JPH11196885A - Marine micro-alga producing ethanol - Google Patents

Marine micro-alga producing ethanol

Info

Publication number
JPH11196885A
JPH11196885A JP10017698A JP1769898A JPH11196885A JP H11196885 A JPH11196885 A JP H11196885A JP 10017698 A JP10017698 A JP 10017698A JP 1769898 A JP1769898 A JP 1769898A JP H11196885 A JPH11196885 A JP H11196885A
Authority
JP
Japan
Prior art keywords
ethanol
cells
starch
micro
microalgae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10017698A
Other languages
Japanese (ja)
Other versions
JP3837589B2 (en
Inventor
Atsushi Hirano
篤 平野
Shin Hirayama
伸 平山
Ryohei Ueda
良平 植田
Seiji Kagawa
晴治 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP01769898A priority Critical patent/JP3837589B2/en
Publication of JPH11196885A publication Critical patent/JPH11196885A/en
Application granted granted Critical
Publication of JP3837589B2 publication Critical patent/JP3837589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a marine micro-alga that can produce ethanol and to provide a process that can efficiently produce ethanol by using the micro-alga in no need of a large amount of water and even in a dry region having reduced amount of rain fall. SOLUTION: This is a micro-alga in Chlamydomonas that grows in an aqueous solution containing salts of sea water concentrations to accumulate starch in its cells and produce ethanol from the starch in the cells by keeping the cells in a dark and anaerobic atmosphere. The ethanol is by culturing a micro- alga, Chlamydomonas sp. MT-JE-SH-1 in an aqueous solution containing the salts of the seawater concentrations to accumulate starch in the cells of the micro-algae. Then, the slurry including the cell bodies of the micro-algae cultured is held in the dark place and anaerobic atmosphere, while the pH of the culture mixture is kept at 6.0-9.0, thereby forming ethanol.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料や化学原料等と
して有用なエタノールの製造のために用いる新規な微細
藻及び該微細藻によるエタノール製造方法に関する。
The present invention relates to a novel microalga used for producing ethanol useful as a fuel or a chemical raw material, and a method for producing ethanol using the microalga.

【0002】[0002]

【従来の技術】従来、エタノールは石炭、石油等の化石
資源を原料としてエチレンを経由して化学合成する方
法、あるいはサトウキビの糖やトウモロコシの澱粉等の
バイオマスを原料として発酵生産する方法により製造さ
れている。原料が澱粉の場合は、酸加水分解やカビ等の
作用により澱粉を単糖まで糖化し、更に酵母等のアルコ
ール発酵微生物を作用させ、エタノールに変換するもの
である。
2. Description of the Related Art Conventionally, ethanol is produced by a method of chemically synthesizing fossil resources such as coal and petroleum via ethylene, or a method of fermenting and producing biomass such as sugar cane sugar or corn starch as a raw material. ing. When the raw material is starch, the starch is saccharified to monosaccharides by the action of acid hydrolysis or mold, and further converted to ethanol by the action of an alcohol-fermenting microorganism such as yeast.

【0003】バイオマス原料の中で、クロレラ,ドナリ
エラ,クラミドモナスなどで代表される微細藻は光合成
生物の中でも極めて生産性が高いことが知られている
が、これらの中には澱粉を多量に(乾燥重量の約20〜
50重量%)含有するものが知られており、これらの微
細藻澱粉を原料として前記の方法によりエタノールを製
造する方法がある。(文献:特公昭54−11397、
特公昭55−11316各号公報)
[0003] Among biomass raw materials, microalgae represented by chlorella, Donariella, Chlamydomonas and the like are known to have extremely high productivity among photosynthetic organisms. About 20 ~ of weight
50% by weight), and there is a method for producing ethanol by the above-described method using these microalga starches as raw materials. (Literature: Japanese Patent Publication No. 54-11397,
Japanese Patent Publication No. 55-11316

【0004】また、本発明者らは澱粉含有微細藻の中に
細胞内澱粉をエタノールに変換する反応を行なうものが
いることに着目し、このような澱粉含有微細藻を培養
し、この微細藻を濃縮したスラリーのpHを中性付近に
保ちながら暗くかつ嫌気性雰囲気に保持してエタノール
を生成させることによりエタノールを製造できることを
見いだし、特願平5−239845号として特許出願し
た。
[0004] The present inventors have also noticed that some of the starch-containing microalgae perform a reaction of converting intracellular starch into ethanol, and cultivate such starch-containing microalgae. It has been found that ethanol can be produced by producing ethanol while maintaining the pH of a concentrated slurry in a dark and anaerobic atmosphere while maintaining the pH near neutrality, and filed a patent application as Japanese Patent Application No. 5-239845.

【0005】従来の微細藻澱粉を原料にエタノール発酵
微生物を用いてエタノールを製造する方法では、原料と
なる微生物細胞内の澱粉を一旦抽出し、分離回収する必
要があるが、微細藻の細胞壁は強固なものが多く、機械
的な破砕に多くの動力を消費したり、高価な細胞壁分解
酵素を必要とした。また、澱粉の抽出・精製では多量の
有機溶剤や遠心分離の動力が必要であることが問題であ
った。
[0005] In the conventional method of producing ethanol by using ethanol fermentation microorganisms from microalgae starch as a raw material, it is necessary to once extract, separate and recover the starch in the microbial cells as a raw material. Many were strong, requiring a lot of power for mechanical disruption and requiring expensive cell wall degrading enzymes. In addition, extraction and purification of starch require a large amount of organic solvent and power for centrifugation.

【0006】更に、抽出した澱粉は生の状態にあるた
め、糖化酵素により糖化する前に、加熱処理し澱粉を糊
化する必要があり、この工程で多量の加熱のためのエネ
ルギが必要であることも問題であった。通常この加熱エ
ネルギはエタノール製造工程全体のエネルギの2〜3割
を占めるとされる。
[0006] Further, since the extracted starch is in a raw state, it is necessary to heat-treat the starch before saccharification by the saccharifying enzyme to gelatinize the starch. In this step, a large amount of energy for heating is required. That was also a problem. Usually, this heating energy is supposed to account for 20 to 30% of the energy of the whole ethanol production process.

【0007】これに対して、澱粉含有微細藻を培養した
後、この微細藻を濃縮したスラリーのpHを中性付近に
保ちながら、暗くかつ嫌気性雰囲気に保持してエタノー
ルを生成させる本発明者らが特願平5−239845号
で提案した方法は、微細藻細胞内の澱粉を抽出分離する
必要はなく、また生澱粉糊化のための加熱、更に糖化も
不要であり、エタノール発酵も微細藻自身が行うため、
従来の方法に比べて工程が大幅に簡略化され、製造のた
めのエネルギの低減が可能となった。
[0007] On the other hand, the present inventors have found that after cultivating a starch-containing microalgae, ethanol is produced while maintaining the pH of the slurry obtained by concentrating the microalgae at around neutral, and in a dark and anaerobic atmosphere. The method proposed in Japanese Patent Application No. 5-239845 does not need to extract and separate the starch in the microalgae cells, does not require heating for gelatinization of raw starch, further does not require saccharification, and has a fine ethanol fermentation. Because the algae themselves do it,
The process is greatly simplified as compared with the conventional method, and the energy for manufacturing can be reduced.

【0008】[0008]

【発明が解決しようとする課題】前記の、本発明者らの
提案した方法においても、なお次のような課題がある。
微細藻の培養規模が大きくなるほど、培養のために大量
の水が必要となるが、特に、微細藻の培養に有利な日照
量が大きな地域では、降雨量が少なく淡水の確保がネッ
クとなることが多い。従って、このような地域でも大量
の淡水を必要とせず培養できる微細藻が望まれている。
そのような降雨の少ない地域でも、沿海部では海水がほ
ぼ無尽蔵に利用できるため、本発明者等は海水で旺盛に
増殖し、澱粉を多く含有し、且つ細胞内澱粉のエタノー
ル変換性能に優れた微細藻であれば、上記課題を解決で
きると考えついたが、これまでにこのような微細藻につ
いての報告はなかった。本発明の目的は、このような微
細藻の提供及びこの微細藻を用いたエタノールの製造方
法の提供にある。
The above-mentioned method proposed by the present inventors still has the following problems.
Larger microalga culture scales require more water for cultivation, but in areas where the amount of sunshine is favorable for microalga cultivation, where there is little rainfall, securing fresh water is a bottleneck. There are many. Therefore, microalgae that can be cultured in such an area without requiring a large amount of freshwater are desired.
Even in such areas with little rainfall, the seawater can be used almost inexhaustibly in the coastal areas, so the present inventors proliferate vigorously in seawater, contain a large amount of starch, and have excellent ethanol conversion performance of intracellular starch. We thought that microalgae could solve the above problems, but there was no report on such microalgae so far. An object of the present invention is to provide such a microalga and to provide a method for producing ethanol using the microalga.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する手段
として本発明は、(1)海水の塩分濃度で生育して細胞
内に澱粉を蓄積し、暗くかつ嫌気性雰囲気に保つことに
より、細胞内の澱粉よりエタノールを生産するクラミド
モナス属に属する微細藻 Chlamydomonas sp. MT-JE-SH-
1 、及び(2)クラミドモナス属に属する微細藻 Chla
mydomonas sp. MT-JE-SH-1を海水の塩分濃度で培養して
細胞内に澱粉を蓄積させた後、培養した藻体を含むスラ
リーを、pHを6.0〜9.0の範囲に保ちながら暗黒
かつ嫌気性雰囲気に保持してエタノールを生成させるこ
とを特徴とするエタノール製造方法、を提供するもので
ある。
Means for Solving the Problems As means for solving the above problems, the present invention provides (1) a method of growing at a salt concentration of seawater, accumulating starch in the cells, and maintaining the cells in a dark and anaerobic atmosphere; Chlamydomonas sp. MT-JE-SH-, a microalga belonging to the genus Chlamydomonas, which produces ethanol from starch in soil
1 and (2) Chla, a microalga belonging to the genus Chlamydomonas
After culturing mydomonas sp. MT-JE-SH-1 at the salt concentration of seawater to accumulate starch in the cells, the slurry containing the cultured alga bodies was adjusted to pH 6.0 to 9.0. It is intended to provide a method for producing ethanol, characterized in that ethanol is produced while keeping a dark and anaerobic atmosphere while keeping ethanol.

【0010】[0010]

【発明の実施の形態】本発明者らは、多数の海水を採取
し、海水でも旺盛に増殖し、澱粉を多く含有し、且つ細
胞内澱粉のエタノール変換性能に優れた微細藻を探索、
分離、検討の結果、紅海海水より上記課題を解決できる
優れた性能の微細藻を分離することに成功し、本発明に
至った。本株は細胞内澱粉をエタノールに変換し、この
エタノールを細胞外に放出するので、従来のように細胞
を破壊して澱粉を抽出分離するする必要はなく、生澱粉
糊化のための加熱や糖化も不要であるので、簡単な工程
で製造エネルギを低減できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have collected a large amount of seawater, searched for microalgae that vigorously proliferate in seawater, contain a large amount of starch, and have excellent ethanol conversion performance of intracellular starch.
As a result of the separation and examination, the present inventors succeeded in separating microalgae having excellent performance capable of solving the above-mentioned problem from the Red Sea seawater, and have reached the present invention. This strain converts intracellular starch into ethanol and releases this ethanol out of the cell.Therefore, there is no need to break down the cells and extract and separate the starch as in the conventional method. Since saccharification is unnecessary, the production energy can be reduced by a simple process.

【0011】本発明の微細藻は、下記に示す光合成色素
成分及び形態学的特徴より、クラミドモナス属と同定さ
れ、本発明者らはこの藻株を Chlamydomonas sp. MT-JE
-SH-1 株と命名した。また、本株を工業技術院生命工学
工業技術研究所に寄託申請したが、「緑藻であるため」
との理由により受託拒否に該当した。なお、クラミドモ
ナス属に分類される微細藻は淡水性で多くの種類が知ら
れ、また、海水性でも数種が報告されている。
The microalga of the present invention was identified as Chlamydomonas based on the following photosynthetic pigment components and morphological characteristics, and the present inventors designated this algal strain as Chlamydomonas sp. MT-JE.
-SH-1 strain. In addition, the strain was submitted to the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology for deposit.
Was rejected for the reason. It should be noted that many types of microalgae classified into the genus Chlamydomonas are known as being freshwater, and several types are also reported in seawater.

【0012】本発明のChlamydomonas sp. MT-JE-SH-1株
の海水からの分離は以下の操作により行った。入手した
紅海海水(約5000ml)を遠心分離(3000x
g,10min)し、その大部分の上清を捨て、残った
沈殿物と僅かな海水を懸濁し、その懸濁物1mlをゲン
ランガムを支持体とする表1に示す組成の改変ES培地
に塗布した。次にこのゲランガム培地を1500Lu
x、25℃の環境下で約1ケ月静置培養し、緑黄色の広
がったコロニー状の微細藻を得ることができた。しか
し、この微細藻のコロニー状のものは、顕微鏡観察によ
り、複数種の微細藻が混在しているものと判断されたた
め、次に、この混在する微細藻から、顕微鏡下でキャピ
ラリーピペットにより楕円形の微細藻を1個ずつつり上
げ、前記改変ES培地100μlを入れたマイクロタイ
タープレートに移植し、これらの微細藻12個を約2ケ
月間、1500Lux、25℃の環境下で静置培養する
と、そのうち5株が単一種の微細藻として数万個レベル
に増殖した。
The Chlamydomonas sp. MT-JE-SH-1 strain of the present invention was separated from seawater by the following procedure. The obtained Red Sea seawater (about 5000 ml) is centrifuged (3000x
g, 10 min), discard most of the supernatant, suspend the remaining precipitate and a little seawater, and apply 1 ml of the suspension to a modified ES medium having the composition shown in Table 1 and using genlan gum as a support. did. Next, this gellan gum medium was added to 1500 Lu
The culture was allowed to stand still for about one month in an environment of x and 25 ° C., whereby a green-yellow spread colony-like microalgae could be obtained. However, this microalgal colony was determined by microscopic observation to be a mixture of multiple types of microalgae. Next, from this mixed microalgae, an elliptical shape was obtained using a capillary pipette under a microscope. One microalgae was lifted up, transplanted to a microtiter plate containing 100 μl of the modified ES medium, and these microalgae were statically cultured in an environment of 1500 Lux and 25 ° C. for about 2 months. Five strains grew to tens of thousands as a single species of microalgae.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、これらを10mlの改変ES培地入
りのL字管に移し、約3週間、3500Lux,25
℃,60rpmにて振盪培養したところ、そのうち3株
がL字管に付着することなく浮遊状態で、細胞濃度を簡
易的に濁度で示すOD750 が3以上になるまで増殖し
た。この10mlをさらに60mlの改変ES培地の入
った100mlの三角フラスコに移し、25℃,60r
pmで2週間振盪培養することにより、微細藻の大量培
養に用いる種株を得ることができた。次に、この3株を
1300ml規模の偏平大型培養ビンにて15000L
ux,25℃,0.5%CO2 含有(空気)雰囲気下で
培養し、増殖速度、澱粉含有率及びエタノール生産性能
を比較評価した。その結果、この中で、これらの性能が
最も優れた1株を獲得し、この株を Chlamydomonas sp.
MT-JE-SH-1 株と命名した。
Next, these were transferred to an L-shaped tube containing 10 ml of the modified ES medium, and were cultured for about 3 weeks at 3500 Lux, 25
When shaking culture was performed at 60 ° C. and 60 ° C., three of the strains grew in a floating state without adhering to the L-shaped tube until the OD 750, whose cell concentration was simply indicated by turbidity, became 3 or more. This 10 ml was further transferred to a 100 ml Erlenmeyer flask containing 60 ml of the modified ES medium, and was heated at 25 ° C. for 60 r.
By performing shaking culture at pm for 2 weeks, a seed strain used for mass culture of microalgae could be obtained. Next, 15,000 L of these three strains was placed in a 1300 ml flat large culture bottle.
The cells were cultured in an atmosphere of ux, 25 ° C. and 0.5% CO 2 (air), and the growth rate, starch content, and ethanol production performance were comparatively evaluated. As a result, among them, one strain having the best performance was obtained, and this strain was obtained from Chlamydomonas sp.
It was named MT-JE-SH-1 strain.

【0015】Chlamydomonas sp. MT-JE-SH-1株の菌学的
特徴を以下に示す。なお、本藻株の栄養細胞(好適生育
環境、豊富な栄養条件下で旺盛に増殖する状態での細
胞)及び不動細胞(生育環境悪化、栄養枯渇条件下での
細胞)の顕微鏡写真を図1に、また栄養細胞の薄層切片
の透過型電子顕微鏡写真を図2に示す。図3は図2の顕
微鏡写真を模式的に示した説明図である。 形状 :楕円形 大きさ :栄養細胞 7〜12μm 不動細胞 10〜16μm 鞭毛 :栄養細胞において、細胞長の約1.5倍のものを2本有する。 運動性 :有り(栄養細胞の状態においてのみ) 光合成色素:クロロフィルa、クロロフィルb、カロチノイドを有する(薄層 クロマトグラフィーにより検出) 細胞構造 :細胞の外周部に細胞壁を有する。 眼点を有する。 カップ型の葉緑体を有する。 丸型のピレノイドを葉緑体の基底部に有する。 葉緑体の内部に多数の澱粉粒を有する。 塩分耐性 :光独立栄養条件での培養における増殖に適した塩分濃度は2〜5 重量%NaClであり、海水の塩分濃度(約3.5重量%)付近 が至適とみられる。
The bacteriological characteristics of Chlamydomonas sp. MT-JE-SH-1 strain are shown below. The micrographs of the vegetative cells of the present algal strain (preferred growth environment, cells under vigorous growth under abundant nutrient conditions) and immobile cells (cells under poor growth environment, nutrient depletion conditions) are shown in FIG. FIG. 2 shows a transmission electron micrograph of a thin section of a vegetative cell. FIG. 3 is an explanatory diagram schematically showing the micrograph of FIG. Shape: oval Size: Vegetative cells 7 to 12 μm Immobilized cells 10 to 16 μm Flagella: Two vegetative cells that are about 1.5 times the cell length. Motility: Yes (only in the state of vegetative cells) Photosynthetic pigment: Contains chlorophyll a, chlorophyll b, and carotenoid (detected by thin layer chromatography) Cell structure: Has a cell wall on the outer periphery of the cell. Has eye spots. It has a cup-shaped chloroplast. It has a round pyrenoid at the base of the chloroplast. It has a large number of starch granules inside the chloroplast. Salt tolerance: The salt concentration suitable for growth in culture under photoautotrophic conditions is 2 to 5% by weight of NaCl, and the salt concentration near seawater (about 3.5% by weight) seems to be optimal.

【0016】本発明の微細藻を使用したエタノール製造
は、本発明者らが先に提案した特願平5−239845
号明細書で示したプロセスに準じて実施できる。このプ
ロセスの一例を図4に示し、これに基づき具体的な製造
方法を説明する。図4において、微細藻培養手段1は、
本発明の Chlamydomonas sp. MT-JE-SH-1 株を光独立的
に培養する手段である。これには、水深約10〜30c
m程度の上面が開放された流水路型の培養槽等を用いる
ことができ、海水をベースに窒素、リンなどの無機栄養
を与えながら太陽光を受光して培養することができる。
ここで海水は、その中に含む微細藻の補食生物等の異物
をろ過等により除去された後、培養槽に供給される。培
養は常温付近、例えば25〜35℃で行なう。
The production of ethanol using the microalgae of the present invention is described in Japanese Patent Application No. 5-239845 previously proposed by the present inventors.
It can be carried out according to the process described in the specification. An example of this process is shown in FIG. 4 and a specific manufacturing method will be described based on this. In FIG. 4, the microalga culturing means 1 comprises:
This is a means for culturing the Chlamydomonas sp. MT-JE-SH-1 strain of the present invention independently of light. This includes a water depth of about 10-30c
A flow channel type culture tank having an upper surface of about m can be used, and the culture can be performed by receiving sunlight while giving inorganic nutrients such as nitrogen and phosphorus based on seawater.
Here, the seawater is supplied to the culture tank after foreign substances such as predators of microalgae contained therein are removed by filtration or the like. The cultivation is performed at around normal temperature, for example, at 25 to 35 ° C.

【0017】次に、培養液中の微細藻の濃度が培養液1
000ml当たり0.1〜3.0g(乾燥固形分とし
て)程度になった時点で培養を止め、微細藻濃縮手段2
により濃縮する。具体的には、微細藻濃縮手段2におい
て、沈殿性の高い微細藻の場合には、一旦自然沈殿によ
り固形分1〜5重量/容積%(1000ml当たり10
〜50g)前後に濃縮した後、遠心分離、ベルトフィル
タなどにより更に固形分10〜20重量/容積%(10
00ml当たり100〜200g)に濃縮する。本プロ
セスにおいては、流動性を有する範囲で可能な限り高固
形分に濃縮すると、スラリーとしての取り扱いや後段で
の緩速撹拌が可能で、且つエタノール濃度を高くでき、
後段でのエタノール濃縮が有利になる。
Next, the concentration of the microalgae in the culture solution
When about 0.1 to 3.0 g (as dry solid content) per 000 ml of the culture is stopped, the microalgae concentration means 2
To concentrate. Specifically, in the microalga enrichment means 2, when the microalgae is highly sedimentable, the solid content is temporarily settled by 1 to 5% by weight / volume% (10% per 1000 ml).
5050 g), and then further subjected to centrifugation, a belt filter or the like to further solid matter of 10 to 20% by weight / volume (10%).
100-200 g per 100 ml). In this process, by concentrating to the highest possible solid content within the range of fluidity, handling as a slurry and slow stirring in the subsequent stage are possible, and the ethanol concentration can be increased,
Ethanol concentration in the latter stage is advantageous.

【0018】このようにして得られた微細藻のスラリー
を暗く且つ嫌気性雰囲気に保持できる保持手段3に導い
て、エタノールの生産を行わせる。保持手段3はスラリ
ーポンプあるいは攪拌機などの緩速撹拌手段を備えたp
Hモニター付き半密閉型容器からなる。ここで、暗い雰
囲気とは、光合成が行われない程度に光を遮断した状態
をいう。また、嫌気性雰囲気とは空気雰囲気において微
細藻の呼吸によりO2が消費され、O2 濃度がゼロにな
った状態をいう。
The slurry of the microalga thus obtained is led to a holding means 3 capable of holding a dark and anaerobic atmosphere to produce ethanol. The holding means 3 is provided with a slow stirring means such as a slurry pump or a stirrer.
It consists of a semi-sealed container with H monitor. Here, the dark atmosphere means a state where light is blocked to such an extent that photosynthesis is not performed. The anaerobic atmosphere refers to a state in which O 2 is consumed by respiration of microalgae in an air atmosphere, and the O 2 concentration becomes zero.

【0019】この保持手段3にスラリーを導入し、緩く
かき混ぜながら暗く且つ嫌気性雰囲気に保持することに
より、微細藻自身が行なう細胞内澱粉の発酵作用により
エタノールを生成させる。この間、pHモニターにより
スラリーのpHを監視しておき、NaOH等のアルカリ
溶液とHCl等の酸溶液の供給手段を備えたpH調整手
段4より、アルカリ溶液又は酸溶液を添加して、スラリ
ーのpHを6.0〜9.0、好ましくは6.5〜8.0
の範囲に保つようにする。pH調整手段4は、保持手段
3のpHモニターに連動して作用し、連続的に槽内のp
Hを調整できるようにすることもできる。保持手段3内
での微細藻の滞留時間は、微細藻の種類、保持条件など
により異なるが、5〜50時間の範囲が一般的である。
この工程の温度は、常温付近、例えば25〜35℃で行
なう。
The slurry is introduced into the holding means 3 and is kept in a dark and anaerobic atmosphere while gently stirring to produce ethanol by the fermentation action of the intracellular starch performed by the microalga itself. During this time, the pH of the slurry is monitored by a pH monitor, and an alkali solution or an acid solution is added from a pH adjusting means 4 provided with a means for supplying an alkali solution such as NaOH and an acid solution such as HCl to adjust the pH of the slurry. 6.0 to 9.0, preferably 6.5 to 8.0.
To keep in the range. The pH adjusting means 4 operates in conjunction with the pH monitor of the holding means 3 and continuously adjusts the pH in the tank.
H can also be adjusted. The residence time of the microalgae in the holding means 3 varies depending on the type of the microalgae, the holding conditions, and the like, but is generally in the range of 5 to 50 hours.
The temperature in this step is around normal temperature, for example, 25 to 35 ° C.

【0020】スラリー中のエタノール濃度が5〜50g
/1000ml程度になった時点で、エタノール分離濃
縮手段5に導き、エタノールの分離濃縮を行なう。エタ
ノール分離濃縮手段5は、蒸留の他、エタノール又は水
分離膜による濃縮方法、あるいはプロパン等の溶媒を用
いた超臨界抽出法などを用いることにより、最高は無水
エタノールまでの所望の濃度に濃縮することができる。
エタノールを分離した後の残渣は、乾燥後、焼却等によ
り処分したり、発酵させ堆肥などとして利用することも
できる。
The ethanol concentration in the slurry is 5 to 50 g
At about / 1000 ml, the mixture is led to the ethanol separation / concentration means 5 to separate and concentrate ethanol. The ethanol separation / concentration means 5 uses a concentration method using an ethanol or water separation membrane or a supercritical extraction method using a solvent such as propane in addition to distillation, thereby concentrating the ethanol to a desired concentration up to absolute ethanol. be able to.
The residue obtained after separating ethanol can be dried and then disposed of by incineration or the like, or can be fermented and used as compost.

【0021】[0021]

【実施例】以下実施例により本発明の内容を更に具体的
に説明する。 〔実施例1〕Chlamydomonas sp. MT-JE-SH-1株を表2に
示す組成の栄養をろ過海水に混合したものを培地として
用い、培養した。この培地10リットルと、該 Chlamyd
omonas sp. MT-JE-SH-1 株の培養種4g(乾燥固形分と
して)を偏平透明容器に入れ、白色蛍光灯で約1500
0Luxの連続照射を行い、空気(0.5%CO2
加)を通気しながら、25℃で5日間培養し、10リッ
トル中に24g(乾燥固形分として)の藻体を含む培養
液を得た。なお、この培養終了後の微細藻は乾燥重量当
たり25重量%の澱粉含量を示した。
The contents of the present invention will be described more specifically with reference to the following examples. Example 1 Chlamydomonas sp. MT-JE-SH-1 strain was cultured using a mixture of nutrients having the composition shown in Table 2 in filtered seawater as a medium. 10 liters of this medium and the Chlamyd
omonas sp. MT-JE-SH-1 strain 4 g (as a dry solid content) was placed in a flat transparent container, and about 1500 was taken with a white fluorescent lamp.
The cells are cultured at 25 ° C. for 5 days while continuously irradiating with 0 Lux and aerating with air (0.5% CO 2 added) to obtain a culture solution containing 24 g (as a dry solid content) of algal cells in 10 liters. Was. The microalgae after the completion of the culture showed a starch content of 25% by weight per dry weight.

【0022】[0022]

【表2】 [Table 2]

【0023】次に、この培養液10リットルを遠心沈殿
法により濃縮し、100mlの液中に Chlamydomonas s
p. MT-JE-SH-1 株の藻体24g(乾燥固形分として)を
含む藻体スラリー液とし、これを容積200mlの半密
閉容器に移し、窒素ガスを短時間スラリー液に注入して
容器内の酸素を除去した後、暗い条件下、30℃で振盪
(65往復/min)し、エタノールの生成を行わせ
た。この間、0.1NNaOH又は0.1N HClを
適宜添加して、スラリー液のpHを6.5〜8.0の範
囲に保持した。生産されたエタノールの分析をガスクロ
マトグラフィーによって行い、エタノール濃度の経時変
化を調べた結果、図5のグラフに示すように約2日後に
最大18g/1000mlのエタノールが得られた。図
5のグラフにおいて横軸は嫌気性暗条件下での保持時間
(hr)、縦軸はエタノール濃度(g/1000ml)
を表す。
Next, 10 liters of this culture solution was concentrated by a centrifugal sedimentation method, and 100 ml of Chlamydomonas s.
p. An algal cell slurry solution containing 24 g (as a dry solid content) of algal cells of the MT-JE-SH-1 strain was transferred to a semi-closed container having a volume of 200 ml, and nitrogen gas was injected into the slurry liquid for a short time. After removing the oxygen in the container, it was shaken (30 reciprocations / min) at 30 ° C. under dark conditions to produce ethanol. During this time, 0.1N NaOH or 0.1N HCl was appropriately added to maintain the pH of the slurry in the range of 6.5 to 8.0. The produced ethanol was analyzed by gas chromatography, and the change with time in the ethanol concentration was examined. As a result, as shown in the graph of FIG. 5, a maximum of 18 g / 1000 ml of ethanol was obtained after about 2 days. In the graph of FIG. 5, the horizontal axis represents the retention time (hr) under anaerobic dark conditions, and the vertical axis represents the ethanol concentration (g / 1000 ml).
Represents

【0024】[0024]

【発明の効果】本発明の微細藻 Chlamydomonas sp. MT-
JE-SH-1 株を用いることにより、ほぼ無尽蔵に得られる
海水を利用して培養を行い、培養液を濃縮して得られる
藻体スラリーをpHを中性付近に保ちながら暗く且つ嫌
気性雰囲気に保持してエタノールを製造することが可能
となる。これにより、エタノール生産微細藻の培養にお
ける淡水確保のネックが解消されるため、日照量が豊富
で光合成生産に有利であるにもかかわらず、水の確保が
困難なために、従来は生産立地にできなかった地域にお
いてもエタノール生産が可能となり、微細藻によるエタ
ノール生産プロセスを大規模に利用することが可能にな
る。また、本発明は海水を利用して生産できるため、農
業による食糧生産との間で、肥沃な土地と淡水を競合す
ることがなく、これまで未利用の砂漠等の荒廃地と海水
を用いてエネルギーや化学原料となるエタノールを大量
に製造することができる。しかも、本発明は太陽光によ
る光合成により炭酸ガスを固定し有効利用するため、地
球規模での大気中炭酸ガス減少対策としても有効である
点で、一石二鳥の効果を奏するものである。
EFFECT OF THE INVENTION The microalga Chlamydomonas sp. MT-
By using the JE-SH-1 strain, cultivation is performed using seawater obtained almost infinitely, and the algae slurry obtained by concentrating the culture solution is kept in a dark and anaerobic atmosphere while maintaining the pH near neutrality. To produce ethanol. This eliminates the bottleneck of securing fresh water in the cultivation of ethanol-producing microalgae, and it is difficult to secure water despite the abundance of sunlight and the advantage of photosynthetic production. Ethanol production becomes possible even in areas where it was not possible, making it possible to use the ethanol production process by microalgae on a large scale. In addition, since the present invention can be produced using seawater, fertilized land and freshwater do not compete with food production by agriculture, and degraded land such as deserts and seawater that have not been used so far are used. Ethanol, which is used as energy and chemical raw materials, can be produced in large quantities. Moreover, the present invention has the effect of two birds per stone in that it is effective as a measure for reducing carbon dioxide in the atmosphere on a global scale because the carbon dioxide is fixed and effectively used by photosynthesis by sunlight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微細藻 Clamydomonas sp. MT-JE-SH-1
株の栄養細胞、及び不動細胞の形状を示す図面に代る顕
微鏡写真(倍率2,500倍)である。
FIG. 1 Microalgae of the present invention Clamydomonas sp. MT-JE-SH-1
It is a microscope picture (2,500 times magnification) instead of a drawing which shows the shape of the vegetative cell and the immobile cell of a strain.

【図2】本発明の微細藻 Clamydomonas sp. MT-JE-SH-1
株の栄養細胞の細胞内構造を示す図面に代る透過型電子
顕微鏡写真(倍率14,000倍)である。
FIG. 2 Microalgae of the present invention Clamydomonas sp. MT-JE-SH-1
It is a transmission electron microscope photograph (magnification 14,000 times) which replaces the drawing and shows the intracellular structure of the vegetative cells of the strain.

【図3】図2の電子顕微鏡写真を模式的に示した説明図
である。
FIG. 3 is an explanatory view schematically showing the electron micrograph of FIG. 2;

【図4】本発明の微細藻 Clamydomonas sp. MT-JE-SH-1
株によるエタノール製造プロセスの概要を示すフロー図
である。
FIG. 4 is a microalga Clamydomonas sp. MT-JE-SH-1 of the present invention.
It is a flow figure showing the outline of the ethanol production process by a strain.

【図5】本発明の微細藻 Clamydomonas sp. MT-JE-SH-1
株を用いたエタノール生産の実施例において、微細藻ス
ラリー中に生成したエタノール濃度の経時変化を示すグ
ラフ図である。
FIG. 5: Microalgae of the present invention Clamydomonas sp. MT-JE-SH-1
It is a graph which shows the time-dependent change of the density | concentration of ethanol produced | generated in the microalga slurry in the Example of ethanol production using a strain.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:89) (72)発明者 平山 伸 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 植田 良平 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 香川 晴治 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C12R 1:89) (72) Inventor Shin Hirayama 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Ryohei Ueda 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Heavy Industries, Ltd.Basic Technology Research Laboratory (72) Inventor Seiji Kagawa 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanishi Heavy Industries, Ltd. Inside

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 海水の塩分濃度で生育して細胞内に澱粉
を蓄積し、暗くかつ嫌気性雰囲気に保つことにより細胞
内の澱粉よりエタノールを生産するクラミドモナス属に
属する微細藻 Chlamydomonas sp. MT-JE-SH-1。
1. A microalga Chlamydomonas sp. MT- belonging to the genus Chlamydomonas which grows at a salt concentration of seawater, accumulates starch in cells, and produces ethanol from intracellular starch by keeping the cells in a dark and anaerobic atmosphere. JE-SH-1.
【請求項2】 クラミドモナス属に属する微細藻 Chla
mydomonas sp. MT-JE-SH-1を海水の塩分濃度で培養して
細胞内に澱粉を蓄積させた後、培養した藻体を含むスラ
リーを、pHを6.0〜9.0の範囲に保ちながら暗黒
かつ嫌気性雰囲気に保持してエタノールを生成させるこ
とを特徴とするエタノール製造方法。
2. A microalga Chla belonging to the genus Chlamydomonas.
After culturing mydomonas sp. MT-JE-SH-1 at the salt concentration of seawater to accumulate starch in the cells, the slurry containing the cultured alga bodies was adjusted to pH 6.0 to 9.0. A method for producing ethanol, comprising maintaining ethanol in a dark and anaerobic atmosphere while maintaining it.
JP01769898A 1998-01-14 1998-01-14 Seawater microalgae producing ethanol Expired - Fee Related JP3837589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01769898A JP3837589B2 (en) 1998-01-14 1998-01-14 Seawater microalgae producing ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01769898A JP3837589B2 (en) 1998-01-14 1998-01-14 Seawater microalgae producing ethanol

Publications (2)

Publication Number Publication Date
JPH11196885A true JPH11196885A (en) 1999-07-27
JP3837589B2 JP3837589B2 (en) 2006-10-25

Family

ID=11951027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01769898A Expired - Fee Related JP3837589B2 (en) 1998-01-14 1998-01-14 Seawater microalgae producing ethanol

Country Status (1)

Country Link
JP (1) JP3837589B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507553B2 (en) 2001-06-08 2009-03-24 Samyan Genex Corporation Galleria mellonella derived composition for detecting peptidoglycan, a method for use thereof, and a diagnostic kit containing the same
WO2012029727A1 (en) 2010-08-31 2012-03-08 独立行政法人科学技術振興機構 Alga in which production of photosynthetic products is improved, and use for said alga
WO2015025553A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component, method for producing higher unsaturated fatty acid, and chlamydomonas species strain jsc4
JP2016140359A (en) * 2015-02-03 2016-08-08 台灣中油股▲ふん▼有限公司 Novel chlamydomonas and application of the same
WO2017217116A1 (en) * 2016-06-17 2017-12-21 本田技研工業株式会社 Novel microalga having aggregation ability
US10358666B2 (en) 2014-05-29 2019-07-23 Japan Science And Technology Agency Algae and method for producing same, and method for producing biomass using said algae

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206693A (en) * 2010-03-30 2011-10-20 Tokyo Electric Power Co Inc:The System for treating microalgae

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507553B2 (en) 2001-06-08 2009-03-24 Samyan Genex Corporation Galleria mellonella derived composition for detecting peptidoglycan, a method for use thereof, and a diagnostic kit containing the same
KR20150080021A (en) 2010-08-31 2015-07-08 재팬 사이언스 앤드 테크놀로지 에이젼시 Alga in which production of photosynthetic products is improved, and use for said alga
WO2012029727A1 (en) 2010-08-31 2012-03-08 独立行政法人科学技術振興機構 Alga in which production of photosynthetic products is improved, and use for said alga
JP5771616B2 (en) * 2010-08-31 2015-09-02 国立研究開発法人科学技術振興機構 Algae with improved productivity of photosynthetic products and their utilization
US9051575B2 (en) 2010-08-31 2015-06-09 Japan Science And Technology Agency Alga in which production of photosynthetic products is improved, and use for said alga
CN106029893A (en) * 2013-08-23 2016-10-12 国立大学法人神户大学 Method for generating oil/fat component, method for producing higher unsaturated fatty acid, and chlamydomonas species strain JSC4
US10351882B2 (en) 2013-08-23 2019-07-16 National University Corporation Kobe University Method for producing an oil or fat component and method for producing higher unsaturated fatty acid using algae
WO2015025553A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component, method for producing higher unsaturated fatty acid, and chlamydomonas species strain jsc4
JP5719977B1 (en) * 2013-08-23 2015-05-20 国立大学法人神戸大学 Method for producing fat and oil component, method for producing higher unsaturated fatty acid, and Chlamydomona sp.
US10214756B2 (en) 2013-08-23 2019-02-26 National University Corporation Kobe University Method for generating oil/fat component from chlamydomonas algae
US10358666B2 (en) 2014-05-29 2019-07-23 Japan Science And Technology Agency Algae and method for producing same, and method for producing biomass using said algae
JP2016140359A (en) * 2015-02-03 2016-08-08 台灣中油股▲ふん▼有限公司 Novel chlamydomonas and application of the same
WO2017217116A1 (en) * 2016-06-17 2017-12-21 本田技研工業株式会社 Novel microalga having aggregation ability
US20190177747A1 (en) * 2016-06-17 2019-06-13 Honda Motor Co., Ltd. Novel microalga having aggregation ability
CN109844094A (en) * 2016-06-17 2019-06-04 本田技研工业株式会社 New fine algae with agglutinability
GB2565970A (en) * 2016-06-17 2019-02-27 Honda Motor Co Ltd Novel microalga having aggregation ability
US10745718B2 (en) 2016-06-17 2020-08-18 Honda Motor Co., Ltd. Microalga having aggregation ability
GB2565970B (en) * 2016-06-17 2021-04-14 Honda Motor Co Ltd Novel microalga having aggregation ability
CN109844094B (en) * 2016-06-17 2023-06-20 本田技研工业株式会社 New microalgae with agglutination energy

Also Published As

Publication number Publication date
JP3837589B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
Shen et al. Microalgae mass production methods
FR2924126A1 (en) Culturing heterotrophic microalgae comprises preparing inoculum by culturing strain of microalgae, inoculating the culture medium in photobioreactor with inoculum and culturing microalgae in autotrophic/mixotrophic culture conditions
CN109576314B (en) Method for preparing microalgae grease through mixed culture
CN109844094B (en) New microalgae with agglutination energy
Magdaong et al. Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor
WO2015041349A1 (en) Method for liquid-surface floating culture of microalgae using microalgae on bottom surface as seed algae, method for producing algal biomass, and microalga
JP3837589B2 (en) Seawater microalgae producing ethanol
JP2010088334A (en) Method for producing starch and ethanol by using algae releasing starch to exterior of cell
Lewicki et al. The experimental macro photoreactor for microalgae production
CN104232559A (en) Microalgae culturing method and grease producing method
CN103275898B (en) Lipase high-producing strain, screening method thereof and method for producing lipase by using strain through fermentation
Lebeau et al. A new photobioreactor for continuous marennin production with a marine diatom: influence of the light intensity and the immobilised-cell matrix (alginate beads or agar layer)
JP3468955B2 (en) Method for producing lactic acid by microalgae
JP3004510B2 (en) Ethanol production process from microalgae
JP2009261287A (en) Chlorella/hydrogen production method and chlorella/hydrogen production apparatus
JP2015057991A (en) Method for liquid-surface floating culture of microalgae using structure with penetrated portion, and collection method
JP3004509B2 (en) Method and apparatus for producing ethanol from microalgae
KR101403464B1 (en) Marine microalgae culturing system for enhancing the lipid and sugar composition
CN108624626B (en) Strain and method for producing beta-phenethyl alcohol
JP3510532B2 (en) Microalgae producing high-purity D-lactic acid, and method and apparatus for producing D-lactic acid using the same
Wang et al. A new species of Desmodesmus sp. from high altitude area was discovered and its isolated, purification, amplification culture and species identification were studied
Oyawoye et al. Microalgae cultivation and bacteria co-culture for improved biodiesel production: A review
JPH10290698A (en) Production of ethanol using microalga
JP2015008676A (en) Microalga culture method and water drainage method
JPH0787986A (en) Process for producing ethanol from fine alga

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees