコイルと遮音カバーを一体化した様子を示す。FIG. 5 is a diagram showing a schematic cross section of a fourth configuration example according to the first embodiment of the present invention. The state where the RF coil and the sound insulation cover are integrated is shown. 遮音カバー(RFコイルを含む)の固定例を示す図。The figure which shows the example of fixation of a sound insulation cover (an RF coil is included). 本発明の第1の実施形態における第5構成例の概略断面を示す図。遮音カバーに金属複合樹脂材を使用した様子を示す。FIG. 6 is a diagram showing a schematic cross section of a fifth configuration example according to the first embodiment of the present invention. A state in which a metal composite resin material is used for the sound insulation cover is shown. 本発明の第2の実施形態における第6構成例の概略断面を示す図。平板状の真空槽をRFコイルに接して配置した様子を示す。FIG. 10 is a diagram showing a schematic cross section of a sixth configuration example according to the second embodiment of the present invention. A mode that the flat vacuum chamber was arrange | positioned in contact with RF coil is shown. 本発明の第2の実施形態における平板状の真空槽の断面構造を示す図。The figure which shows the cross-section of the flat vacuum tank in the 2nd Embodiment of this invention. 本発明の第2の実施形態における第7構成例の概略断面を示す図。静磁場発生源の容器壁と真空槽を吸振材を間に挟んで接触させた様子を示す。FIG. 20 is a diagram showing a schematic cross-section of a seventh configuration example in the second embodiment of the present invention. A state in which the container wall of the static magnetic field generation source and the vacuum chamber are brought into contact with each other with a vibration absorbing material interposed therebetween is shown. 本発明の第2の実施形態における第8構成例の概略断面を示す図。凹部の無い静磁場発生源に平板状の真空槽を配置した様子を示す。The figure which shows the schematic cross section of the 8th structural example in the 2nd Embodiment of this invention. A mode that the flat vacuum chamber is arrange | positioned to the static magnetic field generation source without a recessed part is shown. 本発明の第2の実施形態における第9構成例の概略断面を示す図。矩形の真空槽を配置した様子を示す。The figure which shows the schematic cross section of the 9th structural example in the 2nd Embodiment of this invention. A state in which a rectangular vacuum chamber is arranged is shown. RFコイルの裏面に矩形の真空槽を配置した様子を示す図。The figure which shows a mode that the rectangular vacuum chamber was arrange | positioned on the back surface of RF coil. 本発明の第2の実施形態における第9構成例において、傾斜磁場コイルの配線引出し部の概略を示す図。The figure which shows the outline of the wiring extraction part of a gradient magnetic field coil in the 9th structural example in the 2nd Embodiment of this invention. 本発明の第2の実施形態における第10構成例の概略断面を示す図。平板状の真空槽53を傾斜磁場コイルの表面に配置した様子を示す。The figure which shows the schematic cross section of the 10th structural example in the 2nd Embodiment of this invention. A state in which the flat vacuum chamber 53 is arranged on the surface of the gradient magnetic field coil is shown. 本発明の第2の実施形態における第11構成例の概略断面を示す図。平板状の真空槽をRFコイルの表面に配置した様子を示す。The figure which shows the schematic cross section of the 11th structural example in the 2nd Embodiment of this invention. A mode that the flat vacuum chamber is arrange | positioned on the surface of RF coil is shown.

符号の説明Explanation of symbols

1…静磁場磁石
2…傾斜磁場コイル
3…遮音カバー
4…平板状の遮音部材のベース(基板)
5…錘部材
7…撮影空間
8…支柱
10…クライオ容器
12…RFコイル
51…GC固定ボルト
52…RF固定ボルト
53…平板状の真空槽
54…板ガラス
55…配線材
56…スペーサ
60,61…制振材
71…遮音材
DESCRIPTION OF SYMBOLS 1 ... Static magnetic field magnet 2 ... Gradient magnetic field coil 3 ... Sound insulation cover 4 ... Base (board | substrate) of a flat plate-shaped sound insulation member
DESCRIPTION OF SYMBOLS 5 ... Weight member 7 ... Imaging | photography space 8 ... Support | pillar 10 ... Cryo container 12 ... RF coil 51 ... GC fixing bolt 52 ... RF fixing bolt 53 ... Flat vacuum tank 54 ... Plate glass 55 ... Wiring material 56 ... Spacer 60, 61 ... Damping material 71 ... Sound insulation material

Claims (2)

均一静磁場空間を有する静磁場発生手段と、前記静磁場発生手段の前記静磁場領域面側に配置された傾斜磁場コイルと、前記傾斜磁場コイルの周囲を密閉する遮音カバーを有してなる磁気共鳴イメージング装置において、
前記遮音カバーのある面が密度の異なる少なくとも2種類以上の部材にて形成されたことを特徴とした磁気共鳴イメージング装置。
Magnetism comprising a static magnetic field generating means having a uniform static magnetic field space, a gradient magnetic field coil disposed on the surface of the static magnetic field region of the static magnetic field generating means, and a sound insulation cover for sealing the periphery of the gradient magnetic field coil. In a resonance imaging apparatus,
A magnetic resonance imaging apparatus, wherein a surface having the sound insulation cover is formed of at least two kinds of members having different densities.
均一静磁場空間を挟んで対向配置され対向面がほぼ平坦な一対の静磁場発生手段と、前記静静磁場発生手段の前記均一静磁場空間側に前記均一静磁場空間を挟んで対向配置された一対のほぼ平坦な形状を有する傾斜磁場コイル及びRFコイルを有してなる磁気共鳴イメージング装置において、
前記静磁場発生手段の前記静磁場空間側に前記傾斜磁場コイルを収容する密閉空間を形成し、
前記密閉空間の静磁場発生手段側面を前記静磁場発生手段の壁面とし、前記傾斜磁場コイルの前記静磁場空間側に少なくとも一部に内部を真空に保持された遮音部材が配置されたことを特徴とする磁気共鳴イメージング装置。
A pair of static magnetic field generating means arranged opposite to each other across the uniform static magnetic field space and having a substantially flat opposing surface, and arranged opposite to each other with the uniform static magnetic field space on the side of the uniform static magnetic field space of the static static magnetic field generating means In a magnetic resonance imaging apparatus having a pair of gradient magnetic field coils and RF coils having a substantially flat shape,
Forming a sealed space for accommodating the gradient coil on the static magnetic field space side of the static magnetic field generating means;
A side surface of the static magnetic field generating means in the sealed space is used as a wall surface of the static magnetic field generating means, and at least a part of the sound insulation member having a vacuum inside is disposed on the static magnetic field space side of the gradient magnetic field coil. Magnetic resonance imaging apparatus.
JP2003335029A 2003-09-26 2003-09-26 Magnetic resonance imaging apparatus and its receiving coil Expired - Fee Related JP4245146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335029A JP4245146B2 (en) 2003-09-26 2003-09-26 Magnetic resonance imaging apparatus and its receiving coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335029A JP4245146B2 (en) 2003-09-26 2003-09-26 Magnetic resonance imaging apparatus and its receiving coil

Publications (2)

Publication Number Publication Date
JP2005095479A true JP2005095479A (en) 2005-04-14
JP4245146B2 JP4245146B2 (en) 2009-03-25

Family

ID=34462524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335029A Expired - Fee Related JP4245146B2 (en) 2003-09-26 2003-09-26 Magnetic resonance imaging apparatus and its receiving coil

Country Status (1)

Country Link
JP (1) JP4245146B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136531A (en) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp Magnetic resonance imaging apparatus
JP2007255991A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Probe for nuclear magnetic resonance
JP2008212504A (en) * 2007-03-07 2008-09-18 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2009022640A (en) * 2007-07-23 2009-02-05 Hitachi Ltd Structure and magnetic resonance imaging system using this structure
WO2009031092A1 (en) * 2007-09-07 2009-03-12 Koninklijke Philips Electronics N.V. Magnetic resonance examination system with reduced acoustic noise
JP2013252008A (en) * 2012-06-01 2013-12-12 Ihi Corp Sound insulation structure
CN106546933A (en) * 2015-09-17 2017-03-29 上海联影医疗科技有限公司 A kind of radio frequency coil assemblies for nuclear magnetic resonance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006136531A (en) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp Magnetic resonance imaging apparatus
JP4639763B2 (en) * 2004-11-12 2011-02-23 三菱電機株式会社 Magnetic resonance imaging system
JP2007255991A (en) * 2006-03-22 2007-10-04 Hitachi Ltd Probe for nuclear magnetic resonance
JP2008212504A (en) * 2007-03-07 2008-09-18 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2009022640A (en) * 2007-07-23 2009-02-05 Hitachi Ltd Structure and magnetic resonance imaging system using this structure
WO2009031092A1 (en) * 2007-09-07 2009-03-12 Koninklijke Philips Electronics N.V. Magnetic resonance examination system with reduced acoustic noise
CN101796425A (en) * 2007-09-07 2010-08-04 皇家飞利浦电子股份有限公司 Magnetic resonance examination system with reduced acoustic noise
JP2013252008A (en) * 2012-06-01 2013-12-12 Ihi Corp Sound insulation structure
CN106546933A (en) * 2015-09-17 2017-03-29 上海联影医疗科技有限公司 A kind of radio frequency coil assemblies for nuclear magnetic resonance
CN106546933B (en) * 2015-09-17 2020-11-27 上海联影医疗科技股份有限公司 Radio frequency coil assembly for magnetic resonance imaging

Also Published As

Publication number Publication date
JP4245146B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US6437568B1 (en) Low noise MRI scanner
JP4298231B2 (en) Magnetic resonance tomography apparatus equipped with a sound deadening laminate for vibration reduction
WO2006054187A1 (en) Magnetic resonance system with reduced noise
US8626253B2 (en) Electrically conductive shield for superconducting electromagnet system
JP5013950B2 (en) Annular enclosure with an array of recesses or protrusions to reduce mechanical resonance
JP4245146B2 (en) Magnetic resonance imaging apparatus and its receiving coil
JP4700999B2 (en) Magnetic resonance imaging system
JP4341375B2 (en) Magnetic resonance imaging system
JP2002200055A (en) Magnetic resonance imaging apparatus
JP2001299719A (en) Magnetic resonance imaging instrument
JP4785125B2 (en) Magnetic resonance imaging system
JP2002052004A (en) Magnetic resonance imaging apparatus
JP4988385B2 (en) Magnetic resonance imaging system
JPH01208817A (en) Magnet device for nuclear magnetic resonance type diagnostic apparatus
WO2006062028A1 (en) Magnetic resonance imaging system
WO2016031341A1 (en) Magnetic resonance imaging device
JP5268716B2 (en) Magnetic resonance imaging system
JP4641727B2 (en) Magnetic resonance imaging system
JP2001198101A (en) Magnetic resonance imaging system
JP2002085371A (en) Magnetic resonance imaging apparatus
JP6296576B2 (en) Magnetic resonance imaging system
JP2005304597A (en) Magnetic resonance imaging apparatus
JP2001258864A (en) Inclined magnetic field unit and magnetic resonance imaging device
JP2004257860A (en) Nuclear magnetic resonance apparatus
JP2009261747A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees