JP2007255991A - Probe for nuclear magnetic resonance - Google Patents

Probe for nuclear magnetic resonance Download PDF

Info

Publication number
JP2007255991A
JP2007255991A JP2006078703A JP2006078703A JP2007255991A JP 2007255991 A JP2007255991 A JP 2007255991A JP 2006078703 A JP2006078703 A JP 2006078703A JP 2006078703 A JP2006078703 A JP 2006078703A JP 2007255991 A JP2007255991 A JP 2007255991A
Authority
JP
Japan
Prior art keywords
bobbin
coil
magnetic resonance
nuclear magnetic
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006078703A
Other languages
Japanese (ja)
Other versions
JP4933122B2 (en
Inventor
Kenji Kawasaki
健司 川▲崎▼
Tsugutoshi Tsuchiya
貢俊 土屋
Hideki Tanaka
秀樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006078703A priority Critical patent/JP4933122B2/en
Publication of JP2007255991A publication Critical patent/JP2007255991A/en
Application granted granted Critical
Publication of JP4933122B2 publication Critical patent/JP4933122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reduction in resolution of a nuclear magnetic resonance spectrum system by adjusting the susceptibility of a bobbin being the constitutional components of the RF coil for making equal to that of atmosphere. <P>SOLUTION: The preform of bobbin 1 is constituted with e.g. quartz glass, and a metallic foil film 3, the susceptibility of which is inverted with plus and minus sign of the preform e.g. chromium (Cr) is stuck thereon. The total susceptibility per unit volume (SI unit system) of the preform and the metallic foil are made equal to the susceptibility (SI unit system) of the atmospheric matter. Thereby, the generation of erroneous magnetic field from the contact part between the bobbin 1 of the RF coil 2 is inhibited and the degradation of resolution of detection coil for detecting the nuclear magnetic resonance spectrum is prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、核スピンを有する原子核を含むサンプルの核磁気共鳴(NMR)信号を検出する核磁気共鳴用プローブに関する。   The present invention relates to a nuclear magnetic resonance probe for detecting a nuclear magnetic resonance (NMR) signal of a sample including an atomic nucleus having a nuclear spin.

NMR信号を検出するには、サンプルに静磁場を印加する必要がある。NMR信号は静磁場の大きさに比例するので、NMR信号の受信感度を上げるためには、強磁場下にサンプルを設置する必要がある。また、NMR計測では、高いスペクトル分解能、すなわち、NMR信号をスペクトル表示した際のスペクトル線幅が広がらないことが望ましい。スペクトル線幅が狭いことは、サンプルおよびそれからのNMR信号を検出するRF(ラジオ周波数)コイルの近辺の磁場が均一であることを意味する。   In order to detect the NMR signal, it is necessary to apply a static magnetic field to the sample. Since the NMR signal is proportional to the magnitude of the static magnetic field, it is necessary to place a sample under a strong magnetic field in order to increase the reception sensitivity of the NMR signal. Further, in NMR measurement, it is desirable that the spectral line width when the spectral display of the NMR signal is high, that is, when the NMR signal is displayed as a spectrum, is not desired. The narrow spectral line width means that the magnetic field near the RF (radio frequency) coil that detects the sample and the NMR signal therefrom is uniform.

NMR計測では、サンプルおよび核磁気共鳴分光用検出コイル付近の磁場の大きさを強くし、さらに均一化することが要求される。磁場を均一化する要求は、RFコイル付近の部品に、RFコイル付近の磁化率に近い材料を用いることで対処される。しかし現実にはどの材料もRFコイル付近の雰囲気の磁化率とは異なり、RFコイル付近のすべての部品は、高磁場中で不均一な磁場を作る原因となっている。以後、RFコイルを含む全ての部品が高磁場中で作る不均一磁場を誤差磁場と呼ぶ。   In NMR measurement, it is required to increase the intensity of the magnetic field in the vicinity of the sample and the detection coil for nuclear magnetic resonance spectroscopy and to make it uniform. The demand for homogenizing the magnetic field is addressed by using a material close to the magnetic susceptibility near the RF coil for the parts near the RF coil. However, in reality, every material is different from the magnetic susceptibility of the atmosphere near the RF coil, and all the components near the RF coil cause a non-uniform magnetic field in a high magnetic field. Hereinafter, an inhomogeneous magnetic field generated by all components including the RF coil in a high magnetic field is referred to as an error magnetic field.

特許文献1、2には、RFコイルを磁化率がゼロ、もしくは、雰囲気の空気などの磁化率と等しくなるように常磁性材料と反磁性材料をある比率で合わせることで、誤差磁場の発生を抑える開示がある。即ち、非磁性化した材料をRFコイルの導線として用いることで、誤差磁場の発生を抑えている。また、特許文献3には、サンプル管を極力薄くし、サンプル管が発生する誤差磁場を抑えることで、NMR検出の際の分解能を上げる開示がある。即ち、NMR計測に必要な部品の材料の体積を極力減らすことで、誤差磁場の発生を抑えている。   In Patent Documents 1 and 2, an error magnetic field is generated by combining the paramagnetic material and the diamagnetic material at a certain ratio so that the magnetic susceptibility of the RF coil is zero or equal to the magnetic susceptibility of atmospheric air or the like. There are disclosures to suppress. That is, the generation of an error magnetic field is suppressed by using a non-magnetic material as a conductive wire of the RF coil. Further, Patent Document 3 discloses that the resolution at the time of NMR detection is increased by making the sample tube as thin as possible and suppressing the error magnetic field generated by the sample tube. That is, the generation of an error magnetic field is suppressed by reducing the volume of the material of parts necessary for NMR measurement as much as possible.

特開2000−266828号公報JP 2000-266828 A 特開2001−194440号公報JP 2001-194440 A 特開平07−84022号公報Japanese Patent Application Laid-Open No. 07-84022

上記従来技術では、RFコイルの巻き軸となるボビンが発生させる不均一磁場については、それを打ち消す磁場補正コイルの補正磁場に依存するのみで、材料を非磁性化するといった対策が取られていない。   In the above prior art, the non-uniform magnetic field generated by the bobbin that is the winding axis of the RF coil depends only on the correction magnetic field of the magnetic field correction coil that cancels the non-uniform magnetic field, and no measures are taken to demagnetize the material. .

コイルボビンの材料として、一般に石英ガラスが用いられる。石英ガラスは反磁性体であり、その磁化率は−13.8ppmである。空気の磁化率は、+0.38ppmである。つまり、石英ガラスと空気の磁化率の差は14ppm程度となり、石英ガラスと空気の境界面では7T(テスラ)という大きさの磁場の下で100μT程度の誤差磁場が発生する。この誤差磁場の影響がRFコイルの感度領域に及んだ場合、磁場補正コイルを用いて誤差磁場をキャンセルしなければならない。しかし、磁場補正コイルによる補正磁場の大きさ、形状は限られており、ボビンの形状は磁場補正コイルの出力能力に依存することになる。例えばボビンは、その端部で発生する誤差磁場の影響を避けるために、短くすることが出来ないといった制限が生じる。   Quartz glass is generally used as the material for the coil bobbin. Quartz glass is a diamagnetic material, and its magnetic susceptibility is -13.8 ppm. The magnetic susceptibility of air is +0.38 ppm. That is, the difference in magnetic susceptibility between quartz glass and air is about 14 ppm, and an error magnetic field of about 100 μT is generated under a magnetic field of 7 T (tesla) at the interface between the quartz glass and air. If the error magnetic field affects the RF coil sensitivity region, the magnetic field correction coil must be used to cancel the error magnetic field. However, the magnitude and shape of the correction magnetic field by the magnetic field correction coil are limited, and the shape of the bobbin depends on the output capability of the magnetic field correction coil. For example, the bobbin has a limitation that it cannot be shortened in order to avoid the influence of the error magnetic field generated at the end thereof.

本発明の目的は、上記従来技術の問題点に鑑み、RFコイルのボビンによる不均一磁場を打ち消し、RFコイル付近の磁場を強くし、かつ均一化する核磁気共鳴分光用検出コイルを提供することにある。   An object of the present invention is to provide a detection coil for nuclear magnetic resonance spectroscopy that counteracts the non-uniform magnetic field caused by the bobbin of the RF coil, strengthens the magnetic field in the vicinity of the RF coil, and makes it uniform. It is in.

本発明は、サンプルの核磁気共鳴信号を検出する核磁気共鳴用プローブにおいて、サンプルの核スピンからの核磁気共鳴信号を受信するRFコイルと、前記RFコイルの巻き軸であるボビンと、前記ボビンに設けられボビン母材が持つ磁化率と逆極性となる金属材とを含み、前記ボビンの磁化率が雰囲気中の磁化率と等しくなるように構成したことを特徴とする。   The present invention relates to a nuclear magnetic resonance probe for detecting a nuclear magnetic resonance signal of a sample, an RF coil that receives a nuclear magnetic resonance signal from a nuclear spin of the sample, a bobbin that is a winding axis of the RF coil, and the bobbin And a metal material having a polarity opposite to the magnetic susceptibility of the bobbin base material, and the bobbin has a magnetic susceptibility equal to that in the atmosphere.

また、前記ボビンに対し、前記RFコイルと前記金属材の一方を円筒状のボビン内側、他方をボビン外側に設けたことを特徴とする。あるいは、前記ボビンに対し、前記RFコイルと前記金属材をボビン外側に設け、かつ前記RFコイルと前記金属材間に絶縁材を施したことを特徴とする。   In addition, one of the RF coil and the metal material is provided inside the cylindrical bobbin and the other is provided outside the bobbin with respect to the bobbin. Alternatively, the RF coil and the metal material are provided outside the bobbin with respect to the bobbin, and an insulating material is provided between the RF coil and the metal material.

また、前記ボビンの上下方向をy軸、その直交方向をz軸とし、該z軸の方向に貫通穴を設けたことを特徴とする。   Further, the vertical direction of the bobbin is a y-axis, the orthogonal direction is a z-axis, and a through hole is provided in the z-axis direction.

本発明では、ボビンに反磁性体である石英ガラスを用いた場合、その表面に常磁性の金属を薄く均一に貼り付けることで、ボビンの磁化率を測定空間の雰囲気の磁化率と同じにすることが出来る。   In the present invention, when quartz glass, which is a diamagnetic material, is used for the bobbin, the magnetic susceptibility of the bobbin is made the same as the magnetic susceptibility of the atmosphere in the measurement space by thinly and evenly attaching a paramagnetic metal to the surface. I can do it.

また、前記ボビンにサファイアや、酸化アルミや窒化アルミなどを主成分とするセラミックスを用いた場合、それらは反磁性体であるので、ボビンの表面に常磁性の金属を薄く均一に貼り付けることで、ボビンの磁化率を測定空間の雰囲気の磁化率と同じにすることが出来る。   Also, when sapphire, ceramics mainly composed of aluminum oxide, aluminum nitride, etc. are used for the bobbin, they are diamagnetic materials, so by attaching a paramagnetic metal thinly and evenly on the bobbin surface The susceptibility of the bobbin can be made the same as the susceptibility of the atmosphere in the measurement space.

本発明によれば、ボビンを非磁性化することで、不均一磁場の発生を限りなくゼロに近づけることができ、ボビンに起因する磁場誤差を低下し、検出コイルの分解能の低下を抑制する効果がある。また、ボビンの形状や大きさの自由度を高め、ボビンを短くすることや、貫通穴を設けることも可能になる。貫通穴は、たとえばサンプル管に直接、光を当てることを可能とする。   According to the present invention, by making the bobbin non-magnetic, the generation of a non-uniform magnetic field can be brought to zero as much as possible, the magnetic field error caused by the bobbin is reduced, and the reduction in the resolution of the detection coil is suppressed. There is. Further, the degree of freedom of the shape and size of the bobbin can be increased, the bobbin can be shortened, and a through hole can be provided. The through hole makes it possible to shine light directly on the sample tube, for example.

図1は、NMR計測装置の全体構成図を示す。図1の拡大図は、プローブの先端部分の構成図で、本発明に係る核磁気共鳴分光用検出コイルのプローブ内での配置を示す。超伝導磁石10は、NMR計測に必要な強磁場を与える装置である。また、超伝導磁石10は、一般に、サンプル15が置かれる超伝導磁石の中心付近の磁場均一度を1ppm程度に補正する補正コイルを備えている。室温シムコイル磁石11は、超伝導磁石10の補正コイルで補正できなかった誤差磁場や、プローブ12やサンプル15(サンプル管14)を超伝導磁石内に挿入後にサンプル14付近で発生する誤差磁場を、1ppb程度に補正するための装置である。   FIG. 1 shows an overall configuration diagram of an NMR measurement apparatus. The enlarged view of FIG. 1 is a configuration diagram of the tip portion of the probe, and shows the arrangement of the detection coil for nuclear magnetic resonance spectroscopy according to the present invention in the probe. The superconducting magnet 10 is a device that applies a strong magnetic field necessary for NMR measurement. The superconducting magnet 10 generally includes a correction coil that corrects the magnetic field uniformity near the center of the superconducting magnet on which the sample 15 is placed to about 1 ppm. The room temperature shim coil magnet 11 generates an error magnetic field that could not be corrected by the correction coil of the superconducting magnet 10 or an error magnetic field generated near the sample 14 after the probe 12 or sample 15 (sample tube 14) is inserted into the superconducting magnet. This is a device for correcting to about 1 ppb.

図1の計測コンソール13や計測機器20は、室温シムコイル磁石11の制御や、NMR信号を取得する際のRF送信機やRF受信機の制御を行うための装置である。図1の拡大図で示されるRFコイル2は、サンプルに核磁気共鳴を促すための電磁波を照射し、また、サンプルからの核磁気共鳴信号を受信するための装置である。RFコイル2は、一般に、ボビン1に取り付けられ、ボビン1を介してプローブ12に設置される。   The measurement console 13 and the measurement device 20 in FIG. 1 are devices for controlling the room temperature shim coil magnet 11 and the RF transmitter and the RF receiver when acquiring NMR signals. The RF coil 2 shown in the enlarged view of FIG. 1 is an apparatus for irradiating a sample with an electromagnetic wave for promoting nuclear magnetic resonance and receiving a nuclear magnetic resonance signal from the sample. The RF coil 2 is generally attached to the bobbin 1 and installed on the probe 12 via the bobbin 1.

RFコイル2は、プローブ12内に設置された図示しない共振回路と電気的に接続される。一般に、1つのRFコイル2と共振回路の組み合わせで、同時に2つの共振がとれるように共振回路が組まれる。つまり、一つのRFコイルで、同時に2種の核のNMR信号を受信することが出来る。なお、本発明の核磁気共鳴分光用検出コイルは、ボビンを巻き枠としてRFコイルを巻きつけ、あるいは接着される組み合わせを指す。   The RF coil 2 is electrically connected to a resonance circuit (not shown) installed in the probe 12. In general, a combination of one RF coil 2 and a resonance circuit forms a resonance circuit so that two resonances can be obtained simultaneously. That is, the NMR signals of two kinds of nuclei can be simultaneously received by one RF coil. The detection coil for nuclear magnetic resonance spectroscopy according to the present invention refers to a combination in which an RF coil is wound around or bonded to a bobbin as a winding frame.

NMR計測器の仕様は、例えば、水素(H)核、重水素(D)核、炭素13(C)核、窒素15(N)核の4種の核の核磁気共鳴信号を、一つのプローブ12で計測できることが要求される。よって、図1の拡大図にあるプローブ12のように、2つのRFコイル2a,2bが設置された場合、例えば内側のRFコイル2aでH核とD核のNMR信号を受信し、外側のRFコイルでC核とN核のNMR信号を受信する仕様となる。   The specifications of the NMR measuring instrument include, for example, a nuclear magnetic resonance signal of four kinds of nuclei, hydrogen (H) nucleus, deuterium (D) nucleus, carbon 13 (C) nucleus, and nitrogen 15 (N) nucleus, as one probe. 12 is required to be measured. Therefore, when two RF coils 2a and 2b are installed like the probe 12 in the enlarged view of FIG. 1, for example, the inner RF coil 2a receives NMR signals of the H and D nuclei, and the outer RF coil 2a. The specification is such that the NMR signals of the C and N nuclei are received by the coil.

以上の説明は、1つのプローブ12内に、2つのRFコイル2とボビン1、即ち核磁気共鳴分光用検出コイルが設置される場合である。また、一つのプローブ12内に1つの核磁気共鳴分光用検出コイルが設置される場合もある。本発明は1つの核磁気共鳴分光用検出コイルに適用する場合も、2つのコイルに適用する場合も、誤差磁場の発生を抑える効果については同じである。以下では、説明を簡略化するために、1つの核磁気共鳴分光用検出コイルを対象として説明する。   The above description is a case where two RF coils 2 and bobbins 1, that is, detection coils for nuclear magnetic resonance spectroscopy are installed in one probe 12. In some cases, one detection coil for nuclear magnetic resonance spectroscopy is installed in one probe 12. When the present invention is applied to one nuclear magnetic resonance spectroscopy detection coil or to two coils, the effect of suppressing the generation of an error magnetic field is the same. Hereinafter, in order to simplify the description, a single detection coil for nuclear magnetic resonance spectroscopy will be described.

図2は、本発明にかかる非磁性化したボビンを備えた核磁気共鳴分光用検出コイルの実施例1を示したものである。本実施例の核磁気共鳴分光用検出コイルはボビン1、RFコイル2、ボビン1に張り合わせる金属薄膜3から構成される。   FIG. 2 shows Example 1 of a detection coil for nuclear magnetic resonance spectroscopy provided with a non-magnetized bobbin according to the present invention. The detection coil for nuclear magnetic resonance spectroscopy of this embodiment is composed of a bobbin 1, an RF coil 2, and a metal thin film 3 bonded to the bobbin 1.

核磁気共鳴分光用検出コイルの雰囲気は、空気などの気体ガスや真空で、雰囲気の磁化率とは、それらの磁化率のことを指す。ボビン1の材料には、ガラス、水晶、サファイア、セラミックスなどが用いられる。ボビン1の形状は円筒状で直径は5mmから20mm程度で、厚みは100μmから2mm程度である。コイル2は、電気伝導度の良い超伝導や常伝導の材料と、雰囲気の磁化率と等しくなるように別の金属材料を張り合わせて、構成される。または、蒸着、スパッタリング、無電解鍍金などの方法で、ボビン1に金属薄膜2を付け、構成される。金属薄膜3は、ボビン1の材料のもつ磁化率とは正負が逆である材料のものが選択される。   The atmosphere of the detection coil for nuclear magnetic resonance spectroscopy is a gas such as air or a vacuum, and the magnetic susceptibility of the atmosphere refers to the magnetic susceptibility thereof. As the material of the bobbin 1, glass, quartz, sapphire, ceramics, or the like is used. The bobbin 1 has a cylindrical shape with a diameter of about 5 mm to 20 mm and a thickness of about 100 μm to 2 mm. The coil 2 is configured by bonding a superconductive or normal conductive material having good electrical conductivity and another metal material so as to be equal to the magnetic susceptibility of the atmosphere. Alternatively, the bobbin 1 is provided with the metal thin film 2 by a method such as vapor deposition, sputtering, or electroless plating. The metal thin film 3 is selected from a material whose polarity is opposite to the magnetic susceptibility of the bobbin 1 material.

金属薄膜3の厚みd(金属薄膜)は、
d(金属薄膜)=d(ボビン)×χ(ボビン)/χ(金属薄膜)
から求められる。ここで、d(ボビン)はボビン2の厚さであり、χ(ボビン)はボビン2の材料の磁化率(SI単位系)であり、χ(金属薄膜)は金属薄膜3の磁化率(SI単位系)である。
The thickness d (metal thin film) of the metal thin film 3 is
d (metal thin film) = d (bobbin) × χ (bobbin) / χ (metal thin film)
It is requested from. Here, d (bobbin) is the thickness of the bobbin 2, χ (bobbin) is the magnetic susceptibility (SI unit system) of the material of the bobbin 2, and χ (metal thin film) is the magnetic susceptibility (SI of the metal thin film 3). Unit system).

図3は、図2で示す検出コイルの構成に寸法の一例を示したものである。ボビン1は10Φの石英ガラスの円筒型とし、ボビンの円筒の上下方向をy軸とし、それに垂直な方向をz軸としている。コイル2には厚さが50μmの金属材料を用い、ボビン1の内側に貼り付けている。金属薄膜3にはボビン1の材料のもつ磁化率とは正負が逆であるクロム材を厚さ14.44μmに貼り付け、コイル2を十分にカバーするようにしている。   FIG. 3 shows an example of dimensions in the configuration of the detection coil shown in FIG. The bobbin 1 is a cylindrical shape of 10Φ quartz glass, and the vertical direction of the bobbin cylinder is the y-axis, and the direction perpendicular thereto is the z-axis. The coil 2 is made of a metal material having a thickness of 50 μm and is attached to the inside of the bobbin 1. The metal thin film 3 is affixed with a chromium material having a positive and negative polarity opposite to the magnetic susceptibility of the material of the bobbin 1 to a thickness of 14.44 μm to sufficiently cover the coil 2.

この検出コイルのz軸に沿って7T(テスラ)の磁場をかけたとする。RFコイル2は金属薄膜3により、磁化率が雰囲気の磁化率と同じになるように補正されており、誤差磁場を発生することがない。   It is assumed that a magnetic field of 7 T (Tesla) is applied along the z axis of this detection coil. The RF coil 2 is corrected by the metal thin film 3 so that the magnetic susceptibility is the same as the magnetic susceptibility of the atmosphere, and no error magnetic field is generated.

図4はコイルの円筒中心軸上に現れる誤差磁場の大きさを示す。図4には、図3の検出コイルで、ボビンの磁化率を補償する金属薄膜3がある場合(実線)と、金属薄膜3がない場合(点線)の誤差磁場を示している。   FIG. 4 shows the magnitude of the error magnetic field appearing on the cylindrical central axis of the coil. FIG. 4 shows error magnetic fields when the metal thin film 3 for compensating the magnetic susceptibility of the bobbin is present (solid line) and when there is no metal thin film 3 (dotted line) in the detection coil of FIG.

点線は、ボビン1が母材のみの場合に発生する円筒中心軸上の誤差磁場を数値計算で求めたものである。ボビン1の磁化率の補償を全く施さない場合は、最大0.7μT程度の誤差磁場を発生することを示している。一方、ボビン1の磁化率を金属薄膜3によって補償した場合は、誤差磁場の発生がほとんど無いことが分かる。つまり、コイルを巻きつけたボビンの反対側に金属箔を設けた核磁気共鳴分光用検出コイルは、ボビンの磁化率を補償し、誤差磁場の発生を抑えるので、NMR信号の分解能を確保する効果がある。   The dotted line is obtained by numerical calculation of the error magnetic field on the central axis of the cylinder generated when the bobbin 1 is only the base material. In the case where no compensation of the magnetic susceptibility of the bobbin 1 is performed, an error magnetic field of about 0.7 μT at maximum is generated. On the other hand, when the magnetic susceptibility of the bobbin 1 is compensated by the metal thin film 3, it can be seen that almost no error magnetic field is generated. In other words, the detection coil for nuclear magnetic resonance spectroscopy in which a metal foil is provided on the opposite side of the bobbin around which the coil is wound compensates for the magnetic susceptibility of the bobbin and suppresses the generation of an error magnetic field, thus ensuring the resolution of the NMR signal. There is.

図5は実施例2を説明する図である。実施例1と異なる点は、ボビン1に対して、磁化率を補償するための金属薄膜3を内側としたことである。RFコイル2はボビン1の外側に貼り付け、RFコイル3が金属薄膜2と電気的に接触することを防止している。   FIG. 5 is a diagram for explaining the second embodiment. The difference from the first embodiment is that the metal thin film 3 for compensating the magnetic susceptibility is arranged inside the bobbin 1. The RF coil 2 is attached to the outside of the bobbin 1 to prevent the RF coil 3 from making electrical contact with the metal thin film 2.

ここで、磁化率を補償したボビンを、内側にある材料と外側にある材料から構成される筒と考える。すると、金属薄膜3をボビン1の内側に貼り付けるか、外側に貼り付けるかの違いは、内側にある材料と外側にある材料のそれぞれの磁化率の正負の関係が変わるだけである。つまり、ボビンの磁化率を金属薄膜によって補償するとすれば、金属薄膜を内側にするか外側にするかに本質な違いはなく、実施例2によってもボビンの磁化率を補償し、かつ、誤差磁場の発生を抑えることで、NMR信号の分解能を確保する効果が得られる。   Here, the bobbin compensated for the magnetic susceptibility is considered as a cylinder composed of an inner material and an outer material. Then, the difference between attaching the metal thin film 3 to the inside of the bobbin 1 or attaching it to the outside only changes the positive / negative relationship between the magnetic susceptibility of the material on the inside and the material on the outside. That is, if the magnetic susceptibility of the bobbin is compensated by the metal thin film, there is no essential difference between the inside of the metal thin film and the outside of the metal thin film. By suppressing the occurrence of this, the effect of ensuring the resolution of the NMR signal can be obtained.

図6は実施例3を説明する図である。実施例3の特徴は、ボビン1の外側の表面に磁化率を補正するため金属薄膜3を貼り付け、次に貼り付けるRFコイル2と金属皮膜3の絶縁を取るために、ポリイミドなどの絶縁膜4を塗布している。絶縁膜4により、RFコイル2や金属薄膜3は、ボビンの外側へ貼り付けることが可能となり、実施例1や実施例2のように、コイルまたは金属薄膜をボビンの内側に貼り付ける際の困難がない。   FIG. 6 is a diagram for explaining the third embodiment. The feature of the third embodiment is that a metal thin film 3 is pasted on the outer surface of the bobbin 1 to correct the magnetic susceptibility, and then an insulation film such as polyimide is used to insulate the RF coil 2 and the metal film 3 to be pasted. 4 is applied. The insulating film 4 allows the RF coil 2 and the metal thin film 3 to be attached to the outside of the bobbin. As in the first and second embodiments, it is difficult to attach the coil or the metal thin film to the inside of the bobbin. There is no.

また、絶縁膜4は金属薄膜3が空気と接触することを防止する。よって、金属皮膜3が酸化し易く、且つ、酸化によって磁化率の補正能力が低下するのを防止できる。   The insulating film 4 prevents the metal thin film 3 from coming into contact with air. Therefore, the metal film 3 is easily oxidized and it is possible to prevent the ability of correcting the magnetic susceptibility from being lowered due to the oxidation.

図7は実施例4を説明する図である。実施例4の特徴は、実施例3と似ており、RFコイル2cに絶縁膜4を塗布した構造である。実施例3のように、RFコイル2cや金属薄膜4がボビン1の外側につく構造となるので、組み立てが容易になる。   FIG. 7 is a diagram for explaining the fourth embodiment. The feature of the fourth embodiment is similar to that of the third embodiment, and is a structure in which the insulating film 4 is applied to the RF coil 2c. Since the RF coil 2c and the metal thin film 4 are attached to the outside of the bobbin 1 as in the third embodiment, assembly is facilitated.

図8は実施例4の変形例を説明する図である。図7と図8の違いは、図7がRFコイル2cの線材の形状が薄膜形状であるのに対し、図8のRFコイル2dの線材が丸線形状である。   FIG. 8 is a diagram for explaining a modification of the fourth embodiment. The difference between FIG. 7 and FIG. 8 is that the shape of the wire of the RF coil 2c in FIG. 7 is a thin film shape, whereas the wire of the RF coil 2d in FIG.

次に本発明の他の実施例を説明する。図9は、ボビンに貫通穴を設ける構成を示している例である。貫通穴8は、例えば直径5mm程度で、ボビン1の材料は石英ガラスである。ボビン1の磁化率を補正する金属薄膜3はクロムである。ボビン1に設けた貫通穴8はz軸の方向を向いている。   Next, another embodiment of the present invention will be described. FIG. 9 is an example showing a configuration in which a through hole is provided in a bobbin. The through hole 8 has a diameter of about 5 mm, for example, and the bobbin 1 is made of quartz glass. The metal thin film 3 that corrects the magnetic susceptibility of the bobbin 1 is chromium. The through hole 8 provided in the bobbin 1 faces the z-axis direction.

図10は、図9の検出コイルのz軸に沿って、7T(テスラ)の磁場をかけたときの、コイルの円筒中心軸上に現れる誤差磁場の大きさを示す。ボビン1の磁化率を補償する金属薄膜3がある場合(実線)と、金属薄膜3がない場合(点線)の誤差磁場を示している。金属薄膜3がない場合はボビン1に直径5mmの貫通穴をあけると、10μTの大きさで表される誤差磁場が発生する。一方、金属薄膜3によりボビン1の磁化率を補償した場合は、直径5mmの貫通穴を開けた場合にも殆ど誤差磁場が発生せず、NMR信号の分解能を確保できる効果がある。   FIG. 10 shows the magnitude of the error magnetic field that appears on the cylindrical central axis of the coil when a magnetic field of 7 T (Tesla) is applied along the z-axis of the detection coil of FIG. The error magnetic field is shown when there is a metal thin film 3 that compensates the magnetic susceptibility of the bobbin 1 (solid line) and when there is no metal thin film 3 (dotted line). When the metal thin film 3 is not provided, an error magnetic field represented by a size of 10 μT is generated when a through hole having a diameter of 5 mm is formed in the bobbin 1. On the other hand, when the magnetic susceptibility of the bobbin 1 is compensated by the metal thin film 3, an error magnetic field is hardly generated even when a through hole having a diameter of 5 mm is formed, and there is an effect that the resolution of the NMR signal can be secured.

図11は、実施例5の応用例を示す構成図である。ボビン1の貫通穴8を通して、光などをサンプル管14に照射し、サンプル15からの透過光や散乱光を直接受ける構成である。この構成では、発光部からサンプル管14まで、あるいはサンプル管14から受光部まで光を遮るものがない。したがって、サンプル15に、テラヘルツ波、赤外線、可視光線、紫外線、X線やレーザー光線やメーザー光線などの電波や光を照射し、その透過光や散乱光などを受光する場合で、かつ同時にNMR信号を受信したい場合に有効な構造となる。   FIG. 11 is a configuration diagram illustrating an application example of the fifth embodiment. The sample tube 14 is irradiated with light or the like through the through hole 8 of the bobbin 1 and directly receives transmitted light and scattered light from the sample 15. In this configuration, there is nothing that blocks light from the light emitting unit to the sample tube 14 or from the sample tube 14 to the light receiving unit. Therefore, when the sample 15 is irradiated with radio waves or light such as terahertz waves, infrared rays, visible rays, ultraviolet rays, X-rays, laser rays, maser rays, etc., and the transmitted light or scattered light is received, the NMR signal is simultaneously received. This is an effective structure for receiving.

従来技術でもボビンに貫通穴を設けることは可能であるが、誤差磁場が発生するので、NMR信号の分解能が下がる。しかし、本発明の検出コイルは金属薄膜によってボビンの磁化率を補正しているので、NMR信号の分解能は高く保持され、同時にサンプルに強い光を照射することが可能になる。これにより、NMR計測と光による計測の同時計測が可能になる。   Even in the prior art, it is possible to provide a through-hole in the bobbin, but since an error magnetic field is generated, the resolution of the NMR signal is lowered. However, since the detection coil of the present invention corrects the magnetic susceptibility of the bobbin by the metal thin film, the resolution of the NMR signal is kept high, and at the same time, the sample can be irradiated with strong light. Thereby, simultaneous measurement of NMR measurement and measurement by light becomes possible.

図12は、本発明の他の実施例によるサンプルの温度管理の説明図である。NMR計測では、サンプル15の温度管理が重要であり、温調ガス30を流すことでサンプル15の温度を調整している。温調ガス30はボビン1にあけられた複数の穴8から流入30aし、下方や上方へと流出30bする。   FIG. 12 is an explanatory diagram of sample temperature management according to another embodiment of the present invention. In NMR measurement, temperature management of the sample 15 is important, and the temperature of the sample 15 is adjusted by flowing the temperature control gas 30. The temperature control gas 30 flows in 30a from a plurality of holes 8 formed in the bobbin 1, and flows out 30b downward or upward.

サンプルから観測されるNMR信号が温度依存性を持つ場合、サンプルの上下方向に温度勾配を生じると、NMRスペクトルが広がり分解能が下がる。このため、サンプル15の温度管理を行う場合、サンプルの上下方向に温度勾配を生じさせないことが必要になる。   When the NMR signal observed from the sample has temperature dependence, if a temperature gradient occurs in the vertical direction of the sample, the NMR spectrum spreads and the resolution decreases. For this reason, when performing temperature control of the sample 15, it is necessary not to generate a temperature gradient in the vertical direction of the sample.

図13は、ボビンの磁化率の補正を行っていない従来技術の例で、温調ガス30を下方から上方向に流している。温調ガス30は、サンプル管14やサンプル15と熱交換をしながら上方向へ放出される。このとき、サンプル15が対流を起こさない条件にある場合、サンプルは上下方向に熱勾配をもつことになる。   FIG. 13 shows an example of a conventional technique in which the correction of the magnetic susceptibility of the bobbin is not performed, and the temperature control gas 30 is flowed upward from below. The temperature control gas 30 is discharged upward while exchanging heat with the sample tube 14 and the sample 15. At this time, if the sample 15 is in a condition that does not cause convection, the sample has a thermal gradient in the vertical direction.

しかし、本実施例の場合は、温調ガス30がボビン1に開けられた複数の穴8から、同時にサンプル管14に放出される。よって、図13の場合よりも、サンプル15やサンプル管14に温度勾配勾配を生じさせない構造となる。   However, in the case of the present embodiment, the temperature control gas 30 is simultaneously released from the plurality of holes 8 formed in the bobbin 1 to the sample tube 14. Therefore, the temperature gradient is not generated in the sample 15 or the sample tube 14 as compared with the case of FIG.

図14は、本発明のさらに他の実施例を説明する図で、RFコイルの引き出し線の配線を示している。図1の全体構成図にも示したように、本実施例のRFコイル2はサンプル管14を軸として内側2aと外側2bにある。この場合、引き出し線40は、サンプル15やサンプル管14に近いところに配線されると、NMR信号の感度や分解能に影響することがある。それは、引き出し線40がサンプル15の不要な信号を拾うことや、引き出し線の作る誤差磁場がサンプル15に影響を与えることによる。また、引き出し線は、感度を落さないために可能な限り短くする方がよい。   FIG. 14 is a diagram for explaining still another embodiment of the present invention, and shows the wiring of the lead wire of the RF coil. As shown in the overall configuration diagram of FIG. 1, the RF coil 2 of this embodiment is located on the inner side 2 a and the outer side 2 b with the sample tube 14 as an axis. In this case, if the lead wire 40 is wired near the sample 15 or the sample tube 14, the sensitivity and resolution of the NMR signal may be affected. This is because the lead wire 40 picks up an unnecessary signal of the sample 15 and the error magnetic field generated by the lead wire affects the sample 15. Moreover, it is better to make the lead wire as short as possible so as not to reduce the sensitivity.

図14では、RFコイル2aの引き出し線40はRFコイル2bのボビン1bにあけた穴9を通して配線している。ボビン1bに引き出し線40を貫通させるには、当然、ボビン1bに引き出し線40が通る大きさの穴9が必要となる。ボビン1bの磁化率が補正されていない場合、このような穴9を設けると、それが誤差磁場発生の原因となってNMR信号の分解能を下げることになる。   In FIG. 14, the lead wire 40 of the RF coil 2a is wired through the hole 9 formed in the bobbin 1b of the RF coil 2b. In order to allow the lead wire 40 to pass through the bobbin 1b, naturally, a hole 9 having a size through which the lead wire 40 passes through the bobbin 1b is required. When the magnetic susceptibility of the bobbin 1b is not corrected, providing such a hole 9 causes the generation of an error magnetic field, which lowers the resolution of the NMR signal.

しかし、本実施例では、ボビン1bの磁化率を補正する金属薄膜3を設けているので、穴9を設けても誤差磁場の発生は抑えられる。即ち、ボビン1の磁化率を補正する構成によって、引き出し線40の配線を外側のボビンに設けた穴を通すことで、NMR信号の感度や分解能への影響を防止できる効果がある。   However, in the present embodiment, since the metal thin film 3 for correcting the magnetic susceptibility of the bobbin 1b is provided, the generation of the error magnetic field can be suppressed even if the hole 9 is provided. In other words, the configuration in which the magnetic susceptibility of the bobbin 1 is corrected has an effect of preventing influence on the sensitivity and resolution of the NMR signal by passing the lead wire 40 through the hole provided in the outer bobbin.

本発明が適用されるNMR計測装置の構成図。The block diagram of the NMR measuring device with which this invention is applied. 本発明に係る実施例1の検出コイルの断面図。Sectional drawing of the detection coil of Example 1 which concerns on this invention. 実施例1の検出コイルの1例の詳細図。FIG. 3 is a detailed view of an example of a detection coil according to the first embodiment. 実施例1と従来技術の磁場誤差を示すグラフ。The graph which shows the magnetic field error of Example 1 and a prior art. 本発明に係る実施例2の検出コイルの断面図。Sectional drawing of the detection coil of Example 2 which concerns on this invention. 本発明に係る実施例3の検出コイルの断面図。Sectional drawing of the detection coil of Example 3 which concerns on this invention. 本発明に係る実施例4の検出コイルの断面図。Sectional drawing of the detection coil of Example 4 which concerns on this invention. 実施例4の変形例による検出コイルの断面図。Sectional drawing of the detection coil by the modification of Example 4. FIG. 本発明に係る実施例5の検出コイルの詳細断面図。FIG. 10 is a detailed cross-sectional view of a detection coil according to a fifth embodiment of the present invention. 実施例5と従来技術の磁場誤差を示すグラフ。The graph which shows the magnetic field error of Example 5 and a prior art. 実施例5の一つの応用例を示す説明図。FIG. 10 is an explanatory diagram illustrating one application example of the fifth embodiment. 本発明に係る実施例6の検出コイルと温調の構成図。The block diagram of the detection coil and temperature control of Example 6 which concerns on this invention. 従来の検出コイルと温調の構成図。The block diagram of the conventional detection coil and temperature control. 本発明に係る実施例6の検出コイルと引き出し線の構成図。The block diagram of the detection coil and leader line of Example 6 which concerns on this invention.

符号の説明Explanation of symbols

1…ボビン、2…RFコイル、3…金属薄膜、4…絶縁膜、5…石英ガラス、6…クロム薄膜、8…貫通穴、9…穴、10…超伝導磁石、11…室温シムコイル磁石、12…プローブ、13…計測コンソール、14…サンプル管、15…サンプル、20…計測機器、30…温調ガスの流れ、40…引き出し線。   DESCRIPTION OF SYMBOLS 1 ... Bobbin, 2 ... RF coil, 3 ... Metal thin film, 4 ... Insulating film, 5 ... Quartz glass, 6 ... Chrome thin film, 8 ... Through-hole, 9 ... Hole, 10 ... Superconducting magnet, 11 ... Room temperature shim coil magnet, DESCRIPTION OF SYMBOLS 12 ... Probe, 13 ... Measurement console, 14 ... Sample tube, 15 ... Sample, 20 ... Measuring instrument, 30 ... Flow of temperature control gas, 40 ... Lead line.

Claims (10)

サンプルの核磁気共鳴信号を検出する核磁気共鳴用プローブにおいて、
サンプルの核スピンからの核磁気共鳴信号を受信するRFコイルと、前記RFコイルの巻き軸であるボビンと、前記ボビンに設けられボビン母材が持つ磁化率と逆極性となる金属材とを含み、前記ボビンの磁化率が雰囲気中の磁化率と等しくなるように構成したことを特徴とする核磁気共鳴用プローブ。
In a nuclear magnetic resonance probe that detects a nuclear magnetic resonance signal of a sample,
An RF coil that receives a nuclear magnetic resonance signal from a nuclear spin of a sample, a bobbin that is a winding axis of the RF coil, and a metal material that is provided on the bobbin and has a polarity opposite to the magnetic susceptibility of the bobbin base material A nuclear magnetic resonance probe characterized in that the bobbin has a magnetic susceptibility equal to that in the atmosphere.
請求項1において、前記ボビンに対し、前記RFコイルと前記金属材の一方を円筒状のボビン内側、他方をボビン外側に設けたことを特徴とする核磁気共鳴用プローブ。   2. The nuclear magnetic resonance probe according to claim 1, wherein one of the RF coil and the metal material is provided inside the cylindrical bobbin and the other is provided outside the bobbin with respect to the bobbin. 請求項1において、前記ボビンに対し、前記RFコイルと前記金属材をボビン外側に設け、かつ前記RFコイルと前記金属材間に絶縁材を施したことを特徴とする核磁気共鳴用プローブ。   2. The nuclear magnetic resonance probe according to claim 1, wherein the RF coil and the metal material are provided outside the bobbin with respect to the bobbin, and an insulating material is applied between the RF coil and the metal material. 請求項1−3の何れかにおいて、前記金属材は金属薄膜、前記RFコイルは金属薄膜または線材によって形成されることを特徴とする核磁気共鳴用プローブ。   4. The nuclear magnetic resonance probe according to claim 1, wherein the metal material is a metal thin film, and the RF coil is a metal thin film or a wire. 請求項1−4の何れかにおいて、前記ボビンの上下方向をy軸、その直交方向をz軸とし、該z軸の方向に貫通穴を設けたことを特徴とする核磁気共鳴用プローブ。   5. The nuclear magnetic resonance probe according to claim 1, wherein a vertical direction of the bobbin is a y-axis and a direction perpendicular thereto is a z-axis, and a through hole is provided in the z-axis direction. 請求項1−5の何れかにおいて、前記ボビンを石英ガラス、前記金属材をクロム(Cr)によって構成したことを特徴とする核磁気共鳴用プローブ。   6. The nuclear magnetic resonance probe according to claim 1, wherein the bobbin is made of quartz glass and the metal material is made of chromium (Cr). サンプルの核磁気共鳴信号を検出する核磁気共鳴用プローブにおいて、
サンプルの核スピンからの核磁気共鳴信号を受信するRFコイルと、前記RFコイルの巻き軸であるボビンと、前記ボビンに設けられボビン母材が持つ磁化率と逆極性となる金属材とを含み、前記ボビンの磁化率が雰囲気中の磁化率と等しくなるように構成し、
前記ボビンの上下方向をy軸、その直交方向をz軸とし、該z軸の方向に貫通穴を設け、該貫通穴の一方の側に発光部、他方の側に受光部を設けたことを特徴とする核磁気共鳴用プローブ。
In a nuclear magnetic resonance probe that detects a nuclear magnetic resonance signal of a sample,
An RF coil that receives a nuclear magnetic resonance signal from a nuclear spin of a sample, a bobbin that is a winding axis of the RF coil, and a metal material that is provided on the bobbin and has a polarity opposite to the magnetic susceptibility of the bobbin base material The bobbin has a magnetic susceptibility equal to that in the atmosphere,
The vertical direction of the bobbin is the y-axis, the orthogonal direction is the z-axis, a through hole is provided in the z-axis direction, a light emitting part is provided on one side of the through hole, and a light receiving part is provided on the other side. A probe for nuclear magnetic resonance.
請求項7において、前記発光部はテラヘルツ波、赤外線、可視光線、紫外線、X線、レーザー光線またはメーザー光線を前記サンプルに照射することを特徴とする核磁気共鳴用プローブ。   8. The nuclear magnetic resonance probe according to claim 7, wherein the light emitting unit irradiates the sample with terahertz waves, infrared rays, visible rays, ultraviolet rays, X-rays, laser rays, or maser rays. 検出コイル内にサンプル管を配置し、サンプルの核磁気共鳴信号を検出する核磁気共鳴用プローブにおいて、
サンプルの核スピンからの核磁気共鳴信号を受信するRFコイルと、前記RFコイルの巻き軸であるボビンと、前記ボビンに設けられボビン母材が持つ磁化率と逆極性となる金属材とを含み、前記ボビンの磁化率が雰囲気中の磁化率と等しくなるように構成し、
前記ボビンの上下方向をy軸、その直交方向をz軸とし、該z軸の方向に複数の貫通穴を設け、前記サンプル管の温度調整のために前記複数の貫通穴を通して温調用流体を流す構成としたことを特徴とする核磁気共鳴用プローブ。
In a nuclear magnetic resonance probe that arranges a sample tube in a detection coil and detects a nuclear magnetic resonance signal of the sample,
An RF coil that receives a nuclear magnetic resonance signal from a nuclear spin of a sample, a bobbin that is a winding axis of the RF coil, and a metal material that is provided on the bobbin and has a polarity opposite to the magnetic susceptibility of the bobbin base material The bobbin has a magnetic susceptibility equal to that in the atmosphere,
The vertical direction of the bobbin is the y-axis, the orthogonal direction is the z-axis, a plurality of through holes are provided in the z-axis direction, and the temperature adjusting fluid is allowed to flow through the plurality of through holes for temperature adjustment of the sample tube. A probe for nuclear magnetic resonance characterized in that it is configured.
検出コイル内にサンプル管を配置し、サンプルの核磁気共鳴信号を検出する核磁気共鳴用プローブにおいて、
前記検出コイルは、サンプルの核スピンからの核磁気共鳴信号を受信するRFコイルと、前記RFコイルの巻き軸であるボビンと、前記ボビンに設けられボビン母材が持つ磁化率と逆極性となる金属材とを含み、前記ボビンの磁化率が雰囲気中の磁化率と等しくなるように構成し、
このように構成した検出コイルを前記サンプル管に対して二重に配置し、その内側のRFコイルの引き出し線を、外側のボビンにあけた穴を通して引き出す構成としたことを特徴とする核磁気共鳴用プローブ。
In a nuclear magnetic resonance probe that arranges a sample tube in a detection coil and detects a nuclear magnetic resonance signal of the sample,
The detection coil has an RF coil that receives a nuclear magnetic resonance signal from a nuclear spin of a sample, a bobbin that is a winding axis of the RF coil, and a polarity opposite to a magnetic susceptibility of a bobbin base material provided on the bobbin. A metal material, and configured such that the magnetic susceptibility of the bobbin is equal to the magnetic susceptibility in the atmosphere,
A nuclear magnetic resonance characterized in that the detection coil configured in this manner is doubled with respect to the sample tube, and the lead wire of the inner RF coil is pulled out through a hole formed in the outer bobbin. Probe.
JP2006078703A 2006-03-22 2006-03-22 Nuclear magnetic resonance probe Expired - Fee Related JP4933122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078703A JP4933122B2 (en) 2006-03-22 2006-03-22 Nuclear magnetic resonance probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078703A JP4933122B2 (en) 2006-03-22 2006-03-22 Nuclear magnetic resonance probe

Publications (2)

Publication Number Publication Date
JP2007255991A true JP2007255991A (en) 2007-10-04
JP4933122B2 JP4933122B2 (en) 2012-05-16

Family

ID=38630394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078703A Expired - Fee Related JP4933122B2 (en) 2006-03-22 2006-03-22 Nuclear magnetic resonance probe

Country Status (1)

Country Link
JP (1) JP4933122B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192237A (en) * 2008-02-12 2009-08-27 Hitachi Ltd Nmr probe and nmr apparatus
CN101819283A (en) * 2010-05-06 2010-09-01 煤炭科学研究总院西安研究院 Magnetic probe
JP2013514847A (en) * 2009-12-22 2013-05-02 サニーブルック ヘルス サイエンスセンター Tracking device for interventional device that can be imaged by MRI and method of using the same
JP2015186915A (en) * 2014-02-24 2015-10-29 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Custom-made magnetic susceptibility materials
JP2020201061A (en) * 2019-06-07 2020-12-17 日本電子株式会社 Nmr measurement probe and method for manufacturing the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173754A (en) * 1981-04-21 1982-10-26 Mochida Pharmaceut Co Ltd Magnetic blood diagnozing device
JPH0324487A (en) * 1989-06-21 1991-02-01 Jeol Ltd Nuclear magnetic resonance probe
JP2000266828A (en) * 1999-03-16 2000-09-29 Jeol Ltd Laminated body not exerting magnetostriction and sample coil for nuclear magnetic resonance apparatus using the same
JP2001153939A (en) * 1999-11-26 2001-06-08 Jeol Ltd Detector
JP2001174536A (en) * 1999-12-15 2001-06-29 Inst Of Physical & Chemical Res Yield detecting magnetic resonance device
JP2001194440A (en) * 2000-01-14 2001-07-19 Jeol Ltd Manufacturing method for conductive material inside magnetic field
JP2002085378A (en) * 2000-09-20 2002-03-26 Toshiba Medical System Co Ltd Rf coil for use in magnetic resonance imaging device
JP2003011268A (en) * 2001-06-28 2003-01-15 Jeol Ltd Metal laminate and coil for nmr made of the metal laminate
JP2003014835A (en) * 2001-07-05 2003-01-15 Jeol Ltd Nmr probe and its adjustment method
JP2003329755A (en) * 2002-05-08 2003-11-19 Hitachi Ltd Nmr analyzer
JP2004212354A (en) * 2003-01-09 2004-07-29 Jeol Ltd Nuclear magnetic resonance probe
JP2004301773A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Nmr probe
JP2004309208A (en) * 2003-04-03 2004-11-04 Hitachi Ltd Magnet for nmr analyzer, and nmr analyzer using it
JP2004325439A (en) * 2003-04-11 2004-11-18 Jeol Ltd Nmr measuring method and nmr apparatus
JP2004327593A (en) * 2003-04-23 2004-11-18 Hitachi Ltd Magnese diboride superconducting wire rod and its manufacturing method
JP2005095479A (en) * 2003-09-26 2005-04-14 Hitachi Medical Corp Magnetic resonance imaging apparatus and the receiving coil thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173754A (en) * 1981-04-21 1982-10-26 Mochida Pharmaceut Co Ltd Magnetic blood diagnozing device
JPH0324487A (en) * 1989-06-21 1991-02-01 Jeol Ltd Nuclear magnetic resonance probe
JP2000266828A (en) * 1999-03-16 2000-09-29 Jeol Ltd Laminated body not exerting magnetostriction and sample coil for nuclear magnetic resonance apparatus using the same
JP2001153939A (en) * 1999-11-26 2001-06-08 Jeol Ltd Detector
JP2001174536A (en) * 1999-12-15 2001-06-29 Inst Of Physical & Chemical Res Yield detecting magnetic resonance device
JP2001194440A (en) * 2000-01-14 2001-07-19 Jeol Ltd Manufacturing method for conductive material inside magnetic field
JP2002085378A (en) * 2000-09-20 2002-03-26 Toshiba Medical System Co Ltd Rf coil for use in magnetic resonance imaging device
JP2003011268A (en) * 2001-06-28 2003-01-15 Jeol Ltd Metal laminate and coil for nmr made of the metal laminate
JP2003014835A (en) * 2001-07-05 2003-01-15 Jeol Ltd Nmr probe and its adjustment method
JP2003329755A (en) * 2002-05-08 2003-11-19 Hitachi Ltd Nmr analyzer
JP2004212354A (en) * 2003-01-09 2004-07-29 Jeol Ltd Nuclear magnetic resonance probe
JP2004301773A (en) * 2003-03-31 2004-10-28 Institute Of Physical & Chemical Research Nmr probe
JP2004309208A (en) * 2003-04-03 2004-11-04 Hitachi Ltd Magnet for nmr analyzer, and nmr analyzer using it
JP2004325439A (en) * 2003-04-11 2004-11-18 Jeol Ltd Nmr measuring method and nmr apparatus
JP2004327593A (en) * 2003-04-23 2004-11-18 Hitachi Ltd Magnese diboride superconducting wire rod and its manufacturing method
JP2005095479A (en) * 2003-09-26 2005-04-14 Hitachi Medical Corp Magnetic resonance imaging apparatus and the receiving coil thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192237A (en) * 2008-02-12 2009-08-27 Hitachi Ltd Nmr probe and nmr apparatus
JP2013514847A (en) * 2009-12-22 2013-05-02 サニーブルック ヘルス サイエンスセンター Tracking device for interventional device that can be imaged by MRI and method of using the same
CN101819283A (en) * 2010-05-06 2010-09-01 煤炭科学研究总院西安研究院 Magnetic probe
JP2015186915A (en) * 2014-02-24 2015-10-29 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Custom-made magnetic susceptibility materials
EP2910370A3 (en) * 2014-02-24 2015-12-23 Northrop Grumman Systems Corporation Customized magnetic susceptibility materials
US9810751B2 (en) 2014-02-24 2017-11-07 Northrop Grumman Systems Corporation Customized magnetic susceptibility materials
US10451690B2 (en) 2014-02-24 2019-10-22 Northrop Grumman Systems Corporation Customized magnetic susceptibility materials
JP2020201061A (en) * 2019-06-07 2020-12-17 日本電子株式会社 Nmr measurement probe and method for manufacturing the same

Also Published As

Publication number Publication date
JP4933122B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US8884615B2 (en) Magnetoresistive sensor arrangement for current measurement
US5684401A (en) Apparatus and method for compensation of magnetic susceptibility variation in NMR microspectroscopy detection microcoils
US4905316A (en) Magnetic field generating system for magnetic resonance imaging system
JP4933122B2 (en) Nuclear magnetic resonance probe
US20230400534A1 (en) Sensor using a field gradient in a given volume
GB2237883A (en) Nuclear magnetic resonance imaging spectrometer
JP2007190316A (en) Electromagnetic device
US9766312B2 (en) Easily accessible deep-frozen NMR shim arrangement
US6812700B2 (en) Correction of local field inhomogeneity in magnetic resonance imaging apparatus
CN109313245B (en) Superconducting magnet and method of operating the same
JP2011510261A (en) Radio frequency coil for arcuate saddle-shaped nuclear magnetic resonance
JP2008020401A (en) High-resolution nmr probe
US7804301B2 (en) NMR probe
JP5246649B2 (en) Magnetic field stabilization mechanism, magnetic resonance apparatus, and electron spin resonance apparatus
US9182465B2 (en) MRT gradient system with integrated main magnetic field generation
JP3833926B2 (en) Linear member and method of manufacturing linear member
JP6606698B1 (en) BH curve measuring device for amorphous wire
JP4034224B2 (en) Magnet for nuclear magnetic resonance apparatus and nuclear magnetic resonance analyzer using the same
US7602198B2 (en) Accuracy enhancing mechanism and method for current measuring apparatus
JP5026757B2 (en) NMR probe and NMR apparatus
JP4034223B2 (en) Superconducting magnet for NMR apparatus and NMR apparatus
WO2015072301A1 (en) Magnetic resonance imaging apparatus
JPH1119064A (en) Magnetic field detection method and mri apparatus
JP5308883B2 (en) NMR probe
WO2017056808A1 (en) Current measurement device and magnetic resonance measurement system provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees